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Incorporation of a deformation prior in image reconstruction

Barbara Gris *

Abstract

This article presents a method to incorporate a deformation prior in image recon-
struction via the formalism of deformation modules. The framework of deformation
modules allows to build diffeomorphic deformations that satisfy a given structure. The
idea is to register a template image against the indirectly observed data via a mod-
ular deformation, incorporating this way the deformation prior in the reconstruction
method. We show that this is a well-defined regularization method (proving existence,
stability and convergence) and present numerical examples of reconstruction from 2-D
tomographic simulations and partially-observed images.

1 Introduction

For many imaging techniques, the acquisition time is relatively long. For instance in
computed tomography targetting the torso, the acquisition takes several minutes and
then the patient breathes during the acquisition. Using static reconstruction methods
leads then to the appearance of motion artefacts which can prevent from identifying some
structures or, on the contrary, creates false ones. The solution that is used in clinic for
torso computed tomography is to use ”gated data”: the respiratory rythm of the patient
is recorded simultaneously, and only the data acquired at a specific respiratory state are
used for the reconstruction. In order to be able to use all the available data, it is necessary
to incorporate a temporal component in the reconstruction method [17, 19, 20, 20].

In order to do so, an common strategy [, 7, 9, 10, 11, 15, 16, 18, 21, 24, 25, 30] is to
reconstruct one initial image Iy and a trajectory of deformations ¢t — ¢; such that a each
time ¢ the image ¢; - Iy (deformation of Iy by ¢;) matches the observed data. Then the
framework has two intertwined components, estimation of Iy and estimation of t — ¢y,
that can be alternatively performed in an iterative optimization scheme. This article
concentrates on the second step : estimating the deformation trajectory ¢t — ¢y, given
observed data and an initial template image Iy. A central point is to define the deformation
model, i.e. the set of deformations that are considered and their parametrization. In [10]
and [10] for instance, the deformation model is built via the LDDMM framework [0],
leading to good numerical and theoretical results. However, as illustrated in the following,
this deformation model corresponds to unstructured deformations in the sense that it is
not possible to incorporate a prior knowledge about the type of deformations that can
occur. As a consequence, in some cases the estimated deformation is not intuitively
satisfying but there is no possibility with such unstructured-deformation framework to
enforce a more intuitive solution. Several frameworks allow to incorporate particular
prior in deformation models [5, 4, 12, 22, 23, 27, 28 29, 31] so that they are adapted
to specific situations. The goal of this article is to show how a generic prior on the set
of deformations can be incorporated via the notion of deformation modules [14] so that
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only the desired solutions are used to reconstruct an image from the observed data and
the initial template. For instance in the case of biological images, this framework would
ensure that only the deformations that are possible from a biological point of view are
considered. The interest of the deformation module framework is that it encompasses
many previous approaches and requires very few conditions on the constraints that can
be incorporated in the deformation model.

We recall the notion of deformation modules and build a particular class of deformation
modules called constrained translations generator deformation modules that can be easily
built and used. We present how geodesic trajectories can be used to reconstruct an image
from indirect observations and a given initial template, and then we show that this strategy
is a well-defined regularization method to solve inverse problems by proving the existence
of solutions as well as their stability and convergence. Finally we present several numerical
examples, using our framework to reconstruct images from 2-D simulations of two different
natures: tomographic data (obtained via the 2-D Radon transform) and partial observation
(obtained by restricting the image on a small window).

2 Background

2.1 Inverse problem

Let Q € R be a fixed bounded domain and X := L?(£2,R) be a space of grey scale images
on ). The principle of inverse problem resolution is to reconstruct an image I belonging
to the space X from an indirect observation g belonging to a data space Y. More precisely,
we suppose that there is a ground truth image I;,4, in X and an operator T : X — Y
such that the observed data is g = T'(Ijyun) + € where € is some noise. The goal is to build
an image I such that T'(I) ~ g and that is satisfying from a certain point of view to be
defined (for example regularity).

2.2 Large deformations and indirect registration

The idea behind indirect registration as developed for instance in [10, 16, 18], is to search
the image to reconstruct as the deformation of a known template image Iy by a deformation
. It is then necessary to define how deformations can transform an image. There are
several possible choices, in the following we will consider the geometric group action of
diffeomorphisms on X defined by ¢ - I =Top™! for p € Diﬂ”é(Q) and I € X.

The deformation that we will consider are large deformations defined as flows of a
time-varying vector-field :

Proposition 1. [2] Let V be a fived Hilbert space of vector fields on RY continuously
embedded in Cg(Q) (vector fields £ times continuously differentiable, supported on ), with
derivatives tending to zero at the boundary) and let v € L*([0,1],V). Then the following
equation

for any x € Q and t € [0, 1]. (1)

has a unique absolutely continuous solution and it is a diffeomorphism at each time. It is
called the flow of v and we will denote it by @V € Diff§(R%).



a) Template. (b) Data. ) Ground truth.
=0. )t =0.25. =0.5. )t =0.75. =1.

Figure 1: Result of LDDMM-based indirect matching (without constraint). Template Iy
in fig. 1a matched against data ¢ in fig. 1b obtained from ground truth in fig. 1c (forward
operator : Ray transform with 100 angles uniformly distributed 0 and 7). Second row :
image trajectory ¢y - Iy, the reconstructed image is in fig. 1h.

In this context, the strategy of indirect registration of a template image Iy € X against
some data g € Y is then to minimize a functional of the form

T e T([0,1,V) = O0) + 1 D(T(ety - o). )
where D is a distance on Y.

This framework leads to good result (see [10, 16]) but sometimes the obtained defor-
mation, and then the reconstructed image, are not intuitively satisfying. For instance we
present in Figure 1 the result of the indirect registration of the template image presented
in Figure la against the data g presented in Figure 1b which are the Ray transform with
100 angles uniformly distributed 0 and 7 of the ground truth image Figure 1c. Even
though the reconstructed image in Figure 1h is not too far (for the L? metric for instance)
from the ground truth image, intuitively it would have been more satisfying to obtain a
deformation rotating the small white structure than one distorting it like here. It would
be interesting to force the deformation to be a local rotation, and then to optimise the
parameters of this rotation. However, with this non structured indirect matching, it is
not possible to incorporate the additional knowledge of the type of transformation that
we would like to observe.

3 Deformation modules

The object of this article is to show how the framework of deformation modules introduced
in [14] can be used to incorporate motion prior in image reconstruction.

3.1 Definition

The intuition behind the deformation module framework is to constrain deformations in
order to incorporate some prior in the motion, while leaving some parameters free in order



to be able to adapt to data. For instance if the goal is to reconstruct a respiratory motion,
even though this motion is different from one patient to another, there might be some
shared ”base-motions” from which any respiratory motion can be reconstructed. These
”base-motions” can be modelled by some generators that, given the current ”geometrical
state” of the subject, would define a family of vector fields which can then be combined
to produce the respiratory motion. The current ”geometrical state” of the subject can
be given via its image or some other geometrical variable such as landmarks, and the
coefficients of the combination of the vector fields correspond to a ”control variable” in
the sense that they have to be optimized so that the global motion fits to the data. The
framework of deformation modules formalizes this intuition. The idea of ”geometrical
state” is formalized by the notion of ”shape” as defined by S. Arguillere in [3]:

Definition 1. Let O be a manifold of finite dimension and k € N*. Assume that the group
Diffé(Rd) acts continuously on O, according to the action

Difffy(R) x O — O @)
(p,0) — ¢-o0.

We say that O is a C*-shape space of order ¢ on R? if the following conditions are
satisfied:

1. For each o € O, ¢ € Diff§(RY) +— ¢ - 0 is Lipschitz with respect to the norm | - |
and is differentiable at Idpa. This differential is called the infinitesimal action
of C’g(Rd) and we will simply denote the action of a vector field v on a geometrical
descriptor o (with a slight abuse of notation) v - o.

2. The mapping (0,v) € O x C§(RY) = v - 0 is continuous and its restriction to O x
CETR(RY) is of class CF.

An element o of O is called a shape, and R? will be referred to as the ambient space.

We now give a slightly simplified formal definition of a deformation module from the
one defined in [11]:

Definition 2. Let k, ¢ € N*. We say that M = (O, H,(, c) is a C*-deformation module
of order ! with geometrical descriptors in O, controls in H, field generator ( and
cost c, if

e O is a C*-shape space of RY of order ¢ with an infinitesimal action C§(R?) x O —
TO,

e H is a finite-dimensional Euclidean space,

e (:(0,h) €O x H — (0,(o(h)) € O x C§RY) is continuous, with h +— (,(h) linear
and o — C, of class C*,

e c:(0,h) € OXxH — c,(h) € RT is a continuous mapping such that o — ¢, is smooth
and for all o € O, h +— c,(h) is a positive quadratic form on H, thus defining a
smooth metric on O x H.

The field generator ¢ plays the role of generator of the ”base-motions”, it takes in input
couples of a geometrical descriptor and a control variable. The geometrical descriptor
is the variable giving some geometrical information and leading to the specification of
the constraints (for instance specifying the location of the generated vector field). The



control variable specifies how to combine these constraints. As the geometrical descriptor
corresponds to ”geometric information”, if the geometry of the ambient space is modified
through a deformation, the geometrical descriptor should be transformed accordingly. This
is why it is necessary to specify how vector fields can act on geometrical descriptors via
the infinitesimal action of the shape space O. The importance of this parameter will be
detailed with the definition of modular large deformations in Section 3.4.

Remark 1. In [1)], the deformation module was defined by a five-fold (O, H,(, &, c¢) where
& is the infinitesimal action associated to the shape space O. Here in order to simplify the
notations (and as in the examples we present there is no ambiguity about them ), we will
denote all the infinitesimal actions v - 0 and they will be implicitly defined via the shape
spaces of geometrical descriptors.

In the following we will restrict ourselves to deformation modules satisfying the Uni-
form Embedding Condition:

Definition 3. Let M = (O, H,(,¢) be a C*-deformation module of order £. We say that
M satisfies the Uniform Embedding Condition (UEC) if there exists a Hilbert space
of vector fields V' continuously embedded in C’g+k(Rd) and a constant C' > 0 such that for
all o € O and for allh € H, (,(h) € V and

Co(R) [ < Co(h).

This condition will be required for the theoretical results presented in the following
sections.

3.2 Examples

We will now present some examples that are very simple to define and that will simulta-
neously be very useful in the following. They all satisfy the uniform embedding condition.
All the images are defined on 2 = [—16, 16] x [—16, 16] which is discretized in 256 x 256
pixels.

3.2.1 Local translations

Let us consider again the image in Figure 1la and imagine that there is a prior on the way
it can be transformed. Suppose that we know that there are two forces that can push
or pull in any direction, acting in areas of given sizes. A way to model these forces is
by using local translations. Then let us build a deformation module generating vector
fields that are always a sum of two local translations, localized via a Gaussian kernel
K, : (z,y) — exp—'g;%'Q
be parametrized by :

(we fix the kernel size o). The generated vector fields will then

e 2 points, centres of the local translations : they define the locations of the translations
given the current geometrical state and then are geometrical descriptors

e 2 vectors, vectors of the local translations : they define how the two local translations
can be used to generate an adapted vector field and then they are control variables.

The space of geometrical descriptors is therefore O = R? x R? (space of two points),
the space of controls is H = R? x R? (space of two vectors) and the field generator is
¢ :(o,h) € Ox H E?:l Ky (04,-)h; with o = (01,02) and h = (h1,h2). A natural
choice for the infinitesimal action of O is the application of vector fields to the two points:
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Figure 2: Three examples of vector field generated by a deformation module generating
sums of two local translations (see Section 3.2.1, 0 = 6) for three different values of
geometrical descriptors and controls. The blue crosses are the geometrical descriptors, the
red arrows are the controls and the vector fields are plotted in green.

(0,v) € O x C§(Q,R?) = v-0 = (v(01),v(02)) With 0 = (01,02). The cost can be chosen as
¢: (0,h) = |¢o(h)[}, with V, the RKHS associated with K, so that the defined deformation
module M = (O, H, (, ¢) straightforwardly satisfies the UEC. The set of vector fields that
can be generated by this deformation module is rich, as illustrated in Figure 2, but these
vector fields follow the strong prior of being sums of two local translations.

3.2.2 Contracting-dilating field

Suppose now that one has an additional prior on the directions of the vectors of the two
translations: that they should both be parallel to the line between the two centres and in
opposite direction. In this case it is not adapted to let the vectors of the translation being
controls variables as they cannot be chosen freely. On the contrary the directions are now
a function of the geometrical descriptor, and the variable that can now be freely chosen
is a scalar to which will be multiplied the vectors of the translations. More precisely we
can set, for this new deformation module, © = R2 x R2, H =R and ( : (o,h) € Ox H —

h(K(ol, ) — K (o2, )) (01 —02) with 0 = (01, 02). We define as previously, the infinitesimal

action of O by (0,v) € O x C§(,R?)  v-0 = (v(01),v(02)) and & : (0, h) |Co(h)|%/d. We
present in Figure 3 several examples of vector fields generated by this deformation module
M = (0O,H,(,¢). Note that the vector fields generated by M can also be generated by M

but that they are not parametrized in the same manner : an additional prior comes with
M.

3.2.3 Constrained translations generator deformation modules

In the following we will use a certain category of deformation module that generate vector
fields which are a constrained sum of local translations, generalizing the ones previously
presented in Section 3.2.2. More precisely we set a scale 0 € RTx, N € N and two functions
[ (RHN s (RYP (a point-generator function) and g : (RH)N s (RY)P (a vector-generator
function) with p € N. Then we define O = (RY)¥ (space of N points), H = R and
C:(o,h) € Ox H— hY Y | K,(fi(o),")gi(o) with f = (f;) and g = (¢;). The idea here
is to associate, to each geometrical descriptor o, a set of points (fi(0),--- , fy(0)) and a
set of vectors (g1(0), -, gp(0)) so that the vector fields that can be generated with o are
colinear to the sum of the local translations centred at points f;(o) with vectors g;(0). The
infinitesimal action can be simply defined by the application of the vector field to the points
composing the geometrical descriptor and the cost by ¢: (0,h) € Ox H — C |Co(h)|%/cr + h?



Figure 3: Three examples of vector field generated by a deformation module generating
contracting or dilating field (see Section 3.2.2, 0 = 8) for three different values of geomet-
rical descriptors and controls. The blue crosses are the geometrical descriptors, the vector
fields are plotted in green. The scalar control is positive for the left and middle figure,
and negative for the figure on the right.

for some C' > 0. This definition as a sum of these two terms is due to regularity reasons,
ensuring that ¢, is a quadratic form on H for all o in O and that the deformation module
satisfies the uniform embedding condition. Deformation modules that can be defined this
way will be called constrained translations generator deformation modules.

These deformation modules are defined by three parameters : the kernel-size o, the
point-generator function f and the vector-generator function g. We present in Figure 4
various vector fields generated by various deformation modules, i.e. for various choices of
o, fand g.

3.3 Combining deformation modules

An interesting feature of this framework is that deformation modules can be combined to
form a compound deformation module that will generate vector fields that are a sum of
the vector fields generated by the combined deformation modules. More precisely :

Definition 4. Let M' = (0", H', !, ), 1 =1--- L, be L C*-deformation modules of order
(. We define the compound module of modules M' by C(M',1=1---L) = (O, H,(,&,¢c)
where O = [[,0', H = [[, H' and for o = ('), € O, {, : h = (k') € H — Zld)l(hl),
v-o=(v-0), € T,O (forve C§RY)) and c,: h = (k) € H— Y, cf)l(hl).

As shown in [14], the uniform embedding condition is stable result under combina-
tion and then an easy way to build complex deformation modules satisfying the uniform
embedding condition is to combine several simple deformation modules satisfying this
condition.

In Figure 5 we present three examples of vector fields generated by two different com-
pound deformation modules.

3.4 Modular large deformations

The structure of deformation modules allows to constrain vector fields, we will now present
how this can be used to incoporate a structure in large deformations. These large deforma-
tions are obtained as flow of time-varying vector fields and the idea is then to consider only
vector fields that can be generated by the field generator of a given deformation modules.
These trajectories of vector fields are then parametrized by trajectories of geometrical de-
scriptors and controls and then in order to defined modular large deformations, one needs



(a) Local scaling, 0 = 5

(b) Local rotation, o =5

(c) Local shearing, o = 1.5

Figure 4: Examples of vector fields generated by three constrained translations gener-
ator deformation modules (see Section 3.2.3) for three different choices of kernel-size o,
point-generator function f and vector-generator function g, leading to three types of vec-
tor fields: local scaling (fig. 4a), local rotation (fig. 4b) and local shearing (fig. 4c). For
each deformation module, we present 3 examples of generated vector field for three differ-
ent values of geometrical descriptors and controls. The blue crosses are the geometrical
descriptors, vectors generated by the vector-generator functions g are in black (their base-
points are points defined by f(0)) and the vector fields are plotted in green (the scalar
controls are not represented, they are positive for left and middle figures, and negative for
the right one).



(a) Vector fields generated by combining a local rotation (o = 5, geometrical descriptors are blue
crosses) and a local scaling (o = 5, geometrical descriptors are blue dots)

(b) Vector fields generated by combining a local rotation (o = 5, geometrical descriptors are blue
crosses) and a local shearing (o = 8, geometrical descriptors are blue squares)

Figure 5: Examples of vector fields generated by two compound deformation modules.
In fig. 5a are represented vector fields generated by combining deformation modules gen-
erating local scaling and local rotations. In fig. 5b are represented vector fields generated
by combining deformation modules generating local shearing and local rotations. For each
of the two compound deformation modules, we present 3 examples of generated vector
field for three different values of geometrical descriptors and controls. The geometrical
descriptors are plotted in blue, vectors generated by the vector-generator functions g are
in black (their base-points are points defined by f(0)) and the vector fields in green (the
scalar controls are not represented).



to specify the trajectories of geometrical descriptors and controls that will be considered.
We will consider what we call controlled path of finite energy:

Definition 5. Let M = (O, H,(,c) be a deformation module and let a,b be in O. We
denote Q. the set of measurable curves t — (o4, hy) € O x H where o, is absolutely
continuous (a.c.), starting from a and ending at b, such that for almost every t € [0,1],
0t = vy - o, where vy = (o, (ht), and

1
Blo,h) = / o, () dt < o0.
0

The quantity E(o, h) is called the energy of (o, h) and S, is the set of controlled paths
of finite energy starting at a and ending at b.

If the UEC is satisfied, it is shown in [14] that large deformations can be built from
controlled paths of finite energy :

Proposition 2. Let us suppose that M satisfies UEC. Let (o,h) € Qqp and for each
t, vy = Co,(ht). Then v € L?([0,1],V) C L', the flow " exists, h € L?([0,1], H) and
for each t € [0,1], or = ¢}.00. We call the final diffeomorphism ¢}_; a modular large
deformation generated by a.

In Figure 6 we present an example of modular large deformation generated by the

combination of two deformation modules. The first one generates ”shearing” field at the
scale ¢ = 8 its geometrical descriptors are formed of two points, the point-generator
function is f : o +— o (identical function) and the vector-generator function is g : 0o =
(01,02) = ((01 — 02)T, (02 — 01)T) with 2T = (29, —21) for z = (21,22) € R? (vectors
of g(o) are orthogonal to the line between the two points of 0). The second deformation
module generates local rotations (at the scale o = 3). This trajectory is obtained with
constant positive controls.
This example illustrates that geometrical descriptors naturally follow the deformation of
the ambient space during modular large trajectories due to the equation o, = (o, (h¢) - 04.
We emphasize here that the geometrical descriptors of the two combined deformation
modules are transported by the total vector field generated by the compound deformation
module: in particular the centre of the rotation is displaced by the shearing field. Then,
the area which is both rotated and translated by the shearing motion remains the same
during the whole trajectory. Note that this is a direct consequence of the definition of the
combination of deformation modules and that in order to build such deformations, one
only needs to define two deformation modules and then apply the simple combination rule
defined in Section 3.3.

3.5 Shooting equations

Let M = (O, H,(,c) be a combination of constrained translations generator deformation
module. As shown in [I4], normal geodesics (minimizing energy E) starting at a € O
can be parametrized by an initial variable called the initial momentum 79 € 7;O. The
geodesic (o, h) parametrized by (a,n9) € T*O is given by : 0i—g = a, M=o = 1o and

% = Cot(ht) * Ot
% = _80H(0t7 U ht) (3)
h = Co_l(go o Co)*(n)

where H : (0,n,h) € T*O x H ~ (1,(o(h) - 0) — 2¢o(h) is the hamiltonian of the system

and for each 0 in O C, : H — H* is defined by (Coh, h) g+ g = co(h) for all hin H.
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(a)t=0 (b) ¢ = 0.25 (¢) t=0.5 (d) t = 0.75 (e) t=1

Figure 6: Example of large deformation generated by the combination of two deformation
modules. Geometrical descriptors are in blue (squares for shearing deformation module
and cross for the rotation one) and vectors generated by the vector-generator functions g
are in black.

Lemma 1. If M = (O, H,(,c) is a combination of N constrained translations generator
deformation modules (see Section 3.2.3), then for each o in O, the operator C, : H — H*
defined by (Coh,h) g+ n = co(h) for all h in H is invertible and C~1 : 0 € O C;1 is
smooth.

Proof. Let us denote M* = (OF, H* (¥, c¥), k = 1,..., N the constrained translations
generator deformation modules of which M is the combination. For each k, there ex-
ist functions f¥ and gF, i = 1,...,py such that ¢* is given by ¢* : (0,h) € O x H
h> Pk K, (fF(0),)gF(0). From the definition of the cost one gets that for each k and for
. T .
all (o,h) in OF x H*, C¥(h) = h(1 + Do K, (fF(0), f5(0))gF(0)" g¥(0)) (let us remain-
ing that the control h € H* is scalar). Since K, is a reproducing kernel, the quantity
> Ko fE (o), fh(0))g¥ (o)TgZI€ (0) is always non-negative. As a consequence, the operator
C’(’f_l is well defined for all 0 in O* and from the smoothness of functions fik and gf on

ets that 0 € OF — CF ! = 1 is smooth.
8 o TEY,, Ka(FF0).5(0)9k(0) gE (o)

This is true for all k and as C,, is defined by C,, : h = (hy,...,hy) € H — (C’oll(hl), .. .,Cé\lfv(h]v)>

for all o = (01,...,0n) in O (this is a direct consequence of the definition of the cost of
a compound deformation module, see Section 3.3), it is clearly invertible and o + C, ! is
smooth. 0

4 Image reconstruction with a deformation prior

4.1 Framework

The idea here is, given a deformation module M = (O, H,(,c), to search amongst all
geodesics parametrized by an initial variable in T*O the one allowing to perform the
indirect registration. We will only consider deformation modules of the form described
in Section 3.2.3 so that O = QY for some N € N and T*0 = QY x (RN, Let Iy be a
template image and g be some data, the modular indirect registration will correspond to
minimizing :

J1y.g1 : (a,m0) € T*O — ~Ci(a) + 7Ca(n) + D(T(gpgi(h) . IO),g> (4)

where (0,7) starts at (oi—0,m:=0) = (a,m0) and satisfies Equation (3), v,7 € RTx
and C; : O — RY, Cy : (RY)N —» RT are continuous and satisfy C;(0) — 400 when
0o — QN Cy(n) — 400 when |n| — +oc.

11



4.2 Regularising properties

Proposition 3 (Existence). Let M = (O, H,(,c) be a constrained translations generator
deformation module (see section 3.2.3), Iy € L*(), R) a template image, T : L*(2,R) Y
a continuous operator with Y a Banach space, and let g be some data in Y. Then there
J10,9,7 has a minimizer in T*O.

Proof. Because of the conditions on the regularization functions C; and Cy and the
fact that T*0O is of finite dimension, it is sufficient to check that Jp, 47 is continuous.
First, from the smoothness of the Hamiltonian, it is easy to see that the trajectory
(0% n®M0) satisfying Equation (3) is a continuous function of the initial conditions (a, 7o)
in C([0, 1], T*O) associated with the supremum norm. Then the trajectory of the optimal
control h®» is also a continuous function of (a,no) in C([0,1], H) associated with the
supremum norm and the same result is true for the trajectory of vector field {(o, h%™).
As a consequence (see [3]), (a,ng) — gafiola’no’ha’no) - Iy € L?(9,R) is a continuous function
which concludes the proof. O

Proposition 4 (Stability). Let M = (O, H,(,c) be a constrained translations generator
deformation module (see section 3.2.3), Iy € L?(2,R) a template image, T : L?(,R) — Y
a continuous operator with Y a Banach space, and let g be sequence of Y that converges to
g €Y. For each k, let (a¥, 7]6“) be a minimizer of Jp ok p. Then there exists a sub-sequence
of (a*,nf) that converges to a minimizer of Ji, g1

Proof. Let a € O, for each k, Jlo’gk7T(ak,n2) < Jpp gk r(a,0) = C1(a)+C2(0)+3D(T(Io), gi) —>
Ci(a) + C2(0) + $D(T(Ip), g). Then the sequences Ci(a”) and Ca(nf) are bounded and
as a consequence (a*,nf) is in a compact set of T*O (because it is of finite dimension).
Then up to an extraction, we can suppose that (a*,n%) converges to (a>, 75°) which leads
to Jy, ge (0¥, n) — Ji,g0(a%,n5°) (because g8 — g). Then let (a,n0) be in O*, for
each k, J107gk7T(ak,7]§) < Jy.g¢7(a;m0) so when taking the limit of both terms one gets
J10,9,7(a%,05°) < J1y,9,7(a,m0). This is true for any (a,no) so (a>,ng°) is a minimizer of
JIO,g,T‘ ]

Proposition 5 (Convergence). Let M = (O, H,(,c) be a constrained translations gen-
erator deformation module (see section 3.2.3), Iy € L*(,R) a template image, T :
L?(,R) — Y a continuous operator with Y a Banach space, and let g € Y. Assume
that there exists (a,no) € T*O such that T(cpfi’fo - Iy) = g. Furthermore, assume that
there exists a parameter selection rule v : R*+ — R*+, 7 : R*+ — R*+ such that
§ = 7(0)/7(8) and § — 7(8)/v(3) are bounded and v(5) — 0, 7(y) — 0, 62/v(8) — 0,
§2/7(6) = 0 as § — 0.

Let (6x) be a sequence in R*+ converging to 0 and let (gi) be a sequence in'Y such
that D(gg,g) < & for each k. Finally let, for each k, (a*,nf) be a minimizer of 19,95 7
Then there exists a sub-sequence of (ak,ng) that converges to a minimizer of Jp, g1.

Proof. We set for each k, v = (%) and 7, = 7(dx). Then, for each k we have :

1 A A
Ci(d") < TkJIO,gk,T(akang) < W%JIO,gk,T(aﬂ 770)
= L (WC1(@) + Calio) + DT (G - o), v
~ o 52
< Ci(@) + 3£ Ca(fo) + 35
From the hypothesis, we deduce that Cj(a*) is bounded and then that aj, is in a com-
pact set. In a similar way we can show that 776’C is in a compact set so up to an ex-
traction we can suppose that (a*,nf) converges to (a>,7g°). As shown previously, this
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a® 7S ak, k
leads to D(T (¢ §: 1o),9) — D(T (5., ™ - Io),g) and then, D(T (g5, " -IO),gk) <
ok nk 00,00 k
D(T(pi_, " - Iy), 9)+D(g.91) s DT T, g). Besides, DT, 1), g¥) <
J]mgk T(ak,no) <J O7gk7T(CL, 7%) = 1 C1(a) + 7 C2(f0) + D(g, gr) — 0. As a consequence

,mg°

D(T(pi—y " -To).9) =0
which concludes the proof. O

5 Application to image reconstruction

5.1 Overview

We present here examples of image reconstruction via modular indirect matching. In
order to do so we minimize functional (4) with respect to the initial geometrical descrip-
tor and momentum. The deformation modules that we use here are combinations of
constrained translations generator deformation modules (see Section 3.2.3) and then ge-
ometrical descriptors are sets of points. As a consequence, a natural and simple choice
for the regularizing function C' is to set a maximum value M for the norm of the points
and define C1 : a € O = > . W where the notation ) ., means summation
over all points in forming the geometrical descriptor a. The function Cs is taken as the
squared norm of the momentum. In all the experiments, the domain of the images is

Q = [-16,16] x [—16,16] and is discretised using 256 x 256 pixels. The optimisation
is performed via a gradient descent, and the gradient is computed with a forward and
backward integration scheme as described in [13] (Section 6).

We present results of image reconstruction for two different types of operator T": a 2-D
tomography operator and a restricting operator (they are defined in the corresponding
sections). The data are in most cases noisy data, and we will specify the noise level by
PSNR, which is defined as

lgo — gol|*
SNR(g) = 1010g10< n =7l

where gg is the noise-free part of the data and n = g — gg the noise-part and T denotes
the mean of x. The PSNR is expressed in terms of decibel dB.

In all the experiments, the initial geometrical are optimized but they are initialized
with ’good’ initial positions and then do not move a lot during the optimization.

5.2 2-D tomography operator
5.2.1 2-D tomography operator

In this example the forward operator T' is the 2-D Ray transform defined by, for I €
L?(,R),

T(I):(w,x)GSIXRr—)/ I(z + sw)ds

sER,z+swe)

where S! is the unit circle. In the discretised setting, we specify the angles (discretisation
of S1) and the number of lines per angle (discretization of a bounded interval of R). In
the following examples, we use 100 angles uniformly distributed in [0, 7] and 724 angles
per line.
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Figure 7:  Examples of points f(o) (first row, black points) and vectors g(o) (second
row, black vectors) generated by the deformation module presented in Section 5.2.2 for 3
different geometrical descriptors (in blue).

5.2.2 Local rotation

We will first consider the same noise-free data as in Figure 1 for which unconstrained
deformation frameworks do not give satisfying results. In order to obtain a better recon-
structed image via constrained deformations, the prior to incorporate in the deformation
model is that there should be an anisotropic rotation acting in the area of the small white
structure. We present here an easy way to build a constrained translations generator de-
formation module corresponding to this prior. We set the kernel size 0 = 0.5, O = R? x R?
(geometrical descriptors are formed of two points) and we define f by associating, to each
geometrical descriptor o = (01, 02), points regularly spaced by a distance ¢ in a rectangle
grid of axis 01 — 0y and its orthogonal, see Figure 7. Then we define the function g so that

the vector associated to f;(0) is gi(0) = Roy+oy » (fi(0)) where Roj+o, » is the infinitesimal
2 ’2 2 ’2

rotation (angle 3) centred at 292 (see Figure 7).

In figure we show the result of the indirect registration using this deformation module.
We can see here that as we only allow the vector field at each time to be a local rotation,
the desired deformations occurs. Then, if necessary, one could for study the estimated
parameters of this deformation (given by the initial momentum).

5.2.3 Local rotation and additional deformation

Let us now consider the case where the ground truth is the image in Figure 9¢ and data are
noisy (see Figure 9b, SNR = 9.8). In this case there are additional differences between the
template and the ground truth. Let us suppose that the only prior that we have about the
form of the deformation is that there are a ”pushing-forces” acting (this can for instance
model a growth) and that the area on which they act can be modelled via a Gaussian
kernel. The easiest way to model this is via translations. We then build two deformation
modules, each one generating one local translation (the kernel sizes are respectively 1 and
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a) Template. (b) Data. ) Ground truth.

(d) t=0. ) t =0.25. = 0.5. ) t =0.75. =1.

Figure 8: Result of constrained indirect matching. Template Iy in fig. 8a matched against
data ¢ in fig. 8b obtained from ground truth in fig. 8c (forward operator : Ray transform
with 100 angles uniformly distributed 0 and 7) with the deformation module presented in

Section 5.2.2. Second row : image trajectory got"(h) - Ip, the reconstructed image is then
in Figure 8h. The blue crosses are the geometrical descriptors (their initialisation are in
fig. 8a).

2 and are supposed to be known). We also use the previous deformation module generat-
ing a local and anisotropic rotation. Then we combine these three deformation modules
(see Section 3.3). The result of the indirect registration using this compound deformation
module is presented in Figure 9. As previously, the adapted rotation deformation is es-
timated by the gradient descent, and simultaneously the two translations ”push” in the
good direction to lead to a satisfying image reconstruction (fig. 9h).

This examples illustrates how one can easily complexify pre-existing deformation con-
straints (modelled by a given deformation module) by building new deformation modules
and combining them with the pre-existing deformation module.

5.3 Reconstruction from a partial observation

We present now an example where the operator is a restriction operator which means that
we only observe a small area of the whole image. This area will be a rectangle and then
defined by its extremal points. This example illustrates how a prior knowledge about a
"large-scale motion’ can allow to reconstruct an image from a ’small-scale observation’. The
template, ground truth image and data are presented in Figure 12 (the observation window
for the data is [—5,5] x [—=5,5] and the SNR is 3). We suppose that we know that only
two types of motions can happen here: an horizontal compressing motion (see Figure 10a)
and a shearing motion (moving horizontally, see Figure 10b). A simple way to build
a constrained translations generator deformation module generating compressing (resp.
shearing) vector field is to set O = R2xR?, f = Idp and g : 0 = (01, 02) +— (01—02,02—01)
(resp. g : 0= (01,02) > ((01—02)T, (02 —01)T) with 2T = (z9, —z1) for x = (21, 12) € R?).
See Figure 11 for illustrations of this construction.

The result of the indirect registration with the combination of these two deformation
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a) Template. (b) Noisy data. ) Ground truth.

(d) t=0. ) t =0.25. = 0.5. ) t =0.75. =1.

Figure 9: Result of constrained indirect matching. Template Iy in fig. 9a matched against
noisy data ¢ in fig. 9b obtained from ground truth in fig. 9c¢ (forward operator : Ray
transform with 100 angles uniformly distributed 0 and 7) with the deformation module

presented in Section 5.2.3. Second row : image trajectory <,0<°( ) - Iy, the reconstructed
image is then in fig. 9h. The geometrical descriptors are in blue (crosses for the anisotropic
rotation, plus for the translation with 0 = 2 and dot for the translation with o = 1).

modules is presented in Figure 12. The image is well reconstructed and then allow to
understand how the whole image is deformed even if only a small part is observed.

6 Conclusion

We have presented a framework to reconstruct images as transformations of a known
template image via constrained deformations. We showed that this is a well-defined reg-
ularization method, and illustrated that it allows to perform good reconstruction on 2-
examples with noisy data of various natures. The deformations are constrained via con-
strained translations generator deformation modules which are a particular category of
deformation modules that is easy to use and can produce a wide variety of deformations.

The method that we present supposes that the template image is known but in practice
it can be necessary to estimate it as well. In order to do so we will develop an iterative
scheme where this image and the deformation are alternatively optimized.

In all the numerical examples, we supposed that the appropriate deformation modules
we perfectly known. In particular we suppose that the Gaussian kernel is an appropriate
localizing function and that its kernel-size is known. This will in general not be the
case with real data and we currently work on automatically defining deformation modules
adapted to given data.
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(a) Compressing motion. (b) Shearing motion.

Figure 10: Motions modelled in Section 5.3

(a) Vector fields generated by deformation module generating compressing-dilating field. Geomet-
rical descriptors are crosses.

(b) Vector fields generated by deformation module generating shearing fields. Geometrical descrip-
tors are pluses.

Figure 11: Examples of vector fields generated by the two deformation modules defined
in Sec5.3 (o = 8 for both). The geometrical descriptors o are plotted in blue, vectors g(o)
are in black and the vector fields in green (the scalar controls are not represented).
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a) Template. (b) Noisy data. ) Ground truth.

(d) t=0. ) t =0.25. = 0.5. ) t =0.75. =1.

Figure 12: Result of constrained indirect matching. Template Iy in fig. 12a matched
against noisy data g in fig. 12b obtained from ground truth in fig. 12¢ (forward operator:
restricting operator) with the deformation module presented in Section 5.3. Second row:

image trajectory ¢;

o(h) Iy, the reconstructed image is then in fig. 12h. The geometri-

cal descriptors are in blue (crosses for the compressing-field module and pluses for the
shearing-field module.)
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