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ABSTRACT 

PathCrawler is a tool developed by CEA List for the automatic 

generation of test inputs to ensure the coverage of all feasible 

execution paths of a C function. Due to its concolic approach and 

depth-first exhaustive search strategy implemented in Prolog, 

PathCrawler is particularly efficient in the generation of tests to 

cover the fully expanded tree of feasible paths. However, for 

many tested functions this coverage criterion demands too many 

tests and a weaker criterion must be used. In order to efficiently 

generate tests for a new criterion whilst still using a concolic 

approach, we must modify the search strategy. To facilitate the 

definition and comparison of different coverage criteria, we 

propose a new type of tree, trees of abstract paths, and define the 

different types of abstract node in these trees. We demonstrate 

how several criteria can be conveniently defined in terms of 

coverage of these new trees. Moreover, efficient generation of 

tests to satisfy these criteria using the concolic approach can be 

designed as different strategies to explore these trees.   

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – Testing 

tools (e.g., data generators, coverage testing).  

General Terms 

Design, Performance, Algorithms. 

Keywords 

structural testing, test generation, coverage criteria. 

1. INTRODUCTION 
PathCrawler [1][2] was one of the first test input generators to use 

a combination of concrete data and symbolic execution. In the 

literature, similar test generation tools are variously referred to as 

concolic, dynamic-symbolic-execution (DSE) or constraint-based 

execution tools. Below we will call them concolic tools. Unlike 

some concolic tools, such as [3], PathCrawler does not use 

concrete values to generate over-approximate path predicates. 

However, PathCrawler is concolic in that, like these tools and [4], 

[5], [11], PathCrawler recovers the trace of each generated test 

and uses it to generate a prefix of the path predicate of the next 

test. This is an efficient way to generate tests for all-feasible-path 

coverage, the structural coverage criterion PathCrawler was 

designed to satisfy, because the constraint solver is only called 

once for the initial test and then once for each node in the tree of 

feasible execution paths. Indeed, although constraint resolution is 

very fast most of the time, it is actually NP-complete and it is very 

difficult to know which constraint problem will take “too long” to 

resolve. This means that every time the constraint solver is called, 

there is a risk that it will run for “too long” and have to be 

interrupted by a timeout condition. This is why it is important to 

limit calls to the solver in order to speed up test generation. In 

structural testing, the minimum number of tests is defined by the 

structural coverage criterion and the tested function, so the only 

way to limit calls to the constraint solver is to limit the calls which 

do not contribute to this minimum number of tests. These are 

either calls which do not result in a test being generated, because 

the constraint problem is inconsistent (i.e. the path is infeasible), 

or else calls which generate a test which does not cover anything 

that has not already been covered by previous tests. PathCrawler 

limits the first category by always detecting infeasibility in the 

shortest prefix which is common to several infeasible paths. This 

paper is about limiting the second category.  

PathCrawler generates tests to cover all feasible execution paths 

of functions coded in ANSI C (except functions containing certain 

constructions not treated yet, essentially pointer casts). However, 

for many functions the all-paths coverage criterion demands 

unmanageable numbers of tests. This phenomenon may be 

intrinsic to the structure of the tested function, for example if it 

contains numerous successive conditional instructions with few 

infeasible combinations (so the number of paths approaches 2 to 

the power of the number of conditional instructions), or loops 

containing conditional instructions (so that the number of 

potentially feasible paths is the number of paths through the loop 

body to the power of the number of iterations). In such cases, a 

branch-coverage criterion may be more appropriate. 

However the number of paths to cover also depends on how paths 

are defined. Indeed, structural coverage criteria are not always 

defined very precisely in the literature, which can pose a problem 

for the practitioner. For instance, if called functions are treated as 

though they are in-lined in the code then they may cause a 

combinatorial explosion in the number of paths whereas coverage 

of the feasible paths through the tested function itself, without 

necessarily “covering” the called functions, may only demand a 

manageable number of tests. PathCrawler decomposes multiple 
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conditions and then tries to cover the resulting expanded tree of 

feasible execution paths, which can also cause a combinatorial 

explosion in the number of “paths” whereas the number of paths 

through the different decisions of the multiple conditions may be 

manageable. 

We would like to adapt PathCrawler to respect other control-flow-

based structural coverage criteria in order to be applied to the 

programs for which the current criterion demands too many tests. 

As a first step, the alternative criteria which could be satisfied by a 

concolic generation strategy must be precisely defined and their 

interest to the user must be justified. 

Moreover, we have also been investigating [6] the use of 

PathCrawler to generate tests to measure worst-case execution 

time (WCET). For this purpose, we have devised coverage criteria 

which exclude paths which, if certain hypotheses are respected, 

must have shorter execution times than the others. In these 

criteria, we may cover only the true branch of if-then-else 

structures with an empty else body or only the maximum number 

of iterations of loops with no condition in the loop body. 

One way to respect coverage criteria other than all-paths would be 

to use the classic concolic path test generation strategy and just 

stop test generation when the criterion had been satisfied, e.g. in 

the case of branch coverage, when all branches had either been 

covered or proved unreachable. However, this is likely to be 

inefficient in the following sense. By inefficient test generation, 

we mean that many tests are generated and infeasible partial paths 

detected which are redundant in the sense that although they 

cover (or, in the case of infeasible partial paths, could have 

covered) new paths they do not increase coverage (resp. could not 

have increased coverage) as defined by the criterion in question, 

for example branch coverage. Redundant tests and redundant 

infeasible partial paths cost potentially expensive calls to the 

constraint solver and must be limited. Classic concolic test 

generation strategies explore the path tree “blindly” and so if, for 

example, only one branch remains to be covered, they may waste 

time exploring partial paths which are not even connected to that 

branch. 

1 int g(int i, int x){ 

2   if (i == x) 

3     return 2; 

4   else 

5     return (i*x)+1; 

6 } 

7 

8 int f( int A[2], int e, int x) { 

9   int i, res ; 

10   res = 0 ;   

11   if((x < -1) || (x > 1)) { 

12    i = 0; 

13    while( (i < 2) && (res == 0)) { 

14      if( e == A[i] ) 

15         res = g(i+1,x); 

16      else 

17         i++; } } 

18   if(res == 2) 

19     return 1;  

20   else 

21     return 0; 

22 }  
Figure 1.Source code of an example of a tested function, f. 

In this paper, we present an abstraction of execution paths, 

“abstract paths”, which provides a conceptual framework to 

facilitate the definition and comparison of many different control-

flow-based structural coverage criteria and of concolic generation 

strategies to efficiently satisfy these criteria. Structural coverage 

criteria are often said to be based on the program’s control-flow 

graph and abstract paths encapsulate parts of the control flow 

graph. However, the control-flow graph does not treat multiple 

conditions as we would like to and trees of abstract paths can also 

be compared to abstract syntax trees. In fact, abstract paths are a 

combination of the execution-path tree, the control-flow graph 

and the abstract syntax tree. We first used abstract paths for the 

WCET measurement criteria described in [6]. In the present 

paper, the idea of abstract paths is revised and generalised so that 

it can be used for other criteria. In the next section, we will first 

recall the tree of feasible execution paths explored by concolic test 

generation tools and introduce an example of a tested function and 

its feasible paths. In Section 3, we define abstract paths and in 

Section 4 we show how each of the criteria mentioned above can 

be defined in terms of these paths. In Section 5 we consider 

strategies to explore the abstract path graph in order to efficiently 

generate tests satisfying each criterion. Finally, we will discuss 

related work and future directions. 

2. THE EXPANDED TREE 
The classic concolic test generation strategy is an exhaustive 

exploration of a tree we will call the fully expanded tree of 

feasible execution paths (or expanded tree). To generate tests to 

satisfy other coverage criteria, the exploration of the whole of this 

tree should not usually be necessary. In order to discuss this 

further, we start by defining how the source code of the tested 

function is represented in this tree. 

We suppose here that there are no system or library calls or 

GOTO instructions in the original source code and that it has been 

simplified so that it only contains if-then-else instructions with 

simple conditions, sequences of assignments and GOTO 

instructions added by the simplification. All conditional control 

instructions such as if-then-else, switch, while,… have been 

decomposed so that the only conditional instructions left have  

simple conditions containing no logical connectors such as && or 

side effects (assignments or function calls). Function calls have 

been replaced by assignments of the values of the effective 

parameters to the formal parameters, followed by the source code 

of the called function and then assignment of the return value. 

What we call the expanded tree is in fact the tree of feasible 

execution paths through this simplified source code. It is 

composed of a root node, leaf nodes, conditional nodes and 

directed arcs between nodes. The root node represents the entry 

point of the tested function (which we suppose to be unique) and 

each leaf node represents an exit from the function. Each 

conditional node represents an if-then-else instruction with a 

simple condition. Arcs represent a truth value (true or false) and a 

(possibly empty) sequential block of unconditional instructions. 

There is a single arc (with value “true”) from the root to the first 

node and from the last node in each path to a leaf. Each 

conditional node has one arc entering it and either one or two arcs 

leaving it. Loops are unrolled. Each path from the root through 

connected arcs and nodes to a leaf represents a feasible execution 

path. A path which starts at the root and ends with an arc is called 



a partial path. If a conditional node in the expanded tree only has 

one arc leaving it, then the missing arc would be the final arc in an 

infeasible partial path. 
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 Figure 2. The expanded tree for f 

As a running example of a tested function, we use the function “f” 

whose source code is displayed in Figure 1. In Figure 2 we show 

the expanded tree for this example. The root of this tree is labelled 

R and the leaves are labelled with the unique identifier of the 

feasible path (P1, P2,...) leading to this leaf.  Each conditional 

node in this tree is labelled with line number of the conditional 

instruction in the source code that it represents, followed by the 

letter “b” if the node represents the second sub-condition in a 

multiple condition. The arcs are labelled with + for true and – for 

false but the assignments are not shown. In the following, we will 

denote the positive arc leaving a node labelled n by n+ and the 

negative arc leaving the same node by n-. 

The concolic exploration of the expanded tree starts with an 

arbitrary feasible path and then for each unexplored arc leaving a 

conditional node in this path it arbitrarily selects a feasible suffix 

(up to exit from the tested function) unless the partial path up to 

and including this unexplored arc is infeasible. The feasible suffix 

is explored in the same way. The arcs can be explored in any 

order. Figure 2 numbers the paths in an order which illustrates a 

possible concolic exploration of the arcs in depth-first order, 

supposing that the first, arbitrarily obtained, path is P1. 

3. ABSTRACT PATHS 
To introduce abstract paths, let us consider a test criterion which 

requires just the coverage of all feasible paths through the source 

code seen in a form in which called functions are not in-lined, nor 

multiple conditions decomposed. We will call this criterion 

minimal-all-paths. To respect minimal-all-paths for our example, 

it is not necessary to cover both P6 and P1, which only differ in 

the sub-conditions (11- and 11b+ in P1 and 11+ in P6) leading to 

the same positive decision for the multiple condition on line 11. 

We see that for this criterion, for each path (such as P1) in the 

expanded tree which is covered, there may be a set of feasible 

paths (such as P1 and P6) which are equivalent. Below, we will 

call this set of paths an abstract path for the minimal-all-paths 

criterion. Similarly, if the test criterion were coverage of all 

simple conditions, then after covering the first path, P1, the 

condition 14- is covered twice but not 14+. We would then try to 

cover either of the two partial paths ending in 14+ which is 

obtained by modifying one of the two prefixes of P1 which ends 

in 14- (and the next path covered would then be P2, P3 or P4). In 

this case, we would consider both partial paths as equivalent in 

spite of the fact that they have different loop iterations (sequences 

of 13+, 13b+ and 14+ or 14-). 

Indeed, as shown by Figure 2, the same conditional instruction in 

the simplified code is usually represented by several different 

nodes in the expanded tree and two path fragments in this tree can 

be considered as equivalent, by certain test criteria and under 

certain conditions, if they start with the same conditional node, s, 

or different conditional nodes, s1 and s2, representing the same 

conditional instruction and end with conditional nodes t1 and t2 

both representing some other conditional instruction. For 

example, P1 and P6 in Figure 2 both contain a path fragment 

starting at the node, s, labelled 11 and ending at nodes t1 and t2 

labelled 13. Such equivalent path fragments are produced when 

one of the following constructions is present in the un-simplified 

source code: 

 If-then-else structures 

 Function calls 

 Loops 

 Multiple conditions  

Abstract path trees introduce into the expanded tree certain 

structural information found in the control flow graph or abstract 

syntax tree by grouping certain parts of the expanded tree into 

abstract nodes of the following types: 

If-then-else This abstract node has one arc entering it, one arc 

leaving it and contains a conditional node and the two alternative 

path fragments. 

Function call This has one arc entering it, one arc leaving it and 

contains all path fragments through the called function. 

Loop This has one arc entering it, one arc leaving it and contains 

the conditional node of the loop head and all path fragments for 

one individual iteration 

Logical Conjunction This has one arc entering it and two arcs, 

with two different truth values, leaving it. It contains the path 

fragment for the conjunction to be satisfied and the two path 

fragments for it to be false. 

Logical Disjunction This also has one arc entering it and two 

arcs, with two different truth values, leaving it. It contains the two 

path fragments for the disjunction to be satisfied and the path 

fragment for it to be false. 

Abstract nodes can be nested so the conditional node in an if-

then-else can be a multiple condition and the alternative path 

fragments can contain other abstract nodes. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

Conference’04, Month 1–2, 2004, City, State, Country. 

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. 
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 Figure 3. An abstract tree for f  

 

Abstract trees are composed of the same root, leaves, arcs and 

conditional nodes as the expanded tree but they also contain 

abstract nodes. In Figure 3 we depict an abstract tree for our 

example, which contains all the types of abstract node mentioned 

above. As different path fragments within abstract nodes can lead 

to a common node, they are not depicted as a tree but as paths 

through a graph which is similar to a fragment of the control flow 

graph. Note that within an abstract node, one node, such as the 

node labelled  14+ in Figure 3, may represent several nodes in the 

expanded tree (in this case, all the nodes labelled 14+ in the 

expanded tree). 

Abstract paths are paths from the root to a leaf of an abstract path 

tree. Note that when an abstract path goes through a conditional 

abstract node (i.e. logical conjunction or disjunction), it follows 

just one arc out (true or false), as in the case of non-abstract 

conditional nodes in concrete paths. Each abstract path represents 

a set of concrete paths in the expanded tree. From now on, we will 

refer to paths in the expanded tree as concrete paths. The abstract 

tree depicted in Figure 3 contains two abstract paths, one 

representing all feasible paths whose final arc represents the truth 

of the conditional instruction at line 18, and the other representing 

all the feasible paths for which this condition is false. As abstract 

nodes can be nested, an abstract path can contain path fragments 

which themselves traverse abstract nodes but we will refer to these 

as abstract path fragments and not abstract paths. 

Note that the expanded tree only represents feasible paths but the 

feasibility of a path fragment in an abstract node may depend on 

the partial path leading to the abstract node if this partial path 

contains other abstract nodes. We consider that each arc in an 

abstract tree (including the arcs in the abstract nodes) is reachable, 

i.e. is present in at least one concrete path. 

An abstract partial path is a path from the root to an arc which 

leaves a non-abstract conditional node. Note that if the abstract 

partial path ends in an arc which is contained in an abstract node, 

n, (or in nested abstract nodes n1, n2,…) then n (resp. n1, n2,…)  

must be expanded in the abstract partial path. 

11

11b
- +

 

Figure 4. The abstract partial path to arc 11b+ 
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Figure 5. The abstract partial path to arc 13- 
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Figure 6. Abstract partial path to arcs 13+, 13b+, 14+, 2+, 2- 

For example, Figure 4 depicts the abstract partial path to the arc 

labelled 11b+ in the abstract tree depicted in Figure 3, which 

corresponds to a single concrete partial path because the abstract 

logical disjunction node has been expanded. In the case of an arc 

contained in an abstract loop node, the abstract partial path to the 

arc may represent concrete paths with several different iterations 

before the final arc is reached, and with different numbers of 

iterations before the final arc. This is why we depict such abstract 

partial paths as in Figure 5, which shows the abstract partial path 

leading to the arc 13- in the abstract tree depicted in Figure 3. The 

abstract partial paths leading in Figure 3 to the arcs 13+, 13b+, 

14+, 14-, 2+ and 2- are all depicted by Figure 6. 

4. USE OF ABSTRACT TREES TO DEFINE 

COVERAGE CRITERIA 
Let us now see how different control-flow-based structural 

coverage criteria can be defined in terms of abstract trees 

containing different abstract nodes. 

The minimal-all-paths criterion was already discussed above. It 

corresponds to the coverage of all abstract paths in an abstract tree 

in which only function calls and multiple conditions are 

encapsulated in abstract nodes. If-then-else structures and loops 

are left in their expanded form in this tree. Figure 7 depicts this 

abstract tree for our example. 

If the tested function has too many abstract paths even when the 

function calls and multiple conditions are abstracted then the 

abstraction of loops can be considered. One criterion commonly 

used in this case is k-path, in which k is a small integer constant 

fixed by the user and only the only paths covered are those with 

up to k iterations of any loop with a variable number of iterations. 

However, this criterion does not take into account the branches 

within each iteration and if any paths are only feasible when a 



path contains more than k iterations of one of these loops, then 

these paths will not be tested. Abstract loop nodes allow other, 

more justifiable, criteria to be defined but we do not have space to 

discuss them here. 

If even the abstraction of function calls, multiple conditions and 

loops leaves too many paths to cover, then the user can decide to 

cover either all simple conditions, including the sub-conditions of 

multiple conditions, or just all decisions. We call minimal-all-

conditions the coverage of all simple conditions in the tested 

function (but not all conditions in any called functions). This is 

defined using an abstract tree in which if-then-else structures, 

function calls, loops and multiple conditions are all encapsulated 

in abstract nodes (i.e. for our example, the tree depicted in Figure 

3). The criterion corresponds to the coverage of all abstract partial 

paths in which the last arc is not contained in an abstract function 

call node (see Figures 4 – 6 for our example). 
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Figure 7. The abstract tree for the minimal-all-paths criterion 

We will call the next criterion minimal-all-decisions. It is 

coverage of all branches appearing in the tested function’s 

original source code, in which multiple conditions are not 

decomposed and function calls are not in-lined. This criterion 

corresponds to the coverage, in the same abstract tree as the 

previous criterion, of all abstract partial paths in which the last arc 

leaves either a simple condition which is not contained in an 

abstract function call or multiple condition node or else an 

abstract multiple condition node which is not contained in another 

abstract multiple condition node, nor in an abstract function call 

node. 

The final two criteria we define here result from our previous 

work [6] on the generation of tests for measuring the worst-case 

execution time. They are based on coverage of all paths but differ 

from the previous criteria in that they introduce a partial order 

between paths. The first is called empty-else: do not cover a path, 

p1, if there is another feasible path, p2, such that the only 

difference between p1 and p2 is that in one or more if-then-else 

structures p1 follows an empty path fragment (containing no 

instructions) and p2 follows a non-empty path fragment. This 

criterion is defined using an abstract tree in which only if-then-

else structures with empty else bodies (ITEE structures, such as 

the outermost ITE in Figure 3) are encapsulated in abstract nodes.  

The second criterion is called max-iterations: do not cover a path, 

p1, if there is another feasible path, p2, such that the only 

difference between p1 and p2 is that in one or more loops in 

which all iterations are identical, p1 executes fewer iterations than 

p2. This criterion is defined using an abstract tree in which only 

loops are encapsulated in abstract nodes. In the trees for these two 

criteria, there is a partial order on the concrete paths belonging to 

each abstract path. For example, an abstract path which traverses 

one abstract ITEE node represents both the concrete paths which 

take the empty path fragment of this ITEE and those that take a 

non-empty path fragment. However, if there are several non-

empty path fragments through the same ITEE, or if there are 

several ITEEs in the same abstract path, then the different 

concrete paths may not be comparable because the order is only 

partial. These last two criteria are satisfied if, for each abstract 

path in the tree, we cover all concrete paths which are maximal in 

the corresponding partial order over this abstract path. 

5. USE OF ABSTRACT TREES TO DEFINE 

TEST GENERATION STRATEGIES 
Now let us show how abstract trees can be used to define concolic 

strategies to generate tests to satisfy the first two criteria above 

without exploring as many feasible paths or infeasible partial 

paths as the classic depth-first concolic strategy.  

As mentioned in the Introduction, PathCrawler was designed to 

generate a set of tests to guarantee 100% satisfaction of a 

structural coverage criterion (in the cases where the constraint 

solver does not timeout during test case generation). This enables 

the user to give a precise measure of confidence in a program for 

which all tests in the set succeed. PathCrawler can therefore be 

used not only for debugging but as part of a more formal test 

process. Part of the service to the user provided by tools such as 

PathCrawler is the guarantee that all paths or branches which are 

not covered by the test set are infeasible resp. unreachable (in the 

case of constraint resolution timeout, the path prefixes are 

indicated to the user, who must check their feasibility by hand). 

The test generation strategy must ensure this service, as well as 

the generation of the test set. Concolic tools such as [3], which 

use over-approximate path predicates in order to be able to treat 

all programs, do not necessarily attempt to provide this service 

and so would choose slightly different test generation strategies to 

those proposed below. 

Note that our proposed strategies also take into account one 

reason why PathCrawler is efficient: because it is implemented 

using constraint logic programming, depth-first search makes the 

most of Prolog’s built-in backtrack mechanism to store successive 

states of the constraint store in a stack instead of recalculating 

them on backtrack. 

In Figures 8 and 9, we illustrate the first two strategies on our 

example by giving the covered paths (labelled P or R), and 

infeasible partial paths (labelled I) explored, still assuming the 

arbitrary first path is P1. Each path or partial path is denoted by 

its successive arcs and each path fragment which is inside an 

abstract node is enclosed in brackets, as follows: ( ) for a loop, < > 

for AND, « » for OR, [ ] for ITE and {} for CALL. 

As explained in the previous section, the strategies concern 

coverage of abstract paths in the case of path-based strategies such 



as minimal-all-paths and empty-else and coverage of abstract 

partial paths in the case of arc-based strategies such as minimal-

all-conditions and minimal-all-decisions. We will use the term 

(partial) paths to mean paths in the case of path-based strategies 

and partial paths in the case of arc-based strategies. 

A concolic strategy consists in first defining the order in which to 

inspect the arcs in the concrete paths already covered. Then, for 

each arc, a, which is in a concrete path, P, which has already been 

covered, the strategy must define whether and how to explore the 

alternative arc, a′. Let PP be the concrete prefix of a in P and PP′ 

be the concrete partial path formed by adding a′ to the end of PP. 

The strategies defined using abstract trees are based on the 

following principles: 

1. If PP′ belongs to an abstract partial path which has not 

yet been covered, then try to generate any test covering 

PP′ 

2. If PP′ is only a prefix of concrete (partial) paths which 

belong to already covered abstract (partial) paths, then 

there is no need to cover PP′. 

3. If PP′ is a prefix of at least one concrete (partial) path, 

PPP′, belonging to an abstract (partial) path that has not 

yet been covered, then decide how to try and cover 

PPP′ and all other concrete (partial) paths of which PP′ 

is a prefix and which belong to uncovered abstract 

(partial) paths. 

Point (2) above defines when PP′ does not need to be covered and 

points (1) and (3) concern different ways to try and cover PP′. 

We propose to divide arc-based strategies into two passes. In a 

first breadth-first traversal, only the partial paths corresponding to 

point (1) above are explored. Then the still uncovered partial 

paths are reviewed and, in a second pass, those corresponding to 

point (3) above are explored: all concrete partial paths belonging 

to each uncovered abstract partial path are systematically explored 

until either a test to cover the abstract partial path is found or all 

the concrete partial paths belonging to it have been proved 

infeasible. The justification for breadth-first search and this two-

phase scheme is opportunistic: in covering PP′, we cover a whole 

new concrete path, P′, of which PP′ is a prefix, and P′  may 

contain other uncovered arcs as well as a′. (or in other words, P′  

may have other prefixes which belong to different abstract partial 

paths). If we explore covered paths breadth-first then we first 

explore the alternatives of arcs at the beginning of paths. These 

are more likely to have long suffixes, thereby increasing the  

 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ] «13-         »- ) ] 18-  : P1 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ] «13-         »- ) ] 18+ : I1 

  <11- 11b+ >+   «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ]  13+                     : I2 
[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »- ) ] 18-  : P2 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »- ) ] 18+ : I3 

  <11- 11b+ >+   «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b+ »+          : I4 
[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {-2}  ] «13-         »- ) ] 18+ : I5 (suffix18+) 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {+2} ] «13+ 13b- »- ) ] 18+ : P3 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {+2} ] «13+ 13b- »- ) ] 18-  : I not explored 
  <11- 11b+ >+   «13+ 13b+ »+ [14-        ] «13+ 13b+ »+ [14+ {+2} ] «13+ 13b+ »+          : I6 

 <11- 11b+ >+   «13+ 13b+ »+ [14-        ] «13+ 13b+ »+ [14+ {+2} ] «13-        »-           : I not explored 

  <11- 11b+ >+   «13+ 13b+ »+ [14-          ] «13+ 13b- »-                                                : I7 
  <11- 11b+ >+   «13+ 13b+ »+ [14-          ] «13-         »-                                               : I8 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »-                                      ) ] 18-  : P4 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »-                                      ) ] 18+ : I9 
  <11- 11b+ >+   «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b+ »+                                               : I10 

[ <11- 11b+ >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13-        »-                               ) ] 18+ : I11 (suffix18+) 

  <11- 11b+ >+   «13+ 13b+ »+ [14+ {+2} ]                                                                    : I12 
  <11- 11b+ >+   «13+ 13b-  »-                                                                                     : I13 

  <11- 11b+ >+   «13-          »-                                                                                     : I14 

[ <11- 11b- >-                                                                                                  ] 18-  : P5 

[ <11- 11b- >-                                                                                                  ] 18+ : I15 

[ <11+        >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ] «13-         »- ) ] 18-  : R1 (P6~P1) 

[ <11+        >+ ( «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ] «13-         »- ) ] 18+ : I16 
  <11+        >+   «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14-          ]   13+                    : I17 

[ <11+        >+ ( «13+ 13b+ »+ [14-         ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »- ) ] 18-  : R2 (P7~P2) 

[ <11+        >+ ( «13+ 13b+ »+ [14-         ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »- ) ] 18+ : I not explored 
  <11+        >+   «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b+ »+          : I18 

 <11+       >+   «13+ 13b+ »+ [14-        ] «13+ 13b+ »+ [14+ {-2}  ] «13-        »-           : I not explored 

  <11+        >+   «13+ 13b+ »+ [14-          ] «13+ 13b+ »+ [14+ {+2} ] «13+ 13b+ »+          : I19 (suffix 13+ 13b+) 
  <11+        >+   «13+ 13b+ »+ [14-          ] «13+ 13b- »-                                                : I20 

  <11+        >+   «13+ 13b+ »+ [14-          ] «13-         »-                                                : I21 

[ <11+        >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »-                                      ) ] 18-  : R3 (P8~P4) 
[ <11+        >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b- »-                                      ) ] 18+ : I22 

  <11+        >+   «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b+ »+                                               : I23 

[ <11+        >+ ( «13+ 13b+ »+ [14+ {-2}  ] «13-        »-                                      ) ] 18+ : I24 (suffix 18+) 

  <11+        >+   «13+ 13b+ »+ [14+ {+2} ]                                                                   : I25 

  <11+        >+   «13+ 13b-  »-                                                                                     : I26 

  <11+        >+   «13-          »-                                                                                     : I27  

Figure 8. Minimal-all-paths strategy illustrated on our example 



chances of quickly finding other uncovered arcs. 

Conversely, only one path can be covered at a time, whether it is 

abstract or concrete, so for path-based strategies we propose to 

take advantage of the efficiency of depth-first search. 

Now let us see how this general scheme can be instantiated for the 

first two criteria. Note that the precise details of the exploration of 

the arcs corresponding to point (3) above are just proposed as an 

example; they could be explored in other ways. 

5.1 Minimal-all-paths 
This strategy is illustrated in Figure 8, which maintains the same 

order of paths as in Figure 2 because this strategy is also based on 

depth-first search. The infeasible partial paths in Figure 8 are also 

traversed in the same order as they would be in exhaustive depth-

first search of the expanded tree, but in this strategy some partial 

paths do not need to be explored, whilst some only need to be 

explored with a particular suffix. Finally, in order to explore the 

necessary concrete suffixes of PP′, this strategy starts by trying to 

cover the shortest common suffix. This risks generation of 

redundant tests (labelled with the letter R in Figure 8), but avoids 

repeated failures. 

For this criterion, if a is not contained in an abstract node, then 

the strategy always tries to generate a test covering PP′. In our 

example, this is the case for the last arc in P1, which is 18-, but 

for which PP′ (I1 in Figure 8) is found to be infeasible. 

If a is contained in a multiple condition node n with decision d 

and replacing a with a′ can lead to the opposite decision, d′, then 

the strategy must check whether this is feasible. However, if 

replacing a with a′ can also lead to decision d, and the resulting 

partial path could be an alternative way to cover an abstract partial 

path that has already been unsuccessfully tried, then this must also 

be considered. This is the case in our example for the next a 

considered, 13-, which belongs to the multiple condition at line 

13. In this case a′ is 13+ and with suffix 13b+ it would change the 

decision at line 13. However, with suffix 13b- 18+ it would 

enable the abstract partial path of I1 to be covered. Rather than 

enumerating both suffixes, the strategy first tries to cover the 

shortest suffix of PP′ common to both. This is empty so the 

strategy just tries to cover PP′, which is I2 in Figure 8, without 

success. 

At the end of this example, 4 fewer infeasible partial paths have 

been explored than with an exhaustive exploration of the 

expanded tree. If we had tried to just stop an exhaustive 

exploration once this criterion were satisfied, we would not have 

saved any exploration, because the infeasibility of some of the 

abstract paths is only proved at the end of the exploration. 

5.2 Minimal-all-conditions 
For this criterion, if a is not contained in a called function and 

does not already appear negated in one of the paths covered so far, 

then the strategy always tries to generate a test covering PP′. This 

is the case for the last arc in P1, which is 18-, but for which PP′ 

(I1 in Figure 8) is found to be infeasible. The first phase explores 

all these cases breadth-first, as illustrated in Figure 9 until the 

failure to negate 18+ in I3. The second phase then considers all 

arcs a contained in a called function or which already appear 

negated in one of the paths covered so far but for which a′ could 

be an alternative way to cover an abstract partial path (in this case, 

the abstract partial path leading to 18+). 

At the end of this example, 10 infeasible partial paths and 1 

redundant feasible path (a total of 11) have been explored whereas 

if exhaustive search of the expanded tree had just been stopped 

once this criterion were satisfied, after covering P6, then 17 

infeasible partial paths and 1 redundant feasible path (a total of 

18) would have been explored. 

6. CONCLUSION 
Abstract nodes add structural information to the fully expanded 

tree of feasible execution paths used by concolic test generation 

tools. This structural information is also present in the control 

flow graph and the abstract syntax tree and we could have used 

these to define different criteria and the corresponding test 

generation strategies. However, the abstract paths presented in 

this paper are particularly well adapted to the precise definition of 

structural control-flow-based test criterion and efficient concolic 

test generation strategies. 

Indeed, concolic test generation tools can only become really 

useful if they can be applied to a reasonably large class of 

programs. This implies that efficient variants of their classic 

exploration strategy must be found which still retain the 

advantages of the concolic approach. 

 

[  <11- 11b+ >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14-          ] «13-         »-  ) ] 18-  : P1 

[  <11+      >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14-          ] «13-         »-  ) ] 18-  : P2 

[  <11- 11b- >-                                                                                                ] 18-  : P3 
<11- 11b+ >+   «13+ 13b- »-                                                                                    : I1 

<11+       >+   «13+ 13b- »-                                                                                    : I2 

[  <11+      >+ («13+ 13b+»+  [ 14+ {-2}] «13+ 13b- »-                                      ) ] 18-  : P4 
[  <11+      >+ ( «13+ 13b+»+ [14+ {-2}] «13+ 13b- »-                                      ) ] 18+ : I3 

[  <11- 11b- >-                                                                                                ] 18+  : I4 

[  <11+        >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14-          ] «13-          »- ) ] 18+ : I5 
[  <11- 11b+ >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14-          ] «13-          »- ) ] 18+ : I6 

   <11- 11b+ >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14-          ]   13+                       : I7 

[  <11- 11b+ >+ ( «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b-  »- ) ] 18-  : R1 
[  <11- 11b+ >+ ( «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b-  »- )] 18+  : I8 

[  <11- 11b+ >+ ( «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14+ {-2}  ] «13+ 13b+ »+) ] 18+ : I9 

[  <11- 11b+ >+   «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14+ {-2}  ] «13-          »- ) ] 18+ : I10 
[  <11- 11b+ >+ ( «13+ 13b+»+ [ 14-        ] «13+ 13b+ »+ [14+ {+2} ] «13+ 13b-»-  ) ] 18+ : P5   

Figure 8. Minimal-all-conditions strategy illustrated on our example 

 



There has been much recent work on this subject, but each time 

from the point of view of a particular cause of “path explosion”. 

In [10], it is function calls which are abstracted and the term 

“abstract path” is also used. However, it is defined as the path 

described by a predicate in which the input-output relations of 

called functions are not known. In our terms this is equivalent to a 

path through the tested function in which function calls are 

encapsulated in an abstract node, but before any paths through the 

abstract node are known. The proposed strategy consists in first 

exploring concolically all “abstract paths” which are feasible 

when the function calls are replaced by stubs which can return any 

value. Then the real called functions are put back in place of the 

stubs and for each of these “abstract paths”, and for each function 

call, different concrete paths through the real called function are 

explored concolically until one is found that is consistent with the 

rest of the “abstract path”. [9] does not use the term “abstract 

path” but it also manipulates path predicates in which we can 

consider that the path through called functions is abstracted. 

However the predicates of [9] only characterise abstract paths for 

which at least one path through each called function is known. 

The strategy proposed in [9] is more efficient than that of [10]. It 

memorises the predicates of all known paths through called 

functions, along with the calling context predicates. This means it 

only needs to concolically explore alternative paths through a 

called function if it fails to construct a feasible predicate by 

inserting  a previously memorised called function path predicate 

into the predicate of the path through the tested function. In our 

own previous work based on formal specifications of library 

functions [8], we also proposed a test generation algorithm to 

avoid unnecessary exploration of these specifications.  

In other work, the focus is on adapting the strategies of particular 

tools in order to obtain more efficient statement or branch 

coverage, although their aim may not be to completely satisfy a 

formally defined criterion and so they may not be concerned, as 

we are above, about demonstrating the unreachability of the 

uncovered statements or branches.  

In [4], heuristics are proposed to decide whether to explore a 

branch which has already been covered, but with a different 

prefix. However, the first heuristic proposed is the connection to 

an uncovered branch, rather as in our minimal-all-conditions 

strategy of Section 5 above, and [4] discusses the most efficient 

way to compute this information. In [11] the goal is to quickly 

cover most reachable statements and the program structure in 

terms of “building blocks such as methods and loops” is taken 

into account in the definition of a fair choice between unexplored 

branches. In [7], when concolic depth-first exploration arrives at a 

“context-sensitive program point” (such as an exit from an ITE) 

the exploration of the part of the execution-path tree which is 

rooted at this program point is used to discover which variables 

are live at this point. These variables are memorised along with 

their intersection with the current program state (path constraint 

and concrete memory state). On the next traversal of the same 

program point, this memorised dependence data is retrieved and 

used to decide whether exploration of a different path through the 

ITE will only result in covering the same suffixes (or in our terms, 

the same abstract paths).  

In conclusion, previous work may well achieve greater test 

generation efficiency than the strategies proposed here but it is 

mostly specialised to a particular criterion, which may not be very 

precisely defined. Only our framework aims to facilitate the 

precise definition and comparison of different criteria and 

concolic generation strategies for control-flow-based structural 

testing. 

Indeed, the test generation strategies based on abstract trees which 

we propose here just allow control dependences to be taken into 

account in order to save some unnecessary constraint resolution. 

The next step is to take data dependences into account to save 

even more unnecessary exploration and we believe that abstract 

trees will also provide a convenient framework in which to 

implement this. This will be the focus of our future work. 
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