
HAL Id: hal-01810297
https://hal.science/hal-01810297

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract path testing with PathCrawler
Nicky Williams

To cite this version:
Nicky Williams. Abstract path testing with PathCrawler. The 5th Workshop on Automation of
Software Test, AST 2010, May 3-4, 2010, Cape Town, South Africa, 2010, Cape Town, South Africa.
pp.35–42, �10.1145/1808266.1808272�. �hal-01810297�

https://hal.science/hal-01810297
https://hal.archives-ouvertes.fr

ACM COPYRIGHT NOTICE. Copyright © 2010 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Abstract Path Testing with PathCrawler
 Nicky Williams

CEA, LIST, Laboratoire Sûreté des Logiciels
F-91191 Gif-sur-Yvette

France
00 33 169089472

nicky.williams@cea.fr

ABSTRACT

PathCrawler is a tool developed by CEA List for the automatic

generation of test inputs to ensure the coverage of all feasible

execution paths of a C function. Due to its concolic approach and

depth-first exhaustive search strategy implemented in Prolog,

PathCrawler is particularly efficient in the generation of tests to

cover the fully expanded tree of feasible paths. However, for

many tested functions this coverage criterion demands too many

tests and a weaker criterion must be used. In order to efficiently

generate tests for a new criterion whilst still using a concolic

approach, we must modify the search strategy. To facilitate the

definition and comparison of different coverage criteria, we

propose a new type of tree, trees of abstract paths, and define the

different types of abstract node in these trees. We demonstrate

how several criteria can be conveniently defined in terms of

coverage of these new trees. Moreover, efficient generation of

tests to satisfy these criteria using the concolic approach can be

designed as different strategies to explore these trees.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging – Testing

tools (e.g., data generators, coverage testing).

General Terms

Design, Performance, Algorithms.

Keywords

structural testing, test generation, coverage criteria.

1. INTRODUCTION
PathCrawler [1][2] was one of the first test input generators to use

a combination of concrete data and symbolic execution. In the

literature, similar test generation tools are variously referred to as

concolic, dynamic-symbolic-execution (DSE) or constraint-based

execution tools. Below we will call them concolic tools. Unlike

some concolic tools, such as [3], PathCrawler does not use

concrete values to generate over-approximate path predicates.

However, PathCrawler is concolic in that, like these tools and [4],

[5], [11], PathCrawler recovers the trace of each generated test

and uses it to generate a prefix of the path predicate of the next

test. This is an efficient way to generate tests for all-feasible-path

coverage, the structural coverage criterion PathCrawler was

designed to satisfy, because the constraint solver is only called

once for the initial test and then once for each node in the tree of

feasible execution paths. Indeed, although constraint resolution is

very fast most of the time, it is actually NP-complete and it is very

difficult to know which constraint problem will take “too long” to

resolve. This means that every time the constraint solver is called,

there is a risk that it will run for “too long” and have to be

interrupted by a timeout condition. This is why it is important to

limit calls to the solver in order to speed up test generation. In

structural testing, the minimum number of tests is defined by the

structural coverage criterion and the tested function, so the only

way to limit calls to the constraint solver is to limit the calls which

do not contribute to this minimum number of tests. These are

either calls which do not result in a test being generated, because

the constraint problem is inconsistent (i.e. the path is infeasible),

or else calls which generate a test which does not cover anything

that has not already been covered by previous tests. PathCrawler

limits the first category by always detecting infeasibility in the

shortest prefix which is common to several infeasible paths. This

paper is about limiting the second category.

PathCrawler generates tests to cover all feasible execution paths

of functions coded in ANSI C (except functions containing certain

constructions not treated yet, essentially pointer casts). However,

for many functions the all-paths coverage criterion demands

unmanageable numbers of tests. This phenomenon may be

intrinsic to the structure of the tested function, for example if it

contains numerous successive conditional instructions with few

infeasible combinations (so the number of paths approaches 2 to

the power of the number of conditional instructions), or loops

containing conditional instructions (so that the number of

potentially feasible paths is the number of paths through the loop

body to the power of the number of iterations). In such cases, a

branch-coverage criterion may be more appropriate.

However the number of paths to cover also depends on how paths

are defined. Indeed, structural coverage criteria are not always

defined very precisely in the literature, which can pose a problem

for the practitioner. For instance, if called functions are treated as

though they are in-lined in the code then they may cause a

combinatorial explosion in the number of paths whereas coverage

of the feasible paths through the tested function itself, without

necessarily “covering” the called functions, may only demand a

manageable number of tests. PathCrawler decomposes multiple

.

conditions and then tries to cover the resulting expanded tree of

feasible execution paths, which can also cause a combinatorial

explosion in the number of “paths” whereas the number of paths

through the different decisions of the multiple conditions may be

manageable.

We would like to adapt PathCrawler to respect other control-flow-

based structural coverage criteria in order to be applied to the

programs for which the current criterion demands too many tests.

As a first step, the alternative criteria which could be satisfied by a

concolic generation strategy must be precisely defined and their

interest to the user must be justified.

Moreover, we have also been investigating [6] the use of

PathCrawler to generate tests to measure worst-case execution

time (WCET). For this purpose, we have devised coverage criteria

which exclude paths which, if certain hypotheses are respected,

must have shorter execution times than the others. In these

criteria, we may cover only the true branch of if-then-else

structures with an empty else body or only the maximum number

of iterations of loops with no condition in the loop body.

One way to respect coverage criteria other than all-paths would be

to use the classic concolic path test generation strategy and just

stop test generation when the criterion had been satisfied, e.g. in

the case of branch coverage, when all branches had either been

covered or proved unreachable. However, this is likely to be

inefficient in the following sense. By inefficient test generation,

we mean that many tests are generated and infeasible partial paths

detected which are redundant in the sense that although they

cover (or, in the case of infeasible partial paths, could have

covered) new paths they do not increase coverage (resp. could not

have increased coverage) as defined by the criterion in question,

for example branch coverage. Redundant tests and redundant

infeasible partial paths cost potentially expensive calls to the

constraint solver and must be limited. Classic concolic test

generation strategies explore the path tree “blindly” and so if, for

example, only one branch remains to be covered, they may waste

time exploring partial paths which are not even connected to that

branch.

1 int g(int i, int x){

2 if (i == x)

3 return 2;

4 else

5 return (i*x)+1;

6 }

7

8 int f(int A[2], int e, int x) {

9 int i, res ;

10 res = 0 ;

11 if((x < -1) || (x > 1)) {

12 i = 0;

13 while((i < 2) && (res == 0)) {

14 if(e == A[i])

15 res = g(i+1,x);

16 else

17 i++; } }

18 if(res == 2)

19 return 1;

20 else

21 return 0;

22 }
Figure 1.Source code of an example of a tested function, f.

In this paper, we present an abstraction of execution paths,

“abstract paths”, which provides a conceptual framework to

facilitate the definition and comparison of many different control-

flow-based structural coverage criteria and of concolic generation

strategies to efficiently satisfy these criteria. Structural coverage

criteria are often said to be based on the program’s control-flow

graph and abstract paths encapsulate parts of the control flow

graph. However, the control-flow graph does not treat multiple

conditions as we would like to and trees of abstract paths can also

be compared to abstract syntax trees. In fact, abstract paths are a

combination of the execution-path tree, the control-flow graph

and the abstract syntax tree. We first used abstract paths for the

WCET measurement criteria described in [6]. In the present

paper, the idea of abstract paths is revised and generalised so that

it can be used for other criteria. In the next section, we will first

recall the tree of feasible execution paths explored by concolic test

generation tools and introduce an example of a tested function and

its feasible paths. In Section 3, we define abstract paths and in

Section 4 we show how each of the criteria mentioned above can

be defined in terms of these paths. In Section 5 we consider

strategies to explore the abstract path graph in order to efficiently

generate tests satisfying each criterion. Finally, we will discuss

related work and future directions.

2. THE EXPANDED TREE
The classic concolic test generation strategy is an exhaustive

exploration of a tree we will call the fully expanded tree of

feasible execution paths (or expanded tree). To generate tests to

satisfy other coverage criteria, the exploration of the whole of this

tree should not usually be necessary. In order to discuss this

further, we start by defining how the source code of the tested

function is represented in this tree.

We suppose here that there are no system or library calls or

GOTO instructions in the original source code and that it has been

simplified so that it only contains if-then-else instructions with

simple conditions, sequences of assignments and GOTO

instructions added by the simplification. All conditional control

instructions such as if-then-else, switch, while,… have been

decomposed so that the only conditional instructions left have

simple conditions containing no logical connectors such as && or

side effects (assignments or function calls). Function calls have

been replaced by assignments of the values of the effective

parameters to the formal parameters, followed by the source code

of the called function and then assignment of the return value.

What we call the expanded tree is in fact the tree of feasible

execution paths through this simplified source code. It is

composed of a root node, leaf nodes, conditional nodes and

directed arcs between nodes. The root node represents the entry

point of the tested function (which we suppose to be unique) and

each leaf node represents an exit from the function. Each

conditional node represents an if-then-else instruction with a

simple condition. Arcs represent a truth value (true or false) and a

(possibly empty) sequential block of unconditional instructions.

There is a single arc (with value “true”) from the root to the first

node and from the last node in each path to a leaf. Each

conditional node has one arc entering it and either one or two arcs

leaving it. Loops are unrolled. Each path from the root through

connected arcs and nodes to a leaf represents a feasible execution

path. A path which starts at the root and ends with an arc is called

a partial path. If a conditional node in the expanded tree only has

one arc leaving it, then the missing arc would be the final arc in an

infeasible partial path.

+

13

+ +

1813b+

14
+

+

11R
+ ++ -- 11b

+
2

-
13

+ 13b -
P218 -

+
13

+ 13b -
P318

+
14

-
13

-
P118 -

13b13
+

13b13 14

+
2

- + 13b - 18 P4
-

18 P5
-

+ -

+
2

-
13

-
P7

-

-
13

-
P618 -

13b13
+

13b13 14

+
2

-
13 13b - 18 P8

-

-

 Figure 2. The expanded tree for f

As a running example of a tested function, we use the function “f”

whose source code is displayed in Figure 1. In Figure 2 we show

the expanded tree for this example. The root of this tree is labelled

R and the leaves are labelled with the unique identifier of the

feasible path (P1, P2,...) leading to this leaf. Each conditional

node in this tree is labelled with line number of the conditional

instruction in the source code that it represents, followed by the

letter “b” if the node represents the second sub-condition in a

multiple condition. The arcs are labelled with + for true and – for

false but the assignments are not shown. In the following, we will

denote the positive arc leaving a node labelled n by n+ and the

negative arc leaving the same node by n-.

The concolic exploration of the expanded tree starts with an

arbitrary feasible path and then for each unexplored arc leaving a

conditional node in this path it arbitrarily selects a feasible suffix

(up to exit from the tested function) unless the partial path up to

and including this unexplored arc is infeasible. The feasible suffix

is explored in the same way. The arcs can be explored in any

order. Figure 2 numbers the paths in an order which illustrates a

possible concolic exploration of the arcs in depth-first order,

supposing that the first, arbitrarily obtained, path is P1.

3. ABSTRACT PATHS
To introduce abstract paths, let us consider a test criterion which

requires just the coverage of all feasible paths through the source

code seen in a form in which called functions are not in-lined, nor

multiple conditions decomposed. We will call this criterion

minimal-all-paths. To respect minimal-all-paths for our example,

it is not necessary to cover both P6 and P1, which only differ in

the sub-conditions (11- and 11b+ in P1 and 11+ in P6) leading to

the same positive decision for the multiple condition on line 11.

We see that for this criterion, for each path (such as P1) in the

expanded tree which is covered, there may be a set of feasible

paths (such as P1 and P6) which are equivalent. Below, we will

call this set of paths an abstract path for the minimal-all-paths

criterion. Similarly, if the test criterion were coverage of all

simple conditions, then after covering the first path, P1, the

condition 14- is covered twice but not 14+. We would then try to

cover either of the two partial paths ending in 14+ which is

obtained by modifying one of the two prefixes of P1 which ends

in 14- (and the next path covered would then be P2, P3 or P4). In

this case, we would consider both partial paths as equivalent in

spite of the fact that they have different loop iterations (sequences

of 13+, 13b+ and 14+ or 14-).

Indeed, as shown by Figure 2, the same conditional instruction in

the simplified code is usually represented by several different

nodes in the expanded tree and two path fragments in this tree can

be considered as equivalent, by certain test criteria and under

certain conditions, if they start with the same conditional node, s,

or different conditional nodes, s1 and s2, representing the same

conditional instruction and end with conditional nodes t1 and t2

both representing some other conditional instruction. For

example, P1 and P6 in Figure 2 both contain a path fragment

starting at the node, s, labelled 11 and ending at nodes t1 and t2

labelled 13. Such equivalent path fragments are produced when

one of the following constructions is present in the un-simplified

source code:

 If-then-else structures

 Function calls

 Loops

 Multiple conditions

Abstract path trees introduce into the expanded tree certain

structural information found in the control flow graph or abstract

syntax tree by grouping certain parts of the expanded tree into

abstract nodes of the following types:

If-then-else This abstract node has one arc entering it, one arc

leaving it and contains a conditional node and the two alternative

path fragments.

Function call This has one arc entering it, one arc leaving it and

contains all path fragments through the called function.

Loop This has one arc entering it, one arc leaving it and contains

the conditional node of the loop head and all path fragments for

one individual iteration

Logical Conjunction This has one arc entering it and two arcs,

with two different truth values, leaving it. It contains the path

fragment for the conjunction to be satisfied and the two path

fragments for it to be false.

Logical Disjunction This also has one arc entering it and two

arcs, with two different truth values, leaving it. It contains the two

path fragments for the disjunction to be satisfied and the path

fragment for it to be false.

Abstract nodes can be nested so the conditional node in an if-

then-else can be a multiple condition and the alternative path

fragments can contain other abstract nodes.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

11

11b

14 2
+

- +

-

+

-

+ +

-

OR

+

-
13b13

+ +

-
AND ITE

CALL

ITE

LOOP

ITE

18

-

+

- -

 Figure 3. An abstract tree for f

Abstract trees are composed of the same root, leaves, arcs and

conditional nodes as the expanded tree but they also contain

abstract nodes. In Figure 3 we depict an abstract tree for our

example, which contains all the types of abstract node mentioned

above. As different path fragments within abstract nodes can lead

to a common node, they are not depicted as a tree but as paths

through a graph which is similar to a fragment of the control flow

graph. Note that within an abstract node, one node, such as the

node labelled 14+ in Figure 3, may represent several nodes in the

expanded tree (in this case, all the nodes labelled 14+ in the

expanded tree).

Abstract paths are paths from the root to a leaf of an abstract path

tree. Note that when an abstract path goes through a conditional

abstract node (i.e. logical conjunction or disjunction), it follows

just one arc out (true or false), as in the case of non-abstract

conditional nodes in concrete paths. Each abstract path represents

a set of concrete paths in the expanded tree. From now on, we will

refer to paths in the expanded tree as concrete paths. The abstract

tree depicted in Figure 3 contains two abstract paths, one

representing all feasible paths whose final arc represents the truth

of the conditional instruction at line 18, and the other representing

all the feasible paths for which this condition is false. As abstract

nodes can be nested, an abstract path can contain path fragments

which themselves traverse abstract nodes but we will refer to these

as abstract path fragments and not abstract paths.

Note that the expanded tree only represents feasible paths but the

feasibility of a path fragment in an abstract node may depend on

the partial path leading to the abstract node if this partial path

contains other abstract nodes. We consider that each arc in an

abstract tree (including the arcs in the abstract nodes) is reachable,

i.e. is present in at least one concrete path.

An abstract partial path is a path from the root to an arc which

leaves a non-abstract conditional node. Note that if the abstract

partial path ends in an arc which is contained in an abstract node,

n, (or in nested abstract nodes n1, n2,…) then n (resp. n1, n2,…)

must be expanded in the abstract partial path.

11

11b
- +

Figure 4. The abstract partial path to arc 11b+

11

11b

14 2
+

- +

+ + +

-

OR

+

-
13b13

+

ITE

CALL

ITE

LOOP

-

Figure 5. The abstract partial path to arc 13-

11

11b

14 2
+

- +

+ + +

-

OR

+
13b13

+

ITE

CALL

ITE

LOOP

-

Figure 6. Abstract partial path to arcs 13+, 13b+, 14+, 2+, 2-

For example, Figure 4 depicts the abstract partial path to the arc

labelled 11b+ in the abstract tree depicted in Figure 3, which

corresponds to a single concrete partial path because the abstract

logical disjunction node has been expanded. In the case of an arc

contained in an abstract loop node, the abstract partial path to the

arc may represent concrete paths with several different iterations

before the final arc is reached, and with different numbers of

iterations before the final arc. This is why we depict such abstract

partial paths as in Figure 5, which shows the abstract partial path

leading to the arc 13- in the abstract tree depicted in Figure 3. The

abstract partial paths leading in Figure 3 to the arcs 13+, 13b+,

14+, 14-, 2+ and 2- are all depicted by Figure 6.

4. USE OF ABSTRACT TREES TO DEFINE

COVERAGE CRITERIA
Let us now see how different control-flow-based structural

coverage criteria can be defined in terms of abstract trees

containing different abstract nodes.

The minimal-all-paths criterion was already discussed above. It

corresponds to the coverage of all abstract paths in an abstract tree

in which only function calls and multiple conditions are

encapsulated in abstract nodes. If-then-else structures and loops

are left in their expanded form in this tree. Figure 7 depicts this

abstract tree for our example.

If the tested function has too many abstract paths even when the

function calls and multiple conditions are abstracted then the

abstraction of loops can be considered. One criterion commonly

used in this case is k-path, in which k is a small integer constant

fixed by the user and only the only paths covered are those with

up to k iterations of any loop with a variable number of iterations.

However, this criterion does not take into account the branches

within each iteration and if any paths are only feasible when a

path contains more than k iterations of one of these loops, then

these paths will not be tested. Abstract loop nodes allow other,

more justifiable, criteria to be defined but we do not have space to

discuss them here.

If even the abstraction of function calls, multiple conditions and

loops leaves too many paths to cover, then the user can decide to

cover either all simple conditions, including the sub-conditions of

multiple conditions, or just all decisions. We call minimal-all-

conditions the coverage of all simple conditions in the tested

function (but not all conditions in any called functions). This is

defined using an abstract tree in which if-then-else structures,

function calls, loops and multiple conditions are all encapsulated

in abstract nodes (i.e. for our example, the tree depicted in Figure

3). The criterion corresponds to the coverage of all abstract partial

paths in which the last arc is not contained in an abstract function

call node (see Figures 4 – 6 for our example).

+

14
+

18

-

+

13
+ ++

13b

AND

13
+

13b

AND
-

11

11b

+

- +

-

+

-
OR

18

-

+

-

13

AND

-

14
+

13
+ ++

13b

AND

2
+

-

CALL

18

-

+

13 13b

AND
-

2
+

-

CALL

18

-

+

-

-

-

-

Figure 7. The abstract tree for the minimal-all-paths criterion

We will call the next criterion minimal-all-decisions. It is

coverage of all branches appearing in the tested function’s

original source code, in which multiple conditions are not

decomposed and function calls are not in-lined. This criterion

corresponds to the coverage, in the same abstract tree as the

previous criterion, of all abstract partial paths in which the last arc

leaves either a simple condition which is not contained in an

abstract function call or multiple condition node or else an

abstract multiple condition node which is not contained in another

abstract multiple condition node, nor in an abstract function call

node.

The final two criteria we define here result from our previous

work [6] on the generation of tests for measuring the worst-case

execution time. They are based on coverage of all paths but differ

from the previous criteria in that they introduce a partial order

between paths. The first is called empty-else: do not cover a path,

p1, if there is another feasible path, p2, such that the only

difference between p1 and p2 is that in one or more if-then-else

structures p1 follows an empty path fragment (containing no

instructions) and p2 follows a non-empty path fragment. This

criterion is defined using an abstract tree in which only if-then-

else structures with empty else bodies (ITEE structures, such as

the outermost ITE in Figure 3) are encapsulated in abstract nodes.

The second criterion is called max-iterations: do not cover a path,

p1, if there is another feasible path, p2, such that the only

difference between p1 and p2 is that in one or more loops in

which all iterations are identical, p1 executes fewer iterations than

p2. This criterion is defined using an abstract tree in which only

loops are encapsulated in abstract nodes. In the trees for these two

criteria, there is a partial order on the concrete paths belonging to

each abstract path. For example, an abstract path which traverses

one abstract ITEE node represents both the concrete paths which

take the empty path fragment of this ITEE and those that take a

non-empty path fragment. However, if there are several non-

empty path fragments through the same ITEE, or if there are

several ITEEs in the same abstract path, then the different

concrete paths may not be comparable because the order is only

partial. These last two criteria are satisfied if, for each abstract

path in the tree, we cover all concrete paths which are maximal in

the corresponding partial order over this abstract path.

5. USE OF ABSTRACT TREES TO DEFINE

TEST GENERATION STRATEGIES
Now let us show how abstract trees can be used to define concolic

strategies to generate tests to satisfy the first two criteria above

without exploring as many feasible paths or infeasible partial

paths as the classic depth-first concolic strategy.

As mentioned in the Introduction, PathCrawler was designed to

generate a set of tests to guarantee 100% satisfaction of a

structural coverage criterion (in the cases where the constraint

solver does not timeout during test case generation). This enables

the user to give a precise measure of confidence in a program for

which all tests in the set succeed. PathCrawler can therefore be

used not only for debugging but as part of a more formal test

process. Part of the service to the user provided by tools such as

PathCrawler is the guarantee that all paths or branches which are

not covered by the test set are infeasible resp. unreachable (in the

case of constraint resolution timeout, the path prefixes are

indicated to the user, who must check their feasibility by hand).

The test generation strategy must ensure this service, as well as

the generation of the test set. Concolic tools such as [3], which

use over-approximate path predicates in order to be able to treat

all programs, do not necessarily attempt to provide this service

and so would choose slightly different test generation strategies to

those proposed below.

Note that our proposed strategies also take into account one

reason why PathCrawler is efficient: because it is implemented

using constraint logic programming, depth-first search makes the

most of Prolog’s built-in backtrack mechanism to store successive

states of the constraint store in a stack instead of recalculating

them on backtrack.

In Figures 8 and 9, we illustrate the first two strategies on our

example by giving the covered paths (labelled P or R), and

infeasible partial paths (labelled I) explored, still assuming the

arbitrary first path is P1. Each path or partial path is denoted by

its successive arcs and each path fragment which is inside an

abstract node is enclosed in brackets, as follows: () for a loop, < >

for AND, « » for OR, [] for ITE and {} for CALL.

As explained in the previous section, the strategies concern

coverage of abstract paths in the case of path-based strategies such

as minimal-all-paths and empty-else and coverage of abstract

partial paths in the case of arc-based strategies such as minimal-

all-conditions and minimal-all-decisions. We will use the term

(partial) paths to mean paths in the case of path-based strategies

and partial paths in the case of arc-based strategies.

A concolic strategy consists in first defining the order in which to

inspect the arcs in the concrete paths already covered. Then, for

each arc, a, which is in a concrete path, P, which has already been

covered, the strategy must define whether and how to explore the

alternative arc, a′. Let PP be the concrete prefix of a in P and PP′

be the concrete partial path formed by adding a′ to the end of PP.

The strategies defined using abstract trees are based on the

following principles:

1. If PP′ belongs to an abstract partial path which has not

yet been covered, then try to generate any test covering

PP′

2. If PP′ is only a prefix of concrete (partial) paths which

belong to already covered abstract (partial) paths, then

there is no need to cover PP′.

3. If PP′ is a prefix of at least one concrete (partial) path,

PPP′, belonging to an abstract (partial) path that has not

yet been covered, then decide how to try and cover

PPP′ and all other concrete (partial) paths of which PP′

is a prefix and which belong to uncovered abstract

(partial) paths.

Point (2) above defines when PP′ does not need to be covered and

points (1) and (3) concern different ways to try and cover PP′.

We propose to divide arc-based strategies into two passes. In a

first breadth-first traversal, only the partial paths corresponding to

point (1) above are explored. Then the still uncovered partial

paths are reviewed and, in a second pass, those corresponding to

point (3) above are explored: all concrete partial paths belonging

to each uncovered abstract partial path are systematically explored

until either a test to cover the abstract partial path is found or all

the concrete partial paths belonging to it have been proved

infeasible. The justification for breadth-first search and this two-

phase scheme is opportunistic: in covering PP′, we cover a whole

new concrete path, P′, of which PP′ is a prefix, and P′ may

contain other uncovered arcs as well as a′. (or in other words, P′

may have other prefixes which belong to different abstract partial

paths). If we explore covered paths breadth-first then we first

explore the alternatives of arcs at the beginning of paths. These

are more likely to have long suffixes, thereby increasing the

[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18- : P1

[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18+ : I1

 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] 13+ : I2
[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18- : P2

[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18+ : I3

 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b+ »+ : I4
[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13- »-)] 18+ : I5 (suffix18+)

[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {+2}] «13+ 13b- »-)] 18+ : P3

[<11- 11b+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {+2}] «13+ 13b- »-)] 18- : I not explored
 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {+2}] «13+ 13b+ »+ : I6

 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {+2}] «13- »- : I not explored

 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13+ 13b- »- : I7
 <11- 11b+ >+ «13+ 13b+ »+ [14-] «13- »- : I8

[<11- 11b+ >+ («13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18- : P4

[<11- 11b+ >+ («13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18+ : I9
 <11- 11b+ >+ «13+ 13b+ »+ [14+ {-2}] «13+ 13b+ »+ : I10

[<11- 11b+ >+ («13+ 13b+ »+ [14+ {-2}] «13- »-)] 18+ : I11 (suffix18+)

 <11- 11b+ >+ «13+ 13b+ »+ [14+ {+2}] : I12
 <11- 11b+ >+ «13+ 13b- »- : I13

 <11- 11b+ >+ «13- »- : I14

[<11- 11b- >-] 18- : P5

[<11- 11b- >-] 18+ : I15

[<11+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18- : R1 (P6~P1)

[<11+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18+ : I16
 <11+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14-] 13+ : I17

[<11+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18- : R2 (P7~P2)

[<11+ >+ («13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18+ : I not explored
 <11+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b+ »+ : I18

 <11+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {-2}] «13- »- : I not explored

 <11+ >+ «13+ 13b+ »+ [14-] «13+ 13b+ »+ [14+ {+2}] «13+ 13b+ »+ : I19 (suffix 13+ 13b+)
 <11+ >+ «13+ 13b+ »+ [14-] «13+ 13b- »- : I20

 <11+ >+ «13+ 13b+ »+ [14-] «13- »- : I21

[<11+ >+ («13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18- : R3 (P8~P4)
[<11+ >+ («13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18+ : I22

 <11+ >+ «13+ 13b+ »+ [14+ {-2}] «13+ 13b+ »+ : I23

[<11+ >+ («13+ 13b+ »+ [14+ {-2}] «13- »-)] 18+ : I24 (suffix 18+)

 <11+ >+ «13+ 13b+ »+ [14+ {+2}] : I25

 <11+ >+ «13+ 13b- »- : I26

 <11+ >+ «13- »- : I27

Figure 8. Minimal-all-paths strategy illustrated on our example

chances of quickly finding other uncovered arcs.

Conversely, only one path can be covered at a time, whether it is

abstract or concrete, so for path-based strategies we propose to

take advantage of the efficiency of depth-first search.

Now let us see how this general scheme can be instantiated for the

first two criteria. Note that the precise details of the exploration of

the arcs corresponding to point (3) above are just proposed as an

example; they could be explored in other ways.

5.1 Minimal-all-paths
This strategy is illustrated in Figure 8, which maintains the same

order of paths as in Figure 2 because this strategy is also based on

depth-first search. The infeasible partial paths in Figure 8 are also

traversed in the same order as they would be in exhaustive depth-

first search of the expanded tree, but in this strategy some partial

paths do not need to be explored, whilst some only need to be

explored with a particular suffix. Finally, in order to explore the

necessary concrete suffixes of PP′, this strategy starts by trying to

cover the shortest common suffix. This risks generation of

redundant tests (labelled with the letter R in Figure 8), but avoids

repeated failures.

For this criterion, if a is not contained in an abstract node, then

the strategy always tries to generate a test covering PP′. In our

example, this is the case for the last arc in P1, which is 18-, but

for which PP′ (I1 in Figure 8) is found to be infeasible.

If a is contained in a multiple condition node n with decision d

and replacing a with a′ can lead to the opposite decision, d′, then

the strategy must check whether this is feasible. However, if

replacing a with a′ can also lead to decision d, and the resulting

partial path could be an alternative way to cover an abstract partial

path that has already been unsuccessfully tried, then this must also

be considered. This is the case in our example for the next a

considered, 13-, which belongs to the multiple condition at line

13. In this case a′ is 13+ and with suffix 13b+ it would change the

decision at line 13. However, with suffix 13b- 18+ it would

enable the abstract partial path of I1 to be covered. Rather than

enumerating both suffixes, the strategy first tries to cover the

shortest suffix of PP′ common to both. This is empty so the

strategy just tries to cover PP′, which is I2 in Figure 8, without

success.

At the end of this example, 4 fewer infeasible partial paths have

been explored than with an exhaustive exploration of the

expanded tree. If we had tried to just stop an exhaustive

exploration once this criterion were satisfied, we would not have

saved any exploration, because the infeasibility of some of the

abstract paths is only proved at the end of the exploration.

5.2 Minimal-all-conditions
For this criterion, if a is not contained in a called function and

does not already appear negated in one of the paths covered so far,

then the strategy always tries to generate a test covering PP′. This

is the case for the last arc in P1, which is 18-, but for which PP′

(I1 in Figure 8) is found to be infeasible. The first phase explores

all these cases breadth-first, as illustrated in Figure 9 until the

failure to negate 18+ in I3. The second phase then considers all

arcs a contained in a called function or which already appear

negated in one of the paths covered so far but for which a′ could

be an alternative way to cover an abstract partial path (in this case,

the abstract partial path leading to 18+).

At the end of this example, 10 infeasible partial paths and 1

redundant feasible path (a total of 11) have been explored whereas

if exhaustive search of the expanded tree had just been stopped

once this criterion were satisfied, after covering P6, then 17

infeasible partial paths and 1 redundant feasible path (a total of

18) would have been explored.

6. CONCLUSION
Abstract nodes add structural information to the fully expanded

tree of feasible execution paths used by concolic test generation

tools. This structural information is also present in the control

flow graph and the abstract syntax tree and we could have used

these to define different criteria and the corresponding test

generation strategies. However, the abstract paths presented in

this paper are particularly well adapted to the precise definition of

structural control-flow-based test criterion and efficient concolic

test generation strategies.

Indeed, concolic test generation tools can only become really

useful if they can be applied to a reasonably large class of

programs. This implies that efficient variants of their classic

exploration strategy must be found which still retain the

advantages of the concolic approach.

[<11- 11b+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18- : P1

[<11+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18- : P2

[<11- 11b- >-] 18- : P3
<11- 11b+ >+ «13+ 13b- »- : I1

<11+ >+ «13+ 13b- »- : I2

[<11+ >+ («13+ 13b+»+ [14+ {-2}] «13+ 13b- »-)] 18- : P4
[<11+ >+ («13+ 13b+»+ [14+ {-2}] «13+ 13b- »-)] 18+ : I3

[<11- 11b- >-] 18+ : I4

[<11+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18+ : I5
[<11- 11b+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14-] «13- »-)] 18+ : I6

 <11- 11b+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14-] 13+ : I7

[<11- 11b+ >+ («13+ 13b+»+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18- : R1
[<11- 11b+ >+ («13+ 13b+»+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b- »-)] 18+ : I8

[<11- 11b+ >+ («13+ 13b+»+ [14-] «13+ 13b+ »+ [14+ {-2}] «13+ 13b+ »+)] 18+ : I9

[<11- 11b+ >+ «13+ 13b+»+ [14-] «13+ 13b+ »+ [14+ {-2}] «13- »-)] 18+ : I10
[<11- 11b+ >+ («13+ 13b+»+ [14-] «13+ 13b+ »+ [14+ {+2}] «13+ 13b-»-)] 18+ : P5

Figure 8. Minimal-all-conditions strategy illustrated on our example

There has been much recent work on this subject, but each time

from the point of view of a particular cause of “path explosion”.

In [10], it is function calls which are abstracted and the term

“abstract path” is also used. However, it is defined as the path

described by a predicate in which the input-output relations of

called functions are not known. In our terms this is equivalent to a

path through the tested function in which function calls are

encapsulated in an abstract node, but before any paths through the

abstract node are known. The proposed strategy consists in first

exploring concolically all “abstract paths” which are feasible

when the function calls are replaced by stubs which can return any

value. Then the real called functions are put back in place of the

stubs and for each of these “abstract paths”, and for each function

call, different concrete paths through the real called function are

explored concolically until one is found that is consistent with the

rest of the “abstract path”. [9] does not use the term “abstract

path” but it also manipulates path predicates in which we can

consider that the path through called functions is abstracted.

However the predicates of [9] only characterise abstract paths for

which at least one path through each called function is known.

The strategy proposed in [9] is more efficient than that of [10]. It

memorises the predicates of all known paths through called

functions, along with the calling context predicates. This means it

only needs to concolically explore alternative paths through a

called function if it fails to construct a feasible predicate by

inserting a previously memorised called function path predicate

into the predicate of the path through the tested function. In our

own previous work based on formal specifications of library

functions [8], we also proposed a test generation algorithm to

avoid unnecessary exploration of these specifications.

In other work, the focus is on adapting the strategies of particular

tools in order to obtain more efficient statement or branch

coverage, although their aim may not be to completely satisfy a

formally defined criterion and so they may not be concerned, as

we are above, about demonstrating the unreachability of the

uncovered statements or branches.

In [4], heuristics are proposed to decide whether to explore a

branch which has already been covered, but with a different

prefix. However, the first heuristic proposed is the connection to

an uncovered branch, rather as in our minimal-all-conditions

strategy of Section 5 above, and [4] discusses the most efficient

way to compute this information. In [11] the goal is to quickly

cover most reachable statements and the program structure in

terms of “building blocks such as methods and loops” is taken

into account in the definition of a fair choice between unexplored

branches. In [7], when concolic depth-first exploration arrives at a

“context-sensitive program point” (such as an exit from an ITE)

the exploration of the part of the execution-path tree which is

rooted at this program point is used to discover which variables

are live at this point. These variables are memorised along with

their intersection with the current program state (path constraint

and concrete memory state). On the next traversal of the same

program point, this memorised dependence data is retrieved and

used to decide whether exploration of a different path through the

ITE will only result in covering the same suffixes (or in our terms,

the same abstract paths).

In conclusion, previous work may well achieve greater test

generation efficiency than the strategies proposed here but it is

mostly specialised to a particular criterion, which may not be very

precisely defined. Only our framework aims to facilitate the

precise definition and comparison of different criteria and

concolic generation strategies for control-flow-based structural

testing.

Indeed, the test generation strategies based on abstract trees which

we propose here just allow control dependences to be taken into

account in order to save some unnecessary constraint resolution.

The next step is to take data dependences into account to save

even more unnecessary exploration and we believe that abstract

trees will also provide a convenient framework in which to

implement this. This will be the focus of our future work.

7. REFERENCES

[1] B. Marre, P. Mouy and N. Williams, “On-the-Fly Generation

of K-Path Tests for C Functions”, 19th IEEE Intnl. Conf. on

Automated Software Engineering (ASE 2004), September

2004, Linz, Austria.

[2] N. Williams, B. Marre, P. Mouy and M. Roger, PathCrawler:

“Automatic generation of path tests by combining static and

dynamic analysis”, In Proc. EDCC-5, Budapest, April 2005.

[3] K. Sen, D. Marinov and G. Agha “CUTE: a concolic unit

testing engine for C”, In ESEC/FSE’O5, pp 263-272, Lisbon,

Portugal, September 2005

[4] S. Bardin and P. Herrmann, “Structural testing of

executables” in Proc. ICST’08, pp 22-31, Lillehammer,

Norway, April 2008.

[5] C.Cadar, V.Ganesh, P.M.Pawlowski, D.L.Dill, and

D.R.Engler, “Exe: automatically generating inputs of death”,

In Proc. ACM Conference on Computer and

Communications Security, 2006.

[6] Nicky Williams, Muriel Roger, “Test Generation Strategies

to Measure Worst-Case Execution Time”, AST’09,

Vancouver, May 2009.

[7] P. Boonstoppel, Cristian Cadar, Dawson Engler, “RWSet:

Attacking path explosion in constraint-based test

generation”, In Proc. TACAS 2008, Budapest, Hungary,

March-April 2008

[8] P. Mouy, B. Marre, N.Williams and P. Le Gall, “Generation

of all-paths unit test with function calls”, In Proc. ICST’08,

Lillehammer, Norway, 2008.

[9] S. Anand, P. Godefroid, N. Tillmann, “Demand-Driven

Compositional Symbolic Execution”, In Proc. TACAS 2008,

Budapest, Hungary, 2008.

[10] R. Majumdar and K. Sen, “LATEST: Lazy dynamic test

input generation”. Technical Report UCB/EECS-2007-36,

EECS Department, University of California, Berkeley, 2007.

[11] Nikolai Tillmann, Jonathan de Halleux, “Pex – White Box

Test Generation for .NET”, Proc. Of TAP 2008, LNCS, vol.

4966, pages 134-153, April 2008.

