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Open multi-agent systems with discrete states and stochastic interactions

Vineeth S Varma∗, Irinel-Constantin Morărescu∗, Dragan Nešić#

Abstract— We consider a multi-agent system in which agents
arrive and depart from a network randomly as a Bernoulli
process. Each agent that is active in the network must decide
between two actions represented by 0 or 1. Each active agent
then observes the action of a random neighbour and updates
its preference towards a certain action. New agents that arrive
into the network are activated with a random preference
and action. This means that the notion of consensus in the
standard sense can no longer be applied and instead, we provide
conditions under which majority action preservation occurs when
the number of agents is arbitrarily large. This property will
imply that a large fraction of the active agent population will
retain their action almost surely.

Index Terms— Multi-agent systems, Markov chains, open
systems, consensus.

I. INTRODUCTION

The analysis of multi-agent systems received an increasing
attention during the last decades. They have a wide range
of applications covering robotics [1], [2], power networks
[3], [4] and opinion dynamics [5], [6]. In the framework
of multi-agent systems, the most studied problem is the
consensus achievement [7], [8], [9], which captures various
coordination behaviors.

Some of the most cited features leading to the usage of
multi-agent systems are their flexibility and scalability. While
the multi-agent systems literature mainly treats the case of
fixed dimension networks, the size of physical networks can
increase or decrease in time. Indeed, a typical example is
the one of a social network whose size is time-varying and
often very large but it does not increase unbounded. On
the other hand, technological networks may also suffer from
failure/repairing of some agents leading to modifications of
the active subsystems in the network. This motivates us to
analyze here the behavior of open multi-agent systems, in
which agents keep arriving and/or leaving the network during
the evolution in time.

Open multi-agent systems have been empirically studied
in [10], [11] in the framework of opinion dynamics. In
computer science, there exist specific architectures coping
with the possibility of agents joining and leaving the system
[12]. A formal mathematical analysis of open multi-agent
systems with deterministic arrivals and departures has been
recently provided in [13], in which, all the dynamics are
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deterministic, and agents are only allowed to arrive, and do
not depart.

As for [13], [14], a precise motivation of the present work
is given by opinion dynamics in social networks. Instead
of imposing pre-determined or periodic time instants for
arrivals like [13], we assume that arrivals and departures
occur with certain probabilities. Another important difference
is that we consider random gossiping over the time-varying
complete graph of active agents, with each agent having
access only to a quantized version of the state of random
neighbours, and not to the exact value. An important idea
that we introduce in this paper, which is also highly relevant
for opinion dynamics, is the one of almost sure consensus.
This also represents a major difference with respect to [14]
in which we study a closed system (i.e., the number of
agents is fixed) that always leads to consensus. We note that
gossiping under quantized communication for closed systems
has been studied in [15]. Beside the fact that we consider
open systems, in our model, the state of any agent can evolve
only inside a discrete/finite set of values which seems more
appropriate for many opinion dynamics applications.

The main challenges that we face in this work are the time-
varying dimension of the system and the absence of classical
”convergence”. To overcome the first challenge, we consider
that there exists a fixed, but arbitrarily large dimension of the
system denoted by N . Consequently, at any instant of time t,
only a fraction of the N agents are active, and their number
characterizes the real size of the network, while the others
are inactive and artificially added to facilitate the analysis.
We assign a precise state value to active agents that form
the network at time t while inactive agents have a generic
inactive state referred to as NA.

The second challenge is that consensus in the classical
sense is impossible to achieve due to repeated arrivals with
a different state, and this is indeed one reason why not
many works have theoretically studied consensus in open
systems. Therefore, we propose and analyze a different
notion of consensus, which requires that a large fraction
of the active population maintains a common action (i.e.,
the quantized version of the state) almost surely. The main
objective of this work is to provide conditions under which,
the proposed dynamics stabilizes the consensus points almost
surely. Our results are suitable for application to several
scenarios where consensus of discrete actions are required
such as synchronizing the wireless channel with which
mobile devices communicate, opinion dynamics, etc.

The rest of the paper is organized as follows. Section II
introduces the main concepts and formulates the problem
under consideration. Section II-B mathematically formulates



the system dynamics as a Markov chain. The main results
concerning the equilibria of large-scale multi-agent systems
under the proposed stochastic dynamics are presented in Sec-
tion III. The results of our numerical studies and simulations
are illustrated in Section IV. The paper ends with some
concluding remarks and perspectives.

Notation. We use R for the set of real numbers, R+

the set of non-negative reals and N = {0, 1, . . . } the set
of non-negative integers. The indicator function is given by
1S(x) which takes the value 1 when x ∈ S and 0 otherwise.
Throughout the paper the function bxe represents the integer
part of x+ 1

2 . The sign function which is 1 when x > 0, 0
if x = 0 and −1 if x < 0 is denoted by sgn(x). We also use
O(·) for the big O notation describing the limiting behavior.
As our consensus dynamics has stochastic elements, we
also introduce Pr(A) to denote the probability of event
A, and E[·] for the expectation of a random variable. The
notation Pr(A|B) is used for the the probability of event
A conditioned by the event B. We also use almost surely
to describe events that happen with probability 1 and define
the corresponding stability notion for any stochastic process
p(t).

Definition 1 (Almost surely stable): If there exists ε∗ > 0
s.t.,

Pr
(
|p(t+ 1)− p∗| < ε

∣∣∣ |p(t)− p∗A| < ε
)
= 1 (1)

for all ε < ε∗A, then we say that p∗ is almost surely stable
for the stochastic dynamics of p(t).

II. PROBLEM STATEMENT

A. System dynamics
We consider a discrete-time multi-agent system with t ∈ N

denoting the time instants. We use V := {1, 2, . . . , N} to
denote the set of agents. At any given time instant t, only a
subset VA(t) ⊆ V of agents are active in the network. We
use VI(t) := V \ VA(t) to denote the set of inactive agents.
Let us also introduce a fixed value L ∈ 2N + 1 and the
set L = {l0, l1, . . . , lL} with lk = k

L , ∀k ∈ {0, 1, . . . , L}.
When an agent is inactive, we assign the state NA, i.e. for
all i ∈ VI(t), xi(t) = NA. We call the extended state space
LE = L ∪ {NA}.

We assign to any agent i ∈ VA(t) a hidden state/preference
xi(t) ∈ L and a visible action based on its state as

qi(t) = bxi(t)e. (2)

It is worth noting that, when L = 1, the state and the action
sets are identical. Since we consider an open system, any
agent which is active at time t i.e., i ∈ VA(t), may become
inactive at t + 1 with a probability δ ∈ (0, 1). Similarly,
any inactive agent i ∈ VI(t) may activate at t + 1 with a
probability γ. This is:

Pr
(
xi(t+ 1) = NA | xi(t) ∈ L

)
= δ,

Pr
(
xi(t+ 1) ∈ L | xi(t) = NA

)
= γ,

On top of this, at any time t such that |VA(t)| ≥ 2 (i.e., more
than one agent is active), an agent i ∈ VA(t) may have only

one neighbour with index Ji(t) which is randomly chosen
among all the other active agents:

Pr(Ji(t) = j) =
1

|VA(t)| − 1
, ∀i ∈ VA(t), j ∈ VA(t) \ {i}.

(3)
Moreover, the agent i ∈ VA(t) will update with probability
β ∈ (0, 1 − δ) its state xi(t) by observing the action of its
neighbour Ji(t) ∈ VA(t) \ {i} as follows:

Pr
(
xi(t+ 1) = φ(xi(t), qJi(t)(t))

∣∣∣xi(t) ∈ L) = β (4)

where
φ(`, q) = `+

1

L
sgn (q − `) (5)

for any ` ∈ L, q ∈ {0, 1}. This model is inspired by [16] in
which a Bayessian update rule was proposed in the context
of opinion dynamics. Additionally, classical discrete-state
multi-agent dynamics like the Ising model, which can be
seen as a special case of (4) when L = 1, do not lead to
consensus in open systems as we show later in Remark 2.

In other words, the system dynamics is defined by random
gossiping which indicates that any active agent can become a
neighbour of i with identical probabilities. Finally, the active
agent may chose to retain its preference if the above events
don’t occur, i.e.,

Pr
(
xi(t+ 1) = xi(t) | xi(t) ∈ L

)
= 1− δ − β,

Pr
(
xi(t+ 1) = xi(t) | xi(t) = NA

)
= 1− γ.

(6)

When an inactive agent enters the network and becomes
active, it must decide on a certain state. We consider that
agents chose a random state with identical probabilities, i.e.,

Pr
(
xi(t+ 1) = `

∣∣∣ xi(t) = NA
)
=

γ

L+ 1
(7)

for any ` ∈ L. Note that any agent which becomes inactive
does not retain any memory of its preference while it was
active. We can use (2)-(7) to describe the proposed algorithm
for achieving majority consensus in action/decision. When
|VA(t)| ≥ 1, define p−(t) as the fraction of the active
population with action 0, and p+(t) as the fraction with
action 1, calculated as

p+(t) =

∑
n∈VA(t) qn(t)

|VA(t)|
(8)

and p−(t) = 1 − p+(t). Throughout the paper we also use
pA(t) to denote the fraction of active agents, i.e.,

pA(t) =
|VA(t)|
N

=

∑N
n=1 1L(xn(t))

N
(9)

Next, at any t such that pA(t) > 0, we define

p`(t) =

∑N
n=1 1{`}(xn(t))∑N
n=1 1L(xn(t))

(10)

for any ` ∈ L, which denotes the fraction of active agents
with state `. Note that we can also write

p+(t) =

∑
n∈VA(t) qn(t)

|VA(t)|
=

L∑
k=L+1

2L

plk(t) (11)



B. Markov model

In order to give a complete mathematical model of the
open system that takes into account all the stochastic phe-
nomena associated with the activation/deactivation of agents
as well as possibility of update or not, we formulate the
dynamics as a Markov process in which ∀i ∈ V, ` ∈ L:

Pr(xi(t+ 1) = `+ sgn(1−`)
L | xi(t) = ` ∈ L)

= β Pr(bxJi(t)(t)e = 1) = β
∑

j∈VA(t)\{i} qj(t)

|VA(t)|−1 ,

Pr(xi(t+ 1) = `+ sgn(−`)
L | xi(t) = ` ∈ L)

= β Pr(bxJi(t)(t)e = 0) = β
∑

j∈VA(t)\{i} 1−qj(t)
|VA(t)|−1 ,

Pr(xi(t+ 1) = NA | xi(t) ∈ L) = δ,

Pr(xi(t+ 1) = xi(t) | xi(t) ∈ L) = 1− β − δ,
Pr(xi(t+ 1) = ` | xi(t) = NA) = γ

L+1 ,

Pr(xi(t+ 1) = NA | xi(t) = NA) = 1− γ.

(12)

Remark 1: In the framework of opinion dynamics, the
first two equations in (12) express that any individual in the
social network (active agent) updates its state according to
the update rule (4) with probability β. The third equation
formalize the fact that individuals of the network can leave
it at time t (i.e., any active agent at time t becomes inactive
at time t+1) with probability δ. The fourth equation describe
the possibility of one individual in the network to not interact
and preserve its opinion at time t (i.e., an active agent
preserves its state) with probability 1 − δ − β. The last
two equations express the possibility of individuals outside
network to join it (choosing the state according to (7)) or
stay inactive, respectively.

We can see from (12) that x(t) is a Markov process
as the transition probabilities only depend on its current
state. However, note that x(t) ∈ LNE . Therefore, even when
L = 1, the Markov chain has 3N states, and 5N states when
L = 3. In order to find the stationary state distribution of
such a process would involve finding the eigenvalues of an
(L+2)N × (L+2)N matrix which is infeasible for large N
(even N > 10). Indeed, many modern networks have a huge
number of agents in practice. These two reasons motivate
us to analyze the system in the large scale limit, i.e., when
N →∞.

The main objective of this work is to analyze the behavior
of dynamics (12) and show that a majority of active agents
in the network will reach a consensus in their action almost
surely. That is, by implementing the proposed algorithm, we
obtain that ∃ε∗ > 0 s.t. ∀ε ∈ (0, ε∗),

Pr
(
p+(t+ 1) < ε

∣∣∣ p+(t) < ε
)
= 1

or

Pr
(
p−(t+ 1) < ε

∣∣∣ p−(t) < ε
)
= 1

(13)

III. LARGE SCALE NETWORK ANALYSIS

For convenience, we define p := (pl0 , pl1 , . . . , plL)
T as the

population vector. This allows us to define the following.

Definition 2 (Equilibrium in population): We say that
(p∗A, p

∗) is an equilibrium in population for dynamics (12)
if ∃t′ ≥ 0 such that (pA(t), p(t)) = (p∗A, p

∗) for all t > t′.
Note that the p∗A denotes the population fraction of active

agents and p∗ describes the distribution of the active popu-
lation among the states in L with

∑
`∈L p` = 1. Therefore

both p∗A and p∗ are required to describe the configuration of
the system in terms of population. Furthermore, (p∗A, p

∗) is
almost surely stable for the overall system if p∗A and p∗ are
respectively almost surely stable for the dynamics pA(t) and
p(t).

Proposition 1: When N →∞, we have

pA(t+ 1) = (1− δ)pA(t) + γ(1− pA(t)) (14)

almost surely, which results in an almost surely globally
exponentially stable (GES) equilibrium at p∗A = γ

γ+δ .
Proof: Since the activation and deactivation probabili-

ties are given by γ and δ respectively, and these probabilities
are independent of the actions/preferences, we can always
write

Pr(xn(t+ 1) ∈ L) = (1− δ)1L(xn(t)) + γ1{NA}(xn(t))
(15)

for any n ∈ V based on (12), resulting in

E[
∑N
n=1 1L(xn(t+ 1))] = (1− δ)

∑N
n=1 1L(xn(t))

+γ
∑N
n=1 1{NA}(xn(t))

= N((1− δ)pA(t) + γ(1− pA(t)))
(16)

Note that the random variable 1L(xn(t+1)) has a variance
greater than 0 and less than 1. Since N → ∞, we can
use the central limit theorem [17] to conclude that the
sampled average pA(t+1) will converge almost surely to the
expectation, i.e., (1− δ)pA(t)+γ(1−pA(t)). The dynamics
(14) can be rewritten as

p′A(t+ 1)− p′A(t) = −(γ + δ)p′A(t) (17)

where p′A(t) := pA(t) − γ
γ+δ . Since γ + δ ∈ (0, 2), the

origin is GES for the deterministic dynamics (17) implying
γ
γ+δ is GES for (14). However, as (14) only occurs almost
surely, the equilibrium γ

γ+δ is almost surely stable for the
pA dynamics.

This result allows us to characterize the population of
active agents while at equilibrium. Since this equilibrium is
independent of the fraction of agents with specific preference
or action states, any equilibrium of the system will have
p∗A = γ

γ+δ . We characterize the dynamics of p`, for all ` ∈ L
under this equilibrium as follows.

In the following, we consider that γ and δ depend on
N . We recall that N is fixed but arbitrarily large and
our analysis is based on the fact that large scale networks
behavior is approximated by N → ∞. Therefore, we will
add supplementary assumptions on the behavior of γ and δ
when N →∞.

Proposition 2: If N → ∞ and δ = O(γ), then when
pA(t) = p∗A = γ

γ+δ (equilibrium of active agent population),
we have



pl0(t+ 1) = (1− δ)pl0(t)− βpl0(t)p+(t) + δ
L+1

+βpl1(t)p−(t)

plk(t+ 1) = (1− β − δ)plk(t) + βplk−1
(t)p+(t) +

δ
L+1

+βplk+1
(t)p−(t)

plL(t+ 1) = (1− δ)plL(t)− βplL(t)p−(t) + δ
L+1

+βplL−1
(t)p+(t)

(18)
for all k ∈ {1, . . . , L− 1} almost surely.

Proof: Let us suppose that the number of active agents
is at equilibrium i.e., pA(t) = γ

γ+δ . As we assume that δ =

O(γ) one has that lim
N→∞

∑
j∈VA(t)\{i} qj(t)

|VA(t)| − 1
= p+(t) and

we can write

lim
N→∞

Pr(xn(t+ 1) = lk) = (1− δ − β)1lk(xn(t))
+β1lk−1

(xn(t))p+(t) +
γ

L+11NA(xn(t))

+β1lk+1
(xn(t))p−(t)

(19)
for any k ∈ {1, . . . , L − 1} based on (12). Using the
central limit theorem as done before in Proposition 1, we
can evaluate∑N

n=1 1lk(xn(t))

N
= (1− β − δ)plk(t)pA(t)

+ γ
L+1 (1− pA(t)) + βplk−1

(t)p+(t)pA(t)

+βplk+1
(t)p−(t)pA(t)

(20)

almost surely. Dividing by pA(t) > 0 on both sides, we
have the left hand side becoming plk(t + 1) and using
γ 1−pA(t)

pA(t) = δ one obtains (18) for all ` ∈ {l1, . . . , lL−1}.
We can similarly evaluate for pl0(t+ 1) and plL(t+ 1), but
by keeping in mind that φ(l0, 0) = l0 and φ(lL, 1) = lL.

Proposition 2 converts the stochastic dynamics of our
Markovian system (12) into a deterministic population dy-
namics (18) that will occur with probability 1 when N →∞.
Next, we characterize the equilibrium points of (18) when
δ = O(1/N) and γ = O(1/N).

Theorem 1: When N →∞, δ = O(1/N), γ = O(1/N),
Nγ
γ+δ → ∞, L ≥ 3 and pA(t) = p∗A, the system (12)
has exactly two almost surely locally exponentially stable
equilibrium points at

p∗S1 = (1, 0, . . . , 0)T and p∗S2 = (0, . . . , 0, 1)T .

The system also allows for one unstable equilibrium point at

p∗U =
1

L+ 1
· (1, 1, . . . 1)T .

Proof: See Appendix A.
From Theorem 1, we can see that taking L ≥ 3 will

result in almost all active agents with a common action at
equilibrium when δ = O(1/N) and γ = O(1/N). Since
Theorem 1 provides local exponential stability of (18) around
p∗S1, we can write

∃ε∗ > 0 s.t. ∀ε < ε∗,Pr (p`(t+ 1) < ε|p`(t) < ε) = 1
(21)

for all ` ∈ L \ {l0} which shows that the first condition
of objective (13) is satisfied. Considering the other locally
stable point p∗S2, we can also prove (13) is satisfied for the
other condition.

Although these results are derived for N → ∞, we
perform simulations and show that that the probability of
retaining consensus is close to 1 when N is large but finite.

Remark 2 (Case of L = 1): The case of L = 1 which is
the only case excluded from Theorem 1 (recall L is odd)
implies that xn(t) = qn(t) as L = {0, 1} and this results
in a dynamics similar to an Ising model used in [18]. We
observe that equation (18) can be simplified into

pl0(t+ 1) = (1− δ)pl0(t)− βpl0(t)plL(t) + βplL(t)pl0(t)
+δ/2

= (1− δ)pl0(t) + δ/2
plL(t+ 1) = (1− δ)plL(t)− βpl0(t)plL(t) + βplL(t)pl0(t)

+δ/2
= (1− δ)plL(t) + δ/2

(22)
which is almost surely GES at p∗U and which results in
p+(t) = p−(t) = 0.5. Therefore taking L = 1 ensures that
there will be no consensus at equilibrium. �

IV. NUMERICAL RESULTS

In this part, we numerically illustrate the theoretical results
presented in the previous Section. These simulations show
that as far as the arrivals/departures occur sufficiently rarely
with respect to the dimension of the network (Nδ and Nγ
are small) we obtain majority action consensus.

For our simulations we take L = 3, i.e. L =
{0, 1/3, 2/3, 1} and we fix β = 0.5. In our first set of
simulations we plot the population of agents with action 1,
i.e., p+(t) vs t with δ = γ = 0.01 for various values of
N . In Figure 1a, when N = 10, we see how consensus is
sometimes perturbed by the activation of new agents. When
N sufficiently large as in Figure 1b, consensus is maintained
for a very long duration of over 105 time instants.

In Figure 2, we plot the population with action 1 against
time for N = 1000 and various values of δ = γ. When
δ = 0.01, the simulation results are close to the theoretical
behavior predicted for N → ∞ and δ = O(1/N). When
δ = 0.2, the influence of the agents who get activated or
deactivated is dominant resulting in random actions, and
there is no majority action preservation. Interestingly, even
with δ = 0.1, about 75% of the agents maintain a common
action over a long duration.

V. CONCLUSION

We introduced and analyzed an open multi-agent system
with discrete states and quantized information. Basically, the
system is split into two subsets: active agents and inactive
ones. Each active agent is characterized by a state belonging
to a finite set while the inactive agents are just artificially
introduced to preserve the dimension of the overall system.
The system dynamics is modeled as a gossiping in which
the active agents access only the action (quantization of the
state) of neighbours. At any time the network can be affected



(a) Dynamics of each agent when N = 10. Agent activation is
marked by a circle and deactivation with a square. At around t =
560, the majority agreement value at 0 is perturbed to become 1.

(b) Population dynamics, i.e. fraction of agents with action 1 vs time
when N = 100 and the almost surely stable equilibrium (defined
when N → ∞) persists for a very long duration (much more than
105 steps).

Fig. 1: Agent dynamics for δ = 0.01.

Fig. 2: Plotting p+(t) vs t for various values of δ. We observe
that even when δ = 0.1, i.e. about 100 agents are being
activated or deactivated in the network at each time instant,
a majority of agents hold the same action for a long period
of time.

by arrivals and departures of some agents (i.e., some active
agents can become inactive and vice-versa). These events
occur randomly as a Bernoulli process. We show that, in
this framework, classical consensus can be replaced by a
weaker formulation: a large fraction of the active population
has almost surely reached a common action.

APPENDIX

A. Proof of Theorem 1

Proof: In Proposition 2 we have shown that the
population dynamics associated with the Markovian system

(12) can be given by (18) almost surely. Since we have
δ = O(1/N) and γ = O(1/N), as N → ∞, δ, γ → 0,
(18) will be transformed into

pl0(t+ 1) = pl0(t)− βpl0(t)p+(t) + βpl1(t)p−(t)

plk(t+ 1) = (1− β)plk(t) + βplk−1
(t)p+(t)

+βplk+1
(t)p−(t)

plL(t+ 1) = plL(t)− βplL(t)p−(t) + βplL−1
(t)p+(t)

(23)
for k ∈ {1, . . . , L− 1} at pA(t) = p∗A. Firstly, we can easily
verify that p∗S1, p∗S2, and p∗U are all equilibria. At p∗S1, we
have p+(t) = 0 and p−(t) = 1 which results in p`(t+ 1) =
p`(t) for all ` ∈ L and similar arguments hold for p∗S2 = 1.
At p∗U , we have p+(t) = p−(t) = 0.5 which once again
results in an equilibrium.

For the stability analysis of (23), we perform a linear
analysis of the dynamics around these equilibria by studying
the Jacobian matrix. Denote by gk(p) the dynamics of the
population with preference state lk ∈ L, i.e. plk(t + 1) =
gk(p). For the rest of the proof, for ease of exposition, we
omit the argument t from p`(t).

If we denote the Jacobian elements by Ji,j , where Ji,j =
∂gi
∂plj

, then for all 0 < i ≤ L−1
2 , and for all L+1

2 ≤ j < L,
we have:

J0,0 = 1 + βpl1 − β
(∑L

k=(L+1)/2 plk

)
Ji,i = 1− β + βpli+1

Jj,j = 1− β + βplj−1

JL,L = 1 + βplL−1
− β

(∑(L−1)/2
k=0 plk

)
We also have ,

∀ i ∈ {2, . . . , (L− 1)/2}, J0,i = −βpl0

∀ i ∈ {(L+ 1)/2, . . . , L− 2}, J0,i = βpl1

and
∀ i ∈ {2, . . . , (L− 1)/2}, JL,i = βplL−1

∀ i ∈ {(L+ 1)/2, . . . , L− 2}, JL,i = −βplL .

For all i, j ∈ {1, 2, . . . , L−1} such that |i− j| > 1 we have

Ji,j = βpli+1

when j ≤ (L− 1)/2 and

Ji,j = βpli−1

when j ≥ (L+ 1)/2. Next, we have

J0,1 = β

pl1 + (L−1)/2∑
k=0

plk



JL,L−1 = β

plL−1
+

L∑
k=(L+1)/2

plk

 .



For all i ∈ {1, 2, . . . , L− 1}, we have

Ji,i+1 = βplk + β

(L−1)/2∑
j=0

plj


where k = i+1 if i+1 ≤ (L−1)/2 and k = i−1 otherwise;
and

Ji,i−1 = βplk + β

 L∑
j=(L+1)/2

plj


where k = i+1 if i−1 ≤ (L−1)/2 and k = i−1 otherwise.

We can study the stability of an equilibrium point by
looking at the eigenvalues of Jacobian matrix evaluated at
the equilibrium points, i.e.,

J(p∗S1) =


1 β 0 . . .
0 1− β β . . .
0 0 1− β . . .
...


which is a triangular matrix. This matrix therefore has the
eigenvalues 1 and 1−β. This can be easily verified by eval-
uating the determinant of the J(p∗S1

)− λI. The eigenvector
corresponding to the eigenvalue of 1 is in fact (1, 0, . . . ).
Since we are working on the unit simplex (as

∑
`∈L p` = 1),

the equilibrium p∗S1 is locally exponentially stable within
the unit simplex. By symmetry, we can also show the same
for the equilibrium p∗S2. However, the dynamics (23) occurs
almost surely and is not deterministic, which results in these
two equilibria being almost surely stable.

Now, we study the Jacobian at the other equilibrium p∗U .
Here, p+ = p− = 0.5 and the J at this point can be
evaluated. Its first column (J0,0, J1,0, . . . , JL,0)

T is given by

(1+
β

L+ 1
− β

2
,

β

L+ 1
+
β

2
,

β

L+ 1
, . . . ,

β

L+ 1
,− β

L+ 1
)T

The columns j for j ∈ {1, . . . , (L− 1)/2} are of the form

( β
L+1 , . . . , 1 +

β
L+1 + β

2 ,
β

L+1 − β,
β

L+1 + β
2

, . . . , β
L+1 ,−

β
L+1 )

T

where 1+ β
L+1 +

β
2 is the diagonal term of the Jacobian. The

j-th column for j ∈ {(L+ 1)/2, . . . , L− 1} is of the form

(− β
L+1 ,

β
L+1 , . . . , 1 +

β
L+1 + β

2 ,
β

L+1 − β
, β
L+1 + β

2 , . . . ,
β

L+1 )
T

Finally, the L-th column is given by

(− β

L+ 1
,

β

L+ 1
, . . . ,

β

L+ 1
,

β

L+ 1
+
β

2
, 1+

β

L+ 1
− β

2
)T

The above matrix is such that each column has exactly one
element which is − β

L+1 either at the first row (after column
index is more than (L − 1)/2) or at the last row. We can
evaluate the sum of each column as

L∑
i=0

Ji,j(p
∗
U ) = 1 + (L− 2)

β

L+ 1
, (24)

when L ≥ 3 for all j ∈ {0, 1, . . . , L}. We can show that one
of the eigenvalues of the matrix J(p∗U ) is 1 + β

L+1 (L − 2).
To do this, we look at

det
(
J(p∗U )−

(
1 + (L− 2)

β

L+ 1

)
IL+1

)
Using the property that adding a scalar times a row to another
row does not change the determinant, we replace the first
row with the sum of all rows, and this results in the first row
becoming all zeroes since we know from (24) that the sum
of each column is 0 by adding −1−(L−2) β

L+1 once to each
row. Since J(p∗U ) has an eigenvalue 1 + (L − 2) β

L+1 > 1
when L ≥ 3, we see that p∗U is unstable when L ≥ 3.
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