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Revisiting the Isoperimetric Graph Partitioning Problem1

Sravan Danda∗ , Aditya Challa† , B.S.Daya Sagar‡ , and Laurent Najman§2

3

Abstract. Isoperimetric graph partitioning which is also known the Cheeger cut is NP-Hard in its original form.4
In literature, multiple modifications to this problem have been proposed to obtain approximation5
algorithms for clustering applications. In the context of image segmentation, a heuristic continuous6
relaxation to this problem has yielded good quality results. This algorithm is based on solving a7
linear system of equations involving the Laplacian of the image graph. Further, the same algorithm8
applied to a maximum spanning tree (MST) of the image graph was shown to produce similar results9
at a much lesser computational cost. However, the data reduction step (i.e. considering a MST, a10
much sparser graph compared to the original graph) leading to a faster yet useful algorithm has not11
been analysed. In this article, we revisit the isoperimetric graph partitioning problem and rectify12
a few discrepancies in the simplifications of the heuristic continuous relaxation, leading to a better13
interpretation of what is really done by this algorithm. We then use the Power Watershed (PW)14
framework to show that is enough to solve the relaxed isoperimetric graph partitioning problem on15
the graph induced by Union of Maximum Spanning Trees (UMST) with a seed constraint. The16
UMST has a lesser number of edges compared to the original graph, thus improving the speed of17
sparse matrix multiplication. Further, given the interest of PW framework in solving the relaxed18
seeded isoperimetric partitioning problem, we discuss the links between the PW limit of the discrete19
isoperimetric graph partitioning and watershed cuts. We then illustrate with experiments, a detailed20
comparison of solutions to the relaxed seeded isoperimetric partitioning problem on the original21
graph with the ones on the UMST and a MST. Our study opens many research directions which are22
discussed in the conclusions section.23

Key words. Image Segmentation, Isoperimetric Partitioning, Cheeger cut, Spectral Clustering, Power Water-24
sheds.25

AMS subject classifications. 90C05, 90C27, 94A08, 94A1226

1. Introduction. In this article, we consider the graph partitioning problem stated as -27

given an edge weighted graph G = (V,E,w) with edge-weights reflecting similarity measure28

between adjacent nodes, find a ‘suitable’ partition of the finite set V into 2 subsets. There29

are, of course, several criteria to find a ‘suitable’ partition. One such criterion, which is the30

focus of this article is that of isoperimetric partitioning. This criterion arises from the31

classic isoperimetric problem - for a fixed area, find a region with minimum perimeter [10].32

The isoperimetric graph partitioning problem also known the Cheeger cut problem is NP-33

Hard [25]. This problem is closely related to total variation (TV) minimization [24, 8] whose34

role is crucial to many inverse problems in computer vision. The Cheeger cut problem also35

has links with problems such as ratio cut [30] and normalized cut minimizatons [30] which36

belong to the family of spectral clustering methods [30]. In the recent past, the Cheeger cut37
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2 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

problem has been of interest to many researchers and multiple approximation algorithms have38

been proposed [24, 5, 18, 9, 21] .39

One such approximation, which is the focus of this paper is a continuous relaxation to this40

problem proposed in [21]. Its application to image segmentation problem is discussed in [20].41

In cases such as medical image segmentation, due to large data size, extremely fast algorithms42

are necessary. Thus, in [19], the authors propose a fast algorithm to obtain an approximate43

solution to the isoperimetric graph partitioning problem for medical image segmentation. A44

simple overview of the idea presented in [19] is - instead of solving the problem on the original45

graph, the authors in [19] construct a maximum spanning tree (MST), and solve the problem46

on this graph. This allows for orders of magnitude speed up in the algorithm.47

However, a few questions remain - (i) What is the basis of the simplifications that led48

to the heuristic provided in [20, 21]. (ii) Why would solving the problem on a MST give49

similar results to the solution on the original graph. (iii) How close are these solutions? These50

questions were answered empirically in [19]. However, to our knowledge, in depth analysis51

into this was not done.52

In this article, we aim to answer the questions highlighted in the previous paragraph by53

presenting a detailed analysis. In section 2, we review the isoperimetric graph partitioning54

problem and focus on the details of the algorithm provided in [20], rectifying a few discrep-55

ancies. This algorithm solves a seeded version of the isoperimetric partitioning problem, and56

we discuss the differences with the original formulation. In section 3, we calculate the limit57

of minimizers of the isoperimetric graph partitioning problem in the Power Watershed (PW)58

framework [27]. Specifically, to calculate the said limit of minimizers, we show that is enough59

to solve the isoperimetric graph partitioning problem on the graph induced by Union of60

Maximum Spanning Trees (UMST). The UMST has a lesser number of edges compared61

to the original graph, thus improving the speed of sparse matrix multiplication1.62

Given the interest of the PW limit in solving the relaxed seeded isoperimetric graph parti-63

tioning problem, in section 4 we discuss the links between the PW limit of the discrete version64

(original formulation) and watershed cuts. In section 5, some experiments are performed to65

illustrate properties of the solutions to the relaxed seeded isoperimetric graph partitioning66

problem on each of the original, the UMST and MST graphs. In section 6, we provide some67

prospective research directions building on the ideas from this article.68

Remark: For brevity and clarity, the proofs of all the results are moved to the appendix.69

2. Isoperimetric Graph Partitioning Problem. In this paper, G = (V,E,w) denotes an70

edge-weighted graph where V denotes the set of vertices, E denotes the set of edges and71

w : E → R+ denotes the weights assigned to each edge reflecting similarity between adjacent72

vertices. To simplify the notation, shorter expression wij is used instead of w(eij) to denote73

the weight of the edge between vertices i and j. Let S ⊂ V , then S denotes the complement74

of the set S.75

Given a graph, its isoperimetric number is defined by76

(1) hG = inf
S

|∂S|
min{vol(S), vol(S)}

77

1Given a n×n matrix with m non-zero entries, the complexity of matrix-vector multiplication is O(m+n)
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REVISITING THE ISOPERIMETRIC GRAPH PARTITIONING PROBLEM 3

where S ⊂ V , the boundary edges of the set S is denoted by ∂S = {eij | i ∈ S, j ∈ S}. The78

sum of the edge weights on the boundary is denoted by |∂S|. The volume of the subset S79

denoted by vol(S) is given by the cardinality of the set S.80

The indicator of a set S ⊂ V is defined as the vector x(S) = (x1, x2, · · · , x|V |) where81

(2) xi =

{
1 if i ∈ S
0 otherwise

82

Also, the Laplacian of an edge-weighted graph G is defined as83

(3) Lij =


∑

k wik if i = j

−wij if eij ∈ E
0 otherwise

84

Using the definitions above, the isoperimetric graph partitioning problem can be stated85

as the following optimization problem.86

(4)
Find arg min

x

xt Lx

min{xt 1, (1−x)t 1}
subject to xi ∈ {0, 1} for all i

87

Here 1 indicates the column vector with all elements equal to 1.88

Observe that xi = 0 for all i is invalid since the denominator of the cost function is 0.89

Similarly, xi = 1 for all i is also invalid. The optimization problem (4) is a NP-hard problem90

[25]. To address this, the authors in [20, 21] propose a continuous relaxation of the problem91

as in (5) and continue to solve the relaxed problem.92

(5)
Find arg min

x

xt Lx

min{xt 1, (1−x)t 1}
subject to xi ∈ [0, 1] for all i

93

Then, every threshold of the solution x is examined and a partition (called an optimal94

threshold) with least isoperimetric ratio among them is chosen. The authors of [20, 21] directly95

proceed to a modification of problem (5), without discussing it. Before going to their proposal,96

we provide hereafter a formal analysis of (5).97

An issue with optimization problem (5) is the fact that at x = t1, where 0 < t < 1, the98

cost function takes the minimum value of 0. Thus, optimal solutions to optimization problem99

(5) are degenerate.100

Adding to the above issue, given any partition of V = S ∪ S, one can find a suitable101

x, which when thresholded results in this partition and is close to the optimal solution.102

That is, solutions to (5) are not robust. This implies that solving (5) cannot be used to103

obtain meaningful partitions. This is stated rigorously in proposition 2.2. Before stating the104

proposition, we need to define the notion of ε-optimal solution.105

Definition 2.1. Let P be the minimization problem with loss function L on the constraint106

set S ⊂ Rn. Let x∗ ∈ S be an optimal solution and ε > 0 denote a constant. If x ∈ S satisfies107

|L(x)− L(x∗)| < ε then x is said to be ε-optimal for P .108

This manuscript is for review purposes only.



4 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

Proposition 2.2. Let ε > 0 be some constant and let V = S ∪ S be any partition. Then,109

given the notation as before, one can find x ∈ [0, 1]|V | such that110

(6)
xt Lx

min{xt 1, (1−x)t 1}
< ε111

and an optimal threshold of x results in the partition S ∪ S.112

One way to rectify this is to consider the seeded version of the problem, i.e. set the value113

of one of the vertices to be 0. In the context of image segmentation, this can be interpreted114

as setting one of the vertices to be in the background of the object. This is the approach115

proposed in [20, 21], however the authors of [20, 21] do not clearly state that this problem is116

actually different from the unseeded version.117

Note that one cannot a-priori know a pixel which would belong to the background without118

extra knowledge. Thus, in practice, either a seed must be given or one can solve the problem119

for all possible seeds and pick the best solution (an approach not very practical).120

The relaxed seeded isoperimetric graph partitioning problem is stated as121

(7)

Find arg min
x

xt Lx

min{xt 1, (1−x)t 1}
subject to xj = 0 for some j

xi ∈ [0, 1], for all i 6= j

122

which can equivalently be stated as123

(8)

Find arg min
x

xt Lx

xt 1

subject to xj = 0 for some j

xi ∈ [0, 1] for all i 6= j

xt 1 ≤ |V |
2

124

Note that using the constraint xj = 0 and slack variables, the above problem can be further125

simplified to126

(9)

Find arg min
x

xt
−jL(−j,−j)x−j

subject to (x−j)i ∈ [0, 1] for all i

xt
−j 1 =

|V |
2

127

where L(−j,−j) is the Laplacian of the graph with jth column and row removed, and x−j is the128

vector with jth entry removed. Optimization problem (9) is henceforth referred to the relaxed129

seeded isoperimetric paritioning problem.130

Using the idea of Lagrange multipliers, one can find the solution to the above problem as131

proposed in [21] by solving132

(10) L(−j,−j)x−j = 1133

This manuscript is for review purposes only.



REVISITING THE ISOPERIMETRIC GRAPH PARTITIONING PROBLEM 5

The constants are ignored since, only relative values of the solution are of interest. Thus,134

finding a solution to the relaxed seeded isoperimetric partitioning problem is reduced to solving135

(10) 2.136

Remark: An important property of the solution to seeded isoperimetric partitioning137

problem is a continuity property (discussed in detail in [21]). It states that, for any vertex138

v, there exists a path to the seed g (say) - < v = v0, v1, · · · , g >, such that the solution x139

satisfies140

(11) x(vi) ≥ x(vi+1)141

i.e. there exists a descending path from the vertex v to the seed (x(v) denotes the value of142

the solution at the vertex v). This property implies that the optimal component containing143

the seed is connected, which is important for practical purposes.144

3. Calculating the limit of minimizers. In this section, we are going to compute the limit145

of the minimizers of (9). The maximum spanning tree is instrumental in doing so. Recall146

that a maximum spanning tree (MST) of a graph G = (V,E,w) is a connected subgraph of147

G spanning V , with no cycles such that148

(12) weight of the MST =
∑

eij∈MST

wij149

is maximized. The UMST is the weighted graph induced by the union of all the maximum150

spanning trees. In [19] the authors claim that instead of solving (10) on the Laplacian of the151

original graph, it is sufficient to solve the problem using the Laplacian of a MST of the graph.152

As a MST does not have any cycles, this allows for obtaining fast solution to (10). This was153

verified empirically in [19] but a detailed analysis of that claim is currently missing. We are154

going to undertake such an analysis using the Power Watershed framework.155

Given G = (V,E,w), a finite edge weighted graph, define an exponentiated graph by156

G(p) = (V,E,w(p)), where w(p)(eij) = (w(eij))
p. In the rest of the article we assume that G157

has k distinct weights w1 < w2 < · · · < wk. Also assume that G is connected. Gumst denotes158

the graph (weighted) induced by the UMST.159

3.1. Power Watershed Framework. Let {Qi(.)} be a set of cost functions on Rn and160

0 < λ1 < λ2 < · · · < λk a set of constants. Define161

(13) Q(x) =
k∑

i=1

λiQi(x)162

and163

(14) Q(p)(x) =

k∑
i=1

λpiQi(x)164

2 Note that for the unseeded version, the equivalent of (10) is Lx = 1. In [20] it was stated that the reason
to consider the seeded problem is - Lx = 1 has several solutions. However, multiplying with 1t on both sides
of Lx = 1, one can easily see that the LHS is equal to 0, while the RHS is greater than 0. This implies that the
system of equations Lx = 1 has no solutions. Here we provide a better understanding for solving the relaxed
seeded isoperimetric partitioning problem.
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6 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

Let x∗p denote a minimizer of Q(p). We are interested in computing a limit x∗ of minimizers165

(x∗p)p>0 as p→∞.166

In [27], the author provides a theory to calculate a limit of minimizers. In simple terms,167

given a specific structure of the cost function, one can compute a limit of minimizers by168

iteratively calculating the set of minimizers at every scale starting from the highest scale λk169

(λi provides the notion of scale here). Formally, the following result holds.170

Theorem 3.1. [27] Let Q(p) :=
∑k

i=i λ
p
iQi, where (λi)1≤i≤k ∈ Rk is such that 0 < λ1 <171

λ2 < · · · < λk ≤ 1, and (Qi)1≤i≤k are real-valued continuous functions defined on Rn. Let Mk172

be the set of minimizers of Qk, and for 1 ≤ i < k, Mi be recursively defined as follows:173

Mk = argminx∈RnQk(x)(15)174

∀1 ≤ i < k, Mi = argminx∈Mi+1Qi(x)(16)175

Any convergent sequence (xp)p>0 of minimizers of Q(p) converges to some point of M1. In176

particular, if for all p > 0, (xp)p>0 is bounded (i.e. if there exists C > 0 such that for all p > 0,177

||xp ||∞ ≤ C), then, up to a subsequence (xp)p>0 is convergent to a point in M1. Further, we178

can estimate the minimum of Q(p) as follows:179

(17) minx∈RnQ(p)(x) =
∑

1≤i≤k
λpimi + o(λp1)180

where mi = minx∈MiQi(x) and o(λp1) is the Landau notion of negligibility.181

The following algorithm is readily derived from the theorem.182

Algorithm 1 Calculating limit of minimizers [27]

Set i = k and Mi+1 is the entire space.
while i > 0 do

Compute the set of minimizers Mi = arg minx∈Mi+1
Qi(x)

end while
return Some x ∈M1.

3.2. Limit of Minimizers of Relaxed Seeded Isoperimetric Partitioning Problem. As we183

are working with finite graphs, each of the edge weights can take values in a finite set. Hence,184

there are k distinct weights w1 < w2 < w3 < · · · < wk, the cost function of the isoperimetric185

partitioning problem can be written as186

(18) Q(x) = xtLx =
k∑

i=1

wi

(
xtLix

)
187

where Li denotes the Laplacian of the graph induced by edges with weight exactly equal to188

wi. Observe that non-diagonal entries of Li are either 0 or 1. It is easy to see that the cost189

function of the isoperimetric partitioning problem for the exponentiated graphs is equal to190

(19) Q(p)(x) = xtLx =
k∑

i=1

wp
i

(
xtLix

)
191

This manuscript is for review purposes only.



REVISITING THE ISOPERIMETRIC GRAPH PARTITIONING PROBLEM 7

This allows us to use theorem 3.1 to calculate the limit of minimizers as p → ∞. The192

following theorem holds.193

Theorem 3.2. Let G denote a finite edge-weighted graph and Gumst the weighted graph194

induced by the UMST. The limit of minimizers of the relaxed seeded isoperimetric partition-195

ing problem on G(p) is equal to the limit of minimizers of the relaxed seeded isoperimetric196

partitioning problem on G(p),umst as p→∞.197

The above theorem provides an initial step to explain the MST approximation in [19]. It198

has been shown earlier [7, 15, 11, 6, 14] that the limit of minimizers preserves the essential199

properties of solutions, thus giving useful results. Theorem 3.2 states that computing the200

limit of the minimizers of the relaxed seeded isoperimetric partitioning problem on UMST201

is same as on the original graph. Thus, assuming that the limit of minimizers yields useful202

solutions, theorem 3.2 allows us to solve the relaxed seeded isoperimetric partitioning problem203

on a smaller3 UMST graph instead of the original graph. While currently there is no formal204

statement justifying such approximation, section 5 provides some empirical evidences for this205

claim.206

Note that algorithm 1 provides only a heuristic to calculate the limit of minimizers, which207

may not be implementable in practice. Theorem 3.3 provides a method of calculating the208

limit of minimizers of the relaxed seeded isoperimetric partitioning problem.209

Theorem 3.3. Let x∗ be a limit of minimizers of the relaxed seeded isoperimetric partition-210

ing problem on G(p) as p → ∞. Assuming that xj denotes the seed, Lumst
(−j,−j) denotes the211

Laplacian of the UMST with jth row and column removed. Then for some λ ∈ R,212

(20) Lumst
(−j,−j)x

∗ = λ1213

Since Lumst
(−j,−j) is non-singular, solving the equation214

(21) Lumst
(−j,−j) x = 1215

yields a solution to the relaxed seeded isoperimetric partitioning problem.216

3.3. Going from UMST to MST?. The above theorems exhibit that in the limiting case,217

solving the relaxed seeded isoperimetric partitioning problem on the UMST is same as solving218

the problem on the original graph. However, in [19] the authors consider an arbitrary MST219

to solve the problem.220

In general one cannot assure that solving the relaxed seeded isoperimetric partitioning221

problem on UMST and MST provide the same solution. Examples demonstrating this are222

discussed in the next section. However, there are few cases (not encountered often in practice)223

where it holds true.224

• When all edges have distinct weights, UMST and MST are identical and hence they225

yield the same solution.226

• Note that the final partition is obtained by thresholding the solution to the seeded227

isoperimetric partitioning problem. In the case when the ideal partition exists as a228

3smaller in the sense of number of edges
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8 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

threshold of the original graph, it is assured that both UMST and MST give the correct229

the partition4. This is because all the three structures MST, UMST and the original230

graph have the same components when thresholded.231

Intuitively, UMST removes the ambiguity of choosing an arbitrary MST and considers a232

‘union’ instead. And hence, it results in a more deterministic behavior. In the following part233

we answer the question - How different can the solutions of UMST and MST be?234

Before proceeding, we need some more notions. Recall that it is assumed that there exists235

k distinct weights on the graph - w1 < w2 < · · ·wk. For any subgraph one can assign a weight-236

distribution vector of length k - [l1, l2, · · · lk], where li is an integer denoting the number of edges237

with weight wi. Thus, the UMST and MST graphs also have such weight distributions which238

is denoted by [u1, u2, · · · , uk] and [m1,m2, · · · ,mk] respectively. The following proposition239

holds.240

Proposition 3.4. Given an edge weighted graph G = (V,E,w), all the MST’s have the same241

weight distribution.242

Recall that the solution is obtained by solving the following linear equation243

(22) L(−j,−j)x−j = 1244

where L(−j,−j) is the reduced Laplacian. This implies that for each i 6= j (xj = 0 corresponds245

to the seed) the following equation holds.246

(23) xi =
∑
l

wil

di
xl +

1

di
247

where di =
∑

l wil denotes the degree of the vertex i. Let D denote the matrix diag(1/d1, 1/d2,248

· · · , 1/dn), and assume W to indicate the adjacency matrix, hence Wil denotes the weight wil.249

Also let f indicate the vector [1/d1, 1/d2, · · · , 1/dn]. Using these notations, the solution to250

the relaxed seeded isoperimetric partitioning problem satisfies251

(24) T (x) = D−1W x+f = x252

In other words, the solution is a fixed point of the linear operator T (.).253

Observe that, each adjacency matrix gives a different operator (the matrix D depends on254

the adjacency matrix). Thus, there are two operators - Tumst and Tmst, corresponding to the255

UMST and MST graphs respectively. To characterize the difference between the solutions of256

seeded isoperimetric partitioning problem on UMST and MST, it is enough to consider the257

distance between these two operators. In particular, the following theorem holds.258

Theorem 3.5. Let Tumst and Tmst denote the operators on UMST and MST respectively,259

as defined above. Then there exists two positive constants K1 and K2 such that260

(25) K1

k∑
i=1

(ui −mi)
2w2

i ≤ ‖Tumst − Tmst‖ ≤ K2

k∑
i=1

(ui −mi)
2w2

i261

4Assuming that the ideal partition is the one which minimizes the isoperimetric ratio.
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REVISITING THE ISOPERIMETRIC GRAPH PARTITIONING PROBLEM 9

The significance of theorem 3.5 is - it gives bounds on how different the solutions of UMST262

and MST can be for the seeded isoperimetric partitioning problem in terms of their weight263

distributions. As a consequence of proposition 3.4, these bounds can be calculated from the264

raw data without resorting to solving the linear equation or using an explicit structure of a265

MST. Note that in the case of all edge weights being distinct, the following holds true266

(26)

k∑
i=1

(ui −mi)
2w2

i = 0267

since ui = mi for all i. This implies that the bounds in theorem 3.5 are attained.268

4. Limit of Minimizers of Discrete Isoperimetric Partitioning Problem. Given the in-269

terest of PW framework in solving the relaxed seeded isoperimetric partitioning problem, we270

explore the limit of the discrete isoperimetric partitioning problem (4) in the PW framework.271

In this section we characterize the limit of minimizers to the discrete problem (4) in the Power272

Watershed framework and establish links with other existing methods.273

Theorem 4.1 shows the most important property of the limit of minimizers of the discrete274

isoperimetric partitioning problem. Recall the assumption that the edge weights can attain275

one of the k distinct weights w1 < w2 < w3 < · · · < wk. Also let G≥w indicate the graph276

induced by the edges in G whose weight is at least w.277

Theorem 4.1. Let x∗ be a limit of minimizers of the discrete isoperimetric partitioning278

problem. If G≥w is disconnected, i.e. it has at least two connected components, then x∗ is279

constant on each of these components.280

a

b
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h

3

1

1
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3

1

1
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g

h

3

3

3
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a
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e

f
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h
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3
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(c)

Figure 1. (a) A synthetic graph, G (b) Graph in (a) thresholded at 3, G≥3. (c) Graph in (a) thresholded
at 2, G≥2. Note that the graph thresholded at 1 is the original graph.

To illustrate theorem 4.1, consider the graph G as shown in figure 1. The theorem implies281

that x∗ (solution to limit of minimizers of the discrete isoperimetric partitioning problem)282
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10 SRAVAN DANDA, ADITYA CHALLA, B.S.DAYA SAGAR AND LAURENT NAJMAN

has constant values within each of the connected components of G≥3 i.e. x∗(a) = x∗(b),283

x∗(c) = x∗(e), x∗(d) = x∗(f), x∗(h) = x∗(g). Further, theorem 4.1 applied to G≥2 implies284

that the equalities x∗(c) = x∗(d) = x∗(e) = x∗(f) hold.285

The above illustration indicates that one can define a critical weight, which is the largest286

weight w such that G>w (the subgraph induced by edges of G with weights greater than w) is287

disconnected while G≥w is connected. Theorem 4.1 implies that , x∗ attains a constant value288

on each component of G>w.289

Recall that a subgraph induced by a subset of edges E1 ⊂ E of an edge-weighted graph290

G = (V,E,w) is said to be a maximum if: every edge in E1 has the same weight; any edge291

in E \ E1 adjacent to an edge in E1 has strictly lesser weight; and E1 induces a connected292

subgraph. The watershed cut [12, 13] of an edge-weighted graph is a maximum spanning forest293

relative to its maxima (when the edge weights represent similarity measure). This allows us294

to make the following interesting observation:295

The partition corresponding to the PW limit of minimizers of the discrete296

isoperimetric partitioning problem can be obtained by successively adding edges297

to a watershed cut in decreasing order of their weights until the resulting graph298

contains two connected components.299

In the case where G>w has exactly two components, the limit of the discrete isoperimetric300

partitioning problem is exactly the same as a watershed cut. For further details on watershed301

cuts, the reader may refer to [12, 13].302

Remark: Note that the discrete isoperimetric partitioning problem is NP-hard. This303

property holds when computing the limit of minimizers as well, i.e. there does not exist a304

polynomial time algorithm to calculate the limit of minimizers to the discrete isoperimetric305

partitioning problem in general.306

5. Empirical Analysis. To recap, we have shown in the Power Watershed framework that307

the limits of the relaxed seeded isoperimetric partitioning problem on the original graph and308

UMST are identical. Also, we have analyzed the situation if MST was used in place of309

UMST to solve the relaxed seeded isoperimetric partitioning problem as proposed in [19]. In310

this section we provide several examples and experimental results to further understand the311

relation between the solutions of the relaxed seeded isoperimetric partitioning problem on the312

original graph, UMST and MST.313

Remark: Note from earlier that only the relative values of the solution are of interest,314

since after the calculation of the solution, each threshold is evaluated to obtain the optimal315

partition (See [20] for details). Thus, in this section two solutions x and y are considered to316

be equivalent if they have the same order, that is317

(27) xi ≤ xj ⇔ yi ≤ yj for all i, j318

A sufficient condition to achieve the same partition is provided by this equivalence condi-319

tion, and the thresholding step is not considered hereafter.320
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Figure 2. Example to illustrate the differences between the solutions to the relaxed seeded isoperimetric
partitioning problem on the original graph, UMST and MST. (a) Original graph. (b) UMST. (c) MST1 (d)
MST2 (e) MST3. (c) - (e) shows all possible MST’s for graph in (a). vertex labelled ‘g’ indicates the seed
vertex in all cases. The edge weights are as shown on the edges.

Table 1
Solutions to relaxed seeded isoperimetric partitioning problem with graphs in figure 2

Node Original UMST MST1 MST2 MST3

g 0.00 0.00 0.00 0.00 0.00
a 1.69 2.68 5.00 4.00 11.16
b 1.54 2.32 9.66 1.00 5.00
c 2.04 3.52 7.00 5.50 10.66
d 2.09 3.64 8.66 6.50 9.00
e 1.94 3.74 8.00 6.16 10.00

5.1. Finding a suitable MST?. One question which naturally arises is - Does there exist321

a MST on which the solution of the relaxed seeded isoperimetric partitioning problem is322

equivalent to the solution obtained with the original graph? What about UMST?323

In general it is not assured that such a MST exists. Consider a simple graph as shown in324

figure 2. Corresponding UMST and all possible MST’s are also shown. Vertex ‘g’ denotes the325

seed. The solution to the relaxed seeded isoperimetric partitioning problem for each of these326

graphs is given in table 1.327

The following conclusions can be drawn from the results:328

1. Note that the relative ordering of the co-ordinates of solution to the seeded isoperimet-329

ric partitioning problem on original graph does not match with any of MST’s. Hence330

this provides a counter example.331

2. The relative ordering of the co-ordinates of the solutions for UMST is different from332
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those obtained from any of the MST’s.333

3. Moreover the relative ordering of the co-ordinates of solutions of UMST and the orig-334

inal graph also do not match.335

Example in figure 2 conclusively shows that, in general one cannot expect a relation336

between the solutions of the relaxed seeded isoperimetric partitioning problem on the original337

graph, UMST and MST. However, in several practical cases, one can expect them to be ‘close’.338

One such application is that of image segmentation. In this case, most of the edges in the339

UMST and MST are within the object and hence might give similar results. This is discussed340

in detail in the next part of the section.341

Another important observation from the above example is that the values of solutions on342

MST are widely fluctuating. That is, the solution changes with respect to the choice of MST.343

This ambiguity is not present when considering the UMST.344

5.2. Results in Practice. In this part we focus on how the solutions of the relaxed seeded345

isoperimetric partitioning problem on the original graph, UMST and MST behave in practice.346

Let x, xumst, xmst indicate the solution to the original graph, the UMST solution and MST347

solution respectively. As the seed, a vertex in the interior of an object is randomly picked,348

and the same seed is used for all three solutions. The datasets considered are the Weizmann349

1-Object and 2-Object datasets [2] and BSDS500 dataset [3]. We select to use the classic350

4-adjacency graph constructed from the image 5.351
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Figure 3. Histograms indicating the amount of reduction in number of edges obtained when constructing the
UMST. x-axis represents the percentage reduction obtained. y-axis represents the number of images achieving
the given amount of reduction. The results are computed on (a) Weizmann 1-Object dataset, (b) Weizmann
2-Object dataset and (c) BSDS500 dataset.

Implementation Note: Recall the assumption that there exists k distinct values for the352

edge weights. In practice, the edge weights are represented by floating point numbers and353

hence ‘equality’ cannot be judged. To overcome this, we consider an ε-precision where the354

weights, wij are modified as below.355

(28) wij → int(wij/ε)× ε356

5The isoperimetric graph partitioning problem is no longer NP-hard on a 4-adjacency graph. However,

the number of partitions of the vertex set V into two subsets is O(|V |
3
2 ) [1]. Hence, solving the discrete

isoperimetric graph partitioning directly is inefficient.
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Intuitively, this operation restricts the precision of a floating point number.357

Firstly, observe that the reduction in the complexity is by reducing the number of non-zero358

entries of the matrix L in (10). Thus one question to ask is - How much reduction in the359

number of edges is achieved when considering the reduction to UMST or MST? In the case360

of using a MST instead of the original graph, the number of edges is simply n − 1 where n361

indicates the number of vertices in the graph (which is ≈ 50% reduction on a 4-adjacency362

graph). In the case of UMST, in general it is not possible to predict the amount of reduction363

in number of edges. Figure 3 shows the histogram of the percentage of reduction achieved364

on the Weizmann and BSDS datasets. Observe that, on average we achieve 20% reduction,365

which can go up to 40%. Intuitively, UMST only removes ‘non-informative’ edges from the366

graph. This is dependent on the image under consideration.367

5.2.1. Accuracy of x, xumst, xmst. We now inspect how the different solutions affect the368

accuracy of segmentation. For the results to be as precise as possible we consider recursive369

partitioning - that is, each of the components of the partition is further partitioned, until a370

stopping criterion is met. We consider the stopping criterion to be when isoperimetric ratio371

crosses a given threshold.372

Table 2
Accuracy Measures used in figure 4

Measure Description

Adjusted Rand Index (ARI) [23] Rand Index adjusted for chance.

Adjusted Mutual Information (AMI) [29] Mutual Information adjusted for chance.

Precision (Pr in [28]) Reflects the probability that a pair of pixels
predicted to have same label does indeed have same label.

Recall (Rr in [28]) Reflects the probability that a pair of pixels having
the same label is predicted to have same label.

F-Score (Fr in [28]) Summary Measure given by
(2 ∗ Precision ∗ Recall)/(Precision + Recall)

The accuracy measures considered are described in table 2. For each image in Weizmann373

1-Object dataset, we compare the recursive partition obtained using the solution to the relaxed374

seeded isoperimetric partitioning problem on UMST/MST with the solution to the relaxed375

seeded isoperimetric partitioning problem on original graph. These results are plotted as a376

scatter plot in figure 4. Note that the results on UMST and original graph are almost similar.377

However, when considering MST, sometimes the results are better and sometimes worse. This378

can, once again be attributed to the previous observation that MST loses information.379

Relative ordering of the co-ordinates in x, xumst, xmst. Recall that two solutions are380

considered equivalent if they have the same order (see (27)). Here we consider how different381

are the orders of xumst, xmst with respect to x. In figures 5a, 5b the scatter plot is used to382

demonstrate the differences between xumst and xmst. The scatter plot is between the values of383

the solutions xumst and xmst, with respect to x, at several random vertices across few random384

images. In the ideal case of the order being perfectly preserved, we expect the plot to follow385

a strictly increasing function. The size of deviation from the increasing function reflects how386

different the orders of the solution are. In figure 5a, observe that the UMST preserves the387

order quite well, while figure 5b suggests that MST does not preserve the order so well. This388
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Figure 4. Scatter plots between measures obtained using UMST/MST and the original graph, on images
from Weizmann 1-Object dataset, for several different measures described in table 2. Observe that the results
for UMST (first column) are very close to the original graph, while results obtained using MST (second column)
have large deviations. This is especially evident when considering the measure ‘Precision’.
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(a) (b) (c)

Figure 5. Relative ordering of the solutions of seeded isoperimetric partitioning problem on the UMST and
MST with respect to the original graph. (a) Shows the scatter plot of the solutions at the vertices between xumst

and x for several images. Observe that the ordering relation (27) is preserved well. (b) Shows the scatter plot
of the solutions at the vertices between xmst and x for several images. Observe that the ordering relation (27)
is not preserved as well as UMST. (c) Box plot indicating the number of inversions obtained, normalized with
number of pairs, for xumst and xmst with respect to x.

indicates that MST loses much more relevant information with respect to the original graph389

than UMST.390

Another metric to measure the amount of difference is by calculating the number of in-391

versions between the solutions. This is calculated as follows - Order the solution xumst or392

xmst with respect to the order x. Then count the number of inverted pairs - (xi, xj) such that393

i < j and xi > xj . Normalize with respect to the total number of pairs possible, to obtain394

consistency across differently sized images. This is measured on each image of Weizmann395

1-Object dataset and a box plot is plotted in figure 5c. This substantiates the evidence that396

MST loses a lot of relevant information while UMST preserves it.397

6. Conclusions and Perspectives. In this article we have revisited the NP-hard isoperi-398

metric graph partitioning problem. We have presented a detailed analysis of the continuous399

relaxation of the problem, clarifying the construction followed in [20, 21]. In [19] the author400

exhibited empirically that - solving the relaxed seeded isoperimetric partitioning problem on a401

much smaller graph (MST) yields a good approximation to the solution on the original graph.402

We provided an alternative explanation for this approximation by considering the limit of403

minimizers in the Power Watershed framework. We have shown that, in the limiting case,404

solving the problem on UMST is equivalent to solving the problem on the original graph.405

We have established bounds on the difference between the solutions of the relaxed seeded406

isoperimetric partitioning problem on UMST and MST graphs. Empirical experiments were407

conducted to analyse these techniques in practice.408

It is also possible to characterize the limit of minimizers of the solutions of the discrete409

isoperimetric partitioning problem in the Power Watershed framework. Although, the compu-410

tation of the exact limit still remains NP-hard, we have shown that these solutions are ‘close’411

to watershed cuts. Further analysis of the limit of minimizers to the discrete isoperimetric412

partitioning problem is a subject of future research. We mention here two possible directions:413

(1) MST has been proved a good heuristic in solving the NP-hard travelling salesman problem414

[17, 16]. Would it be possible to go along the same lines, and prove some theoretical bounds415
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on the solutions to the isoperimetric graph partitioning problem? (2) In the theory of scale-set416

analysis [22], it is shown that the celebrated Mumford-Shah functional [26] can be solved in417

linear time on a tree of segmentations, and that the persistence of regions is a good indicator418

of their relevance with respect to image segmentation. We can envision using the Cheeger419

constant in a similar way to what is done in [22]. Extensions to such ideas have been proposed420

in the shaping framework [31], and can be adapted to the case of the Cheeger constant. Would421

that be possible to estimate bounds on the solutions in such frameworks?422

Beyond segmentation, filtering images is another possible direction of research. As the423

Cheeger cut problem is closely related to total variation (TV) minimization, it would be inter-424

esting to explore the utility of PW framework for solving TV minimization problems. More425

generally, going beyond images, is to explore the application of the UMST-based algorithm426

as a fast clustering technique for data analysis.427

As a final note, as demonstrated in this paper and others [15, 7, 11, 14, 6], Power Watershed428

framework has proved to be very useful. From a theoretical standpoint, understanding the429

working principle behind the Power Watershed framework is still an open problem.430
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Appendix A. Proof of proposition 2.2 .437

Proof. Given a subset S, define x(S) = (x1, x2, · · · , xn) by438

(29) xi =

{
1/2− δ if i ∈ S
1/2 + δ otherwise

439

Then,440

(30) xtLx =
∑
ij

wij(xi − xj)2 =
∑

eij∈∂S
wij(2 ∗ δ)2441

Without loss of generality, assume that |S| ≤ (1/2)|V | (Otherwise, take the complement).442

Then the denominator is equal to443

(31)
|V |
2
− δ|S|+ δ|V \ S|444

Thus the cost of this vector is given by445

(32)

∑
eij∈∂S wij(2 ∗ δ)2

|V |
2 − δ|S|+ δ|V \ S|

446

Note that the above cost converges to 0 as δ → 0. Hence one can find a δ > 0 such that the447

cost is less than ε.448
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Appendix B. Proof of theorem 3.2. Let G = (V,E,w) denote the graph, and Gumst449

denote the weighted graph induced by the UMST. Let L and Lumst denote the Laplacian of450

the graphs G and Gumst respectively. Denote Lother = L − Lumst to indicate the Laplacian451

of the graph induced by the edges which do not belong to the UMST. Let Li denote the452

Laplacian of the graph induced by edges with weight equal to wi. Recall that- it is assumed453

there are k distinct weights w1 < w2 < w3 < · · · < wk. This notation is also compounded,454

in the sense that- Lumst
k indicates the Laplacian of the subgraph of UMST graph induced by455

edges with weight equal to wk.456

The idea of the proof is to show that at every level of the algorithm 1, the minimizers457

obtained with respect to the graph also minimize the corresponding optimization problem458

with respect to the UMST graph. This implies that the output of the algorithm is same for459

both the graph and its corresponding UMST, which proves the theorem.460

Following the steps algorithm 1, starting at the highest level k and filter the set of mini-461

mizers to obtain the limit of minimizers.462

At level k solve the following optimization problem.463

(33)

arg min
x

xt
−jLk,(−j,−j)x−j

subject to (x−j)i ∈ [0, 1]∀i
xt
−j 1 = µ

464

The above optimization problem is stated for the graph. The equivalent optimization problem465

for the UMST is obtained by replacing the Laplacian of the graph with the Laplacian of the466

UMST. Note that it is assumed the seed is placed at some arbitrary vertex xj . From above,467

the set of solutions to this optimization problem is the set of solutions obtained by solving468

(34) Lk,(−j,−j)x−j = λk 1469

Lemma B.1. Given a graph G and the corresponding UMST graph Gumst, if wk denotes470

the highest weight, then471

(35) Lk,(−j,−j) = Lumst
k,(−j,−j)472

The lemma B.1 essentially tells that at the highest level, the Laplacian for the graph and473

the corresponding UMST are the same. And hence, the set of minimizers obtained after level474

k is same for both the graph and its UMST.475

Let Ak indicate the matrix obtained by stacking the indicator vectors of the components476

of G≥wk
. Clearly, the following relation holds477

(36) Lk,(−j,−j)Ak = 0478

This follows from the properties of the Laplacian [10]. Hence the following lemma holds.479

Lemma B.2. Let Mk denote the set of minimizers obtained by solving (34). If x∗k denotes480

some solution to the equation, then the set Mk is characterized by481

(37) x∗k +Aky482

for any y.483
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At level k − 1, thanks to the above results, solve the optimization problem484

(38)

arg min
x

xt
−jLk−1,(−j,−j)x−j

subject to (x−j)i ∈ [0, 1]∀i
xt
−j 1 = µ

xt
−j ≈ x∗k +Aky

485

where ≈ is to be read as - ‘is of the form’. Once again, note that the above optimization486

problem is stated for the graph. To obtain the equivalent optimization problem for the UMST487

graph one simply replaces the Laplacian of the graph with the Laplacian of the UMST graph.488

Simplifying the above optimization problem,489

(39)
minimize

y
(x∗k)tLk−1,(−i,−i)x

∗
k + 2(x∗k)tLk−1,(−i,−i)Aky +ytAt

kLk−1,(−i,−i)Aky

subject to (x∗k +Aky)t1 = µ
490

The following lemma holds.491

Lemma B.3. Recall that Lk−1 = Lother
k−1 + Lumst

k−1 . Hence, Lother
k−1 Ak = 0.492

The proof of the above lemma is seen by noting that - ‘other’ edges apart from UMST are intra-493

component edges in the components of G≥wk
. So, components of the graph whose Laplacian494

would be Lother
k−1 are subsets of the components of G≥wk

. Thus, from the properties of the495

Laplacian, the above lemma holds true.496

Thanks to the above lemma, the optimization problem reduces to497

(40)
minimize

y
(x∗k)tLumst

k−1,(−i,−i)x
∗
k + 2(x∗k)tLumst

k−1,(−i,−i)Aky + ytAt
kL

umst
k−1,(−i,−i)Aky

subject to (x∗k +Aky)t1 = µ
498

Observe that the above optimization problem is nothing but the optimization problem499

at level k − 1 of the UMST graph. Hence, at level k − 1, the solutions to the optimization500

problem of the graph and the solutions to the optimization problem of the UMST graph are501

equal.502

Continuing this argument, one can easily see that the output of the algorithm 1 for both503

the graph and its UMST is the same. Hence the theorem is proved.504

Appendix C. Proof of theorem 3.3. Observe that from above, the limit of minimizers505

can be written as506

(41) x∗ = x∗k +Akx
∗
k−1 +AkAk−1x

∗
k−2 + · · ·+AkAk−1Ak−2 · · ·x∗1507

Note that Lumst = Lumst
1 + Lumst

2 + Lumst
3 + · · ·+ Lumst

k . So,508

Lumstx∗ = (Lumst
k + Lumst

k−1 + · · ·+ Lumst
1 )(x∗k +Akx

∗
k−1 + · · ·+AkAk−1..x

∗
1)(42)509

= Lumst
k x∗k + Lumst

k−1 (x∗k +Akx
∗
k−1) + · · ·(43)510

The second step follows from noting that LkAk = 0, Lk−1AkAk−1 = 0, and so on. This,511

inturn, follows from the following lemma.512
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Lemma C.1. The matrix A1A2 consists of the indicator vectors of the connected compo-513

nents of G≤w2.514

Note that Lumst
k x∗k = λk1. Now, the solutions at level 2 , optimization problem in (40)515

satisfy516

(44) AkL
umst
k−1 (x∗k +Aky) = Akλk−11517

Lemma C.2. If given AB x = Ay, then B x = y when A is non singular (has an inverse)518

or if the intersection of column space of B and the null space of A is the zero vector.519

The proof of the above lemma is standard. From lemma C.2, it can be deduced that520

Lumst
k−1 (x∗k +Aky) = λk−11. Thus, continuing from (43)521

Lumstx∗ = Lumst
k x∗k + Lumst

k−1 (x∗k +A1x
∗
k−1) + · · ·(45)522

= λk1 + λk−11 · · ·(46)523

= Λ1(47)524

Appendix D. Proof of Proposition 3.4. For this proof, we need the cut-property of MST.525

526

Lemma D.1 (Cut Property [4]). A spanning tree T of a connected graph G is a MST if and527

only if for every edge e in T , any edge e′ in the cut of T \ {e} satisfies w(e′) ≥ w(e)528

It is enough to show that one can transform an MST T to any other MST T ′ via a sequence529

of operations that keep the edge-weight distribution invariant.530

Suppose T is different from T ′ then let e ∈ T \ T ′. Now consider the cut edges of T \ {e}.531

It is evident from the cut property that w(e) ≥ w(f) for any cut-edge f of T \ {e}. Firstly,532

T ′ being a spanning tree has to contain a cut-edge of T \ {e}. Secondly total weight of T ′533

and T are same as both are MST’s and e /∈ T ′ implies existence of a cut-edge e′ 6= e of534

T \ {e} with w(e) = w(e′) and e′ ∈ T ′. Now observe that T \ {e} ∪ {e′} is a MST with same535

edge-weight distribution as that of T . Since, we are working on finite graphs, after a finite536

sequence of steps, we would end up with T ′ starting from T . We remark that at every step,537

the edge-weight distribution of the MST remains invariant and hence the proof.538

Appendix E. Proof of theorem 3.5. Recall that,539

(48) T (x) = D−1W x+f540

Assuming that f in column space of D−1W , which is the case if the graph is connected, one541

can rewrite the operator as,542

(49) T (x) = D−1W (x+f)543

for some f . Hence we have that544

‖Tumst − Tmst‖ = ‖(D−1W )umst − (D−1W )mst‖545

=
∑
i,j

(
wij,umst

di,umst
− wij,mst

di,mst

)2

546
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Let,547

K1 =
1

(maxi{di,umst})2
548

K2 =
1

(mini{di,mst})2
549

Note that,550

∑
i,j

(
wij,umst

di,umst
− wij,mst

di,mst

)2

≤
∑
i,j

1

d2i,umst

(wij,umst − wij,mst)
2(50)551

≤ 1

(mini{di,umst})2
∑
i,j

(wij,umst − wij,mst)
2(51)552

=
1

(mini{di,umst})2
∑
i

(ni −mi)
2w2

i(52)553

(53)554

Similarly, one can obtain the other relation as well.555

Appendix F. Proof (sketch) of theorem 4.1. Recall that the edge weights are assumed556

to take one of k distinct values w1 < w2 < · · · < wk.557

The proof of this theorem follows the similar lines as that of theorem 3.2. That is, we558

trace the working of the algorithm 1 to obtain the proof. The main difference is that, at level559

m we solve the problem560

(54)

Find arg min
x

xtLm x

min{xt 1, (1−x)t 1}
subject to xi ∈ {0, 1} for all i

x is a minimizer at all levels n > m

561

If G≥wm has components {C1, C2, . . . Cl}, with l > 1 consider the following vector562

(55) x∗(i) =

{
1 if i ∈ C1

0 otherwise
563

Then it is easy to see that for all n > m, we have564

(56) (x∗)tLnx
∗ = 0565

and hence x∗ is a solution to (54).566

The theorem follows from extending this to all levels.567
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