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In the present paper, we study observer design and we establish some sufficient conditions for practical exponential stability for a class of time-delay nonlinear systems written in triangular form. In case of delay, the exponential convergence of the observer was confirmed. Based on the Lyapunov-Krasovskii functionals, the practical stability of the proposed observer is achieved. Finally, a physical model and simulation findings show the feasibility of the suggested strategy.

Introduction

Time-delay systems are one of the basic mathematical models of real phenomena such as nuclear reactors, chemical engineering systems, biological systems [START_REF] Lili | Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays[END_REF], and population dynamics models [START_REF] Muroya | Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure[END_REF]. The analysis of systems without delays is generally simple as compared to nonlinear systems under time delays. However, there are a number of problems relating to nonlinear observer for time delay system. In particular, a problem of theoretical and practical importance is the design of observer-based for time-delay systems. In literature, a separation principle, for nonlinear free-delay systems, using high gain observers is provided in [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF] and [START_REF] Atassi | Separation results for the stabilization of nonlinear systems using different high-gain observer designs[END_REF].

Much attention has been paid to solve such a problem and many observer designs for time-delay nonlinear systems approaches have been used. In [START_REF] Zhou | Observers for a Class of Nonlinear Systems with Time-Delay[END_REF], it is shown that observer design for a class of nonlinear time delay systems is solved by using linear matrix inequality. In [START_REF] Hamed | Practical stabilization of a class of uncertain time-varying nonlinear delay systems[END_REF], some sufficient conditions for practical uniform stability of a class of uncertain time-varying systems with a bounded time-varying state delay were provided using the Lyapunov stability theory. [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF] and [START_REF] Echi | Delay-dependent stabilization of a class of time-delay nonlinear systems: LMI approach[END_REF] show that state and output feedback controllers of time-delay systems, written in a triangular linear growth condition are reached under delay independent conditions and under delay dependent conditions respectively.

The observer design problem for nonlinear systems satisfying a Lipschitz continuity condition has been a topic of numerous papers, such as for nonlinear free-delay systems [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF][START_REF] Atassi | Separation results for the stabilization of nonlinear systems using different high-gain observer designs[END_REF][START_REF] Zhu | A note on observers for Lipschitz nonlinear systems[END_REF][START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], for nonlinear systems with unknown, time-varying [START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF][START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF][START_REF] Farza | High-gain observer for a class of time-delay nonlinear systems[END_REF]. A reduced-order observer design method is presented in [START_REF] Zhu | A note on observers for Lipschitz nonlinear systems[END_REF] for a class of Lipschitz nonlinear continuous-time systems without time delays which extend the results in [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF].

However, in practice, dynamics, measurement, noises or disturbances often prevent the error signals from tending to the origin. Thus, the origin is not a point of equilibrium of the system. An additive term on the right-hand side of the nonlinear system is used to present the uncertainties systems. For this reason, the property is referred to as practical stability which is more suitable for nonlinear free-delay systems ( see [START_REF] Benabdallah | Practical stability of nonlinear time-varying cascade systems[END_REF][START_REF] Corless | Guaranteed rates of exponential convergence for uncertain systems[END_REF]) and for nonlinear systems with time-delay ( see [START_REF] Ben Hamed | Practical uniform stability of nonlinear differential delay equation[END_REF][START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF][START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF][START_REF] Villafuerte | Practical Stability of Time-Delay Systems: LMI's Approach[END_REF]). Under unknown, bounded timedelay, an observer design for a class of nonlinear system is presented in [START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF]. [START_REF] Ben Hamed | Practical uniform stability of nonlinear differential delay equation[END_REF] concluded that a class of nonlinear time delay systems is conformed due to some assumptions and the time varying delay bounded the practical exponential stability. Based on conditions in terms of Ricatti differential equation, the problem of the practical exponential stability of a class of delayed nonlinear systems is proved in [START_REF] Naifar | Practical stability for a class of nonlinear time varying systems including delayed perturbation[END_REF]. [START_REF] Naifar | State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay[END_REF] investigated the problem of design for a class of nonlinear systems under unknown time-varying delay. Based on sufficient assumptions, the practical and the exponential stability is achieved.

The main aim of the current paper is to generalize the idea investigated, for instance, in [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF][START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF] for the purpose of establishing the design of observer. We investigate the problem of exponential convergence of the observation error of a class of nonlinear time-delay systems with constant delay. We impose a generalized condition on the nonlinearity to cover the time-delay systems considered in [START_REF] Benabdallah | A separation principle for the stabilization of a class of time delay nonlinear systems[END_REF] and a class of systems considered in [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] and [START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF] . Under unknown and variable time delay and by constructing LyapunovKrasovskii functionals, new criteria are given to insure the practical stability in which the error converges to a small ball.

The rest of this paper is organized as follows: In Section 2, the exponential stable and the practical stability definition are presented and the system description is given. The observer design synthesis method and its stability analysis for a class of nonlinear systems are proved in section 3. In section 4, we illustrate our results by a physical model.

System description and basic results

Consider time delay system of the form:

ẋ(t) = f (t, x(t), x(t -τ (t))) x(s) = ϕ(s) (1) 
where τ (t) represents a positive real-value unknown function that denotes the time varying delay affecting both state and input of the system, x(t, ϕ) is the solution of the system with initial function ϕ, verifying:

x(s, ϕ) = ϕ(s), ∀s ∈ [-τ ; 0].
ϕ ∈ C where C denotes the Banach space of continuous functions mapping the interval [-τ, 0] → R n equipped with the supremum-norm:

ϕ ∞ = max s∈[-τ,0] ϕ(s)
being the Euclidean-norm. The map f :

R+ × R n × R n → R n is a piecewise continuous function in t,
and locally Lipschitz in x, and satisfies f (t, 0, 0) = 0, ∀t ≥ 0.

For r > 0, denote Br = {x ∈ R n / x ≤ r}. In the case when f (t, 0, 0) = 0, for certain t ≥ 0, we shall study the problem of asymptotic stability not for the origin but for a neighborhood of the origin approximated by a small ball of radius r > 0 centrad at the origin.

The function segment xt is defined by xt(θ) = x(t + θ), θ ∈ [-τ, 0]. For ϕ ∈ C, we denote by x(t, ϕ) or shortly x(t) the solution of (1) that satisfies x0 = ϕ. The segment of this solution is denoted by xt(ϕ) or shortly xt.

Definition 1 [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hales form[END_REF] The zero solution of system (1) is said to be globally exponentially stable with a decay rate α > 0, if there exist positive reals α and β such that, for all t ≥ t0 and ϕ ∈ C, the following inequality holds:

x(t) ≤ β ϕ ∞ exp (-α(t -t0)).
Definition 2 [START_REF] Ben Hamed | Practical uniform stability of nonlinear differential delay equation[END_REF] We say that Br is globally uniformly exponentially stable if there exist λ1 > 0 and λ2 > 0 such that for all t ≥ t0 and ϕ ∈ C, we have

x(t) ≤ r + λ1 ϕ ∞ exp(-λ2(t -t0)).
System (1) is globally uniformly practically exponentially stable if there exists r > 0 such that Br is globally uniformly exponentially stable.

Remark 1 When r = 0, in this case the origin is an equilibrium point, then we point the classical definition of the exponential stability (see [START_REF] Benabdallah | Global exponential stabilisation of a class of nonlinear time-delay systems[END_REF], [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hales form[END_REF]).

Remark 2

The global uniform practical asymptotic stability of a ball Br defined in this paper is less restrictive than the stability of compact set given in [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF] of free-delay systems.

In this paper, we consider the time delay nonlinear system

     ẋ(t) = Ax(t) + f (x(t), x(t -τ (t)), u(t), u(t -τ (t))), t ≥ 0 , y(t) = Cx(t) , x(s) = ϕ(s), ∀s ∈ [-τ, 0] . (2) 
where x(t) ∈ R n is the state vector, u(t) ∈ R m is the input of the system, y(t) ∈ R is the measured output, τ (t) is a continuously differentiable function which denotes the time-varying delay, x(t -τ (t)) and u(t -τ (t))

are, respectively, the delayed state and input. The matrices A, and C are given by,

A =          0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 0 0 • • • 0          , C = 1 0 • • • 0 0
and the perturbed term is

f (x(t), x(t-τ (t), u(t), u(t-τ (t))) = [f1(x(t), x(t-τ (t)), u(t), u(t-τ (t))), • • • , fn(x(t), x(t-τ (t)), u(t), u(t-τ (t)))] T .
The mappings fi :

R n × R n × R m × R m → R, i = 1, . . . , n, are smooth with fi(0, 0, 0, 0) = 0.
Throughout the paper, the time argument is omitted and the delayed state vector x(t -τ (t)) is noted by

x τ (t) . A T means the transpose of A. λmax(A) and λmin(A) denote the maximal and minimal eigenvalue of a matrix A respectively.

Main results

We suppose that f satisfies the following assumption:

A1. There exists functions γ1(ε) > 0, γ2(ε) > 0 and γ3(ε) > 0 such that for ε > 0,

n i=1 ε i-1 |fi(x, x, u, u τ (t) ) -fi(y, y, u, u τ (t) )| ≤ γ1(ε) n i=1 ε i-1 |xi -yi| + γ2(ε) n i=1 ε i-1 |xi -y i |, (3) 
n i=1 ε i-1 |fi(x, x, u, u τ (t) ) -fi(x, y, u, u τ (t) )| ≤ γ2(ε) n i=1 ε i-1 |xi -y i | + γ3(ε) n i=1 ε i-1 u τ (t) -u τ (t) . ( 4 
)
Remark 3 We can easily show if the system (2) has a triangular structure (see [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF], [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF]), that is each fi

depends only on (x1, • • • , xi, x τ 1 , • • • , x τ i , u, u τ (t)
) and if we suppose that fi is globally Lipschitz with respect to (x1,

• • • , xi), (x τ 1 , • • • , x τ i ) and u τ (t)
, uniformly with respect to u, which implies that

|fi(x, x, u, u τ (t) ) -fi(y, y, u, u τ (t) )| ≤ |fi(x, x, u, u τ (t) ) -fi(x, z, u, u τ (t) )| + |fi(x, z, u, u τ (t) ) -fi(y, y, u, u τ (t) )| ≤ k1 i j=1 (|xj -zj|) + k1 u τ (t) -u τ (t) (5) +k2 i j=1 (|xj -yj| + |zj -y j |), (6) 
where k1 > 0, (k2 > 0) is a Lipschitz constant in [START_REF] Benabdallah | Practical stability of nonlinear time-varying cascade systems[END_REF], and in (6) respectively, then assumption A1 is fulfilled.

Indeed, n i=1 ε i-1 |fi(x, x, u, u τ (t) ) -fi(y, y, u, u τ (t) )| ≤ n i=1 ε i-1 k1 i j=1 (|xj -zj|) + n i=1 ε i-1 k1 u τ (t) -u τ (t) + n i=1 ε i-1 k2 i j=1 (|xj -yj| + |zj -y j |)
But, on the one hand, we have

n i=1 ε i-1 k2 i j=1 (|xj -yj| = k2(1 + ε + • • • + ε n-1 )|x1 -y1| +k2(ε + • • • + ε n-1 )|x2 -y2| + • • • + k2ε n-1 |xn -yn| = k2(1 + ε + • • • + ε n-1 )|x1 -y1| +k2ε(1 + • • • + ε n-2 )|x2 -y2| + • • • + k2ε n-1 |xn -yn| ≤ k2(1 + ε + • • • + ε n-1 ) n i=1 ε i-1 |xi -yi|,
and thus also

n i=1 ε i-1 k2 i j=1 (|zj -y j | ≤ k2(1 + ε + • • • + ε n-1 ) n i=1 ε i-1 |xi -y i |, n i=1 ε i-1 k1 i j=1 (|xj -y j | ≤ k1(1 + ε + • • • + ε n-1 ) n i=1 ε i-1 |xi -y i |.
and on the other hand, we have

n i=1 ε i-1 k1 u τ (t) -u τ (t) ≤ k1(1 + ε + • • • + ε n-1 ) n i=1 ε i-1 u τ (t) -u τ (t) .
So assumption A1. is satisfied with

γ1(ε) = γ2(ε) = γ3(ε) = k(1 + ε + • • • + ε n-1 ),
where k = max(k1, k2).

Remark 4

In the paper, we deals with the more general systems where the nonlinear function is not necessarily Lipschitz.

Observer design

A tenth of researchers has studied the design problem of the observer for example in [START_REF] Germani | An asymptotic state observer for a class of nonlinear delay systems[END_REF], [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF], [START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF] and references therein. For nonlinear systems having triangular structures, the global asymptotic stability is proved using a high-gain parameterized linear controller in [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF]. Under some condition, [START_REF] Germani | An asymptotic state observer for a class of nonlinear delay systems[END_REF] investigated the problem for exponential observation for nonlinear delay systems. [START_REF] Naifar | On Observer Design for a Class of Nonlinear Systems Including Unknown Time-Delay[END_REF] presented observer design for a class of nonlinear system with bounded time-varying delay.

To complete the description of system (2), the following assumption is considered.

A2 For t ≥ 0, the time delay τ (t) = τ is known and constant.

In this subsection, under constant and known time delay, we present delay-independent conditions to ensure exponential convergence of the observation error. To define the nonlinear time-delay observer for system (2) under assumptions A1 and A2, The following state observer is proposed:

ẋ(t) = Ax(t) + f (x(t), xτ , u(t), u τ ) + L(ε)(C x(t) -y(t)), ŷ(t) = C x(t), (7) 
where L(ε) = [ l 1 ε , . . . , ln ε n ] T and L = [l1, . . . , ln] T such that AL := A+LC is Hurwitz. Let P be the symmetric positive definite solution of the Lyapunov equation

A T L P + P AL = -I (8) 
Theorem 1 Consider the time-delay system (2) under assumptions A1. and A2.. Suppose that there exists ε > 0 such that λmin(P

) ε P -2nγ1(ε) P -n 2 γ 2 2 (ε) P 2 -1 > 0 (9)
Then, system (7) is a globally exponential observer for system (2).

Proof. Denote e = x -x the observation error. We have

ė = (A + L(ε)C)e + f (x, xτ , u, u τ ) -f (x, x τ , u, u τ ) (10) For ε > 0, let D(ε) = diag[1, ε, . . . , ε n-1 ]. Let η = D(ε)e. Using the fact that A + L(ε)C = 1 ε D(ε) -1 ALD(ε), we get η = 1 ε ALη + D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ )) (11) 
Let us choose a Lyapunov-Krasovskii functional candidate as follows The time derivative of V1(ηt) along the trajectories of system [START_REF] Hamed | Practical stabilization of a class of uncertain time-varying nonlinear delay systems[END_REF] is

V (ηt) = V1(ηt) + V2(ηt) (12) 
V1(ηt) = 1 ε η T (A T L P + P AL)η + 2η T P D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ ))
The time derivative of V2(ηt) along the trajectories of system [START_REF] Hamed | Practical stabilization of a class of uncertain time-varying nonlinear delay systems[END_REF] is

V2(ηt) = η 2 -e -σ η τ 2 - σ τ t t-τ e σ τ (s-t) η(s) 2 ds Since P is symmetric positive definite, for all η ∈ R n , λmin(P ) η 2 ≤ η T P η ≤ λmax(P ) η 2 (13) 
Taking the time derivative of (12) along the trajectories of [START_REF] Hamed | Practical stabilization of a class of uncertain time-varying nonlinear delay systems[END_REF], and making use of ( 8) and ( 13), we have

V (ηt) ≤ -1 ε P V1(η) + 2 η P D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ )) + η 2 -e -σ η τ 2 -σ τ V2(η). Now D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ )) ≤ n i=1 ε i-1 |fi(x, xτ , u, u τ ) -fi(x, x τ , u, u τ )|. ( 14 
)
So using assumption A1. equation( 3), we get

D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ )) ≤ γ1(ε) n i=1 ε i-1 |xi -xi| + γ2(ε) n i=1 ε i-1 |x τ i -x τ i | ≤ nγ1(ε) D(ε)e + nγ2(ε) D(ε)e τ .
Thus

D(ε)(f (x, xτ , u, u τ ) -f (x, x τ u, u τ )) ≤ nγ1(ε) η + nγ2(ε) η τ (15)
Thus, we have that

V (ηt) + σ τ V (ηt) ≤ -( 1 ε P -σ τ )V1(η) + 2nγ1(ε) P η 2 +2nγ2(ε) P η η τ + η 2 -e -σ η τ 2 ≤ -λmin(P )( 1 ε P -σ τ ) -2nγ1(ε) P -1 η 2 +2nγ2(ε) P η η τ -e -σ η τ 2
Hence, we have that

V (ηt) + σ τ V (ηt) ≤ -a(σ, ε) η 2 + b(ε) η η τ -e -σ η τ 2 (16) with a(σ, ε) = λmin(P )( 1 ε P -σ τ ) -2nγ1(ε) P -1, b(ε) = 2nγ2(ε) P .
Now, the right side of the inequality ( 16) can be rewritten as follows

-a(σ, ε) η 2 + b(ε) η η τ -e -σ η τ 2 = -a(σ, ε) - b 2 (ε) 4 e σ η 2 - b(ε) 2 e σ 2 η -e -σ 2 η τ 2
To satisfy inequality ( 16), all we need to do is to choose σ such that

a(σ, ε) - b 2 (ε) 4 e σ > 0,
which is equivalent to

λmin(P ) σ τ + b 2 (ε) 4 (e σ -1) < λmin(P ) ε P -2nγ1(ε) P -1 - b 2 (ε) 4 ( 17 
)
Let w(x) = λmin(P ) x τ + b 2 (ε) 4 (e x -1), we have w(x) > 0 ∀x > 0 and w(0) = 0. Since w is continuous at 0, there exists δ > 0 such that ∀x ∈]0, δ[, 0 < w(x) < λ min (P )

ε P -2nγ1(ε) P -4+b 2 (ε) 4 . Let σ ∈]0, δ[, then inequality (17) is verified.
Now, the objective is to prove the exponential convergence of the observer [START_REF] Ben Hamed | Practical uniform stability of nonlinear differential delay equation[END_REF].

Using [START_REF] Echi | Delay-dependent stabilization of a class of time-delay nonlinear systems: LMI approach[END_REF], inequality [START_REF] Lili | Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays[END_REF] becomes

V (ηt) ≤ - σ τ V (ηt)
It follows that

V (ηt) ≤ e -σ τ t V (ηt(0)) (18) 
Using ( 12) and ( 13), we have, on the one hand,

V (ηt(0)) ≤ λmax(P ) ηt(0) 2 + 0 -τ e σ τ s η(s) 2 ds ≤ (λmax(P ) + τ ) sup s∈[-τ,0] η(s) 2
and on the other hand, λmin(P ) ηt 2 ≤ V (ηt).

We deduce that

ηt ≤ P + τ λmin(P ) e -σ 2τ t sup s∈[-τ,0] η(s) .
Finally, with η = D(ε)e, the observation error e(t) is given by

e(t) ≤ 1 D(ε) P + τ λmin(P ) e -σ 2τ t sup s∈[-τ,0] η(s) .
Then, the error dynamics ( 10) is globally exponentially stable.

Remark 5 In [START_REF] Zhou | Observers for a Class of Nonlinear Systems with Time-Delay[END_REF], based on linear matrix inequalities, the authors developed the sufficient conditions which guarantee the estimation error converge asymptotically towards zero. As compared to [START_REF] Zhou | Observers for a Class of Nonlinear Systems with Time-Delay[END_REF], our results are less conservative and more convenient to use since they are independent of time delays.

Remark 6 [START_REF] Dong | Exponential stabilization of nonlinear uncertain systems with time-varying delay[END_REF], proposed a state feedback controller that are synthesized under sufficient conditions expressed in terms of Riccati differential equations and linear matrix inequalities which can stabilize the studied nonlinear uncertain systems with time-varying delay. Feedback controllers are synthesized under sufficient conditions linear matrix inequalities and expressed in terms of Riccati differential equations. But, in this paper, we use a parameter in order to establish global asymptotical stability of the nonlinear system.

Practical exponential stability

In this section, we give sufficient conditions to ensure the practical stability convergence. In fact, in the real world, the problem of practical stability is more appropriate. Then, for practical purpose, practical stability seems desirable ( see [START_REF] Benabdallah | Practical stability of nonlinear time-varying cascade systems[END_REF] ) for systems without delays and [START_REF] Villafuerte | Practical Stability of Time-Delay Systems: LMI's Approach[END_REF], [START_REF] Ben Hamed | Practical uniform stability of nonlinear differential delay equation[END_REF] and [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] for time-delay systems. In the general case, one can not directly measure the states of a system. Thus, one must observe the unmeasured states. An observer is a dynamical system which estimates the states of the system.

In this section, for complete the description of system (2) the following assumptions are needed.

H1. The state and the input are considered bounded, that is x(t) ∈ K ⊂ R n ( that is a compact subset of R n ).

H2. The time-varying delay satisfies the following properties:

(i) ∃ τ * > 0, such that 0 ≤ τ (t) ≤ τ * . (ii) ∃ β > 0, such that τ (t) ≤ 1 -β.

Remark 7

The boundedness of the state excludes implicitly all initial conditions that generate unbounded state.

The following state observer for system (2) under assumption H1., H2. and A1. is proposed:

ẋ(t) = Ax(t) + f (x(t), xτ * , u(t), u τ * ) + L(ε)(C x(t) -y(t)), ŷ(t) = C x(t), (19) 
Let us now define e = x -x the observation error, which denotes the difference between the actual state and estimated states.

Theorem 2 Consider the time-delay system (2) under assumptions H1., H2. and A1.. Suppose that there exists ε > 0 such that λmin(P

) ε P -2nγ1(ε) P - 5 4 -n 2 γ 2 2 (ε) P 2 > 0 (20)
Then, the error dynamics (21) is globally (on K) practically exponentially stable.

Proof. We have ė = (A + L(ε)C)e + f (x, xτ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) ) ( 21)

For ε > 0, let D(ε) = diag[1, ε, . . . , ε n-1 ]. Let η = D(ε)e. Using the fact that A + L(ε)C = 1 ε D(ε) -1 ALD(ε), we get η = 1 ε ALη + D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) (22) 
Let us choose a Lyapunov-Krasovskii functional candidate as follows

W (t, ηt) = η T P η + t t-τ (t) e σ τ * (s-t) η(s) 2 ds ( 23 
)
where P is provided by ( 8) and σ a positive constant defined thereafter.

The time derivative of W (t, ηt) along the trajectories of system ( 22) is

Ẇ (t, ηt) = 1 ε η T (A T L P + P AL)η + 2η T P D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) + η 2 -(1 -τ (t))e -στ (t) τ * η τ 2 -σ τ t t-τ (t) e σ τ * (s-t) η(s) 2 ds.
As in the proof of Theorem 1 and using ( 8), [START_REF] Germani | An asymptotic state observer for a class of nonlinear delay systems[END_REF] and assumption H2., we have

Ẇ (t, ηt) + σ τ * W (t, ηt) ≤ -λmin(P )( 1 ε P -σ τ * ) -1 η 2 -βe -σ η τ * 2 +2 η P D(ε)(f (x, x τ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) .
Now, the majorization of the term D(ε)(f (x, xτ * , u, u τ * )-f (x, x τ (t) , u, u τ (t) )) . Characterizes the difference between the term that depends on the upper bound of the unknown delay and the term which depends on the unknown delay.

D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) ≤ D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ * , u, u τ * )) + D(ε)(f (x, x τ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) .
Using [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] and assumption A1., on the one hand, we get

D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ * , u, u τ * )) ≤ γ1(ε) n i=1 ε i-1 |xi -xi| + γ2(ε) n i=1 ε i-1 |x τ * i -x τ * i | ≤ nγ1(ε) D(ε)e + nγ2(ε) D(ε)e τ * . Thus D(ε)(f (x, xτ * , u, u τ * ) -f (x, x τ * , u, u τ * )) ≤ nγ1(ε) η + nγ2(ε) η τ * , (24) 
and on the other hand,

D(ε)(f (x, x τ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) ≤ γ2(ε) n i=1 ε i-1 |x τ * i -x τ (t) i | + γ3(ε) n i=1 ε i-1 |u τ * i -u τ (t) i |. (25) 
From assumption H1., there exists a bounded constant ν1 and ν2 such that (25) can be written as follows:

D(ε)(f (x, x τ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) ≤ γ2(ε) 1 -ε n 1 -ε ν1 + γ3(ε) 1 -ε n 1 -ε ν2.
where ν1 and ν2 are respectively, the positive constant which refers to the boundedness of x τ * -x τ (t) and

u τ * -u τ (t) . Let θ = 2 P (γ2(ε) + γ3(ε)) 1-ε n 1-ε ν, if ε = 1 ;
where ν = max(ν1, ν2). Thus 2 P D(ε)(f (x, x τ * , u, u τ * ) -f (x, x τ (t) , u, u τ (t) )) ≤ θ.

Using ( 24) and ( 26 .

Then, the error dynamics ( 21) is globally (on K) practically exponentially stable.

  t) η(s) 2 ds with σ a positive constant defined thereafter.

2 + 2 Using the fact that θ η ≤ 1 4 η 2 + θ 2 2 η 2

 22222 ), we have Ẇ (t, ηt) + σ τ * W (t, ηt) ≤ -λmin(P )(1 ε P -σ τ * ) -2nγ1(ε) P -1 η η θ + 2nγ2(ε) P η η τ * -βe -σ η τ * we deduce that Ẇ (t, ηt) + σ τ * W (t, ηt) -θ 2 ≤ -c(σ, ε) η 2 + b(ε) η η τ * -βe -σ η τ * 2 (27) with c(σ, ε) = λmin(P )( 1 ε P -σ τ * ) -2nγ1(ε) P -5 4 , b(ε) = 2nγ2(ε) P .Now, the right side of the inequality (27) can be rewritten as follows-c(σ, ε) η 2 +b(ε) η η τ * -βe -σ η τ * 2 = -c(σ, ε) -b 2βe -σ 2 η τ * 2 .To satisfy inequality (27), all we need to do is to choose σ such that c(σ, ε) -b proof of Theorem 1 and let σ ∈]0, δ[, then inequality (28) is verified.Now, the objective is to prove the uniform practical stability of[START_REF] Naifar | State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay[END_REF].Using[START_REF] Naifar | Practical stability for a class of nonlinear time varying systems including delayed perturbation[END_REF], inequality[START_REF] Zhu | A note on observers for Lipschitz nonlinear systems[END_REF] becomesẆ (ηt) ≤ -σ τ * W (ηt) + θ 2 It follows that W (ηt) ≤ e -σ τ * t W (ηt(0)) + 2θ 2 τ * σ(29)Using (13), we have, on the one hand,W (ηt(0)) ≤ λmax(P ) ηt(0) 2 + 0 -τ * e σ τ s η(s) 2 ds ≤ (λmax(P ) + τ * ) sup s∈[-τ,0] η(s) 2and on the other hand, λmin(P ) ηt 2 ≤ V (ηt). η = D(ε)e, the observation error e(t) is given by * σλ min(P )

P (γ2(ε) + γ3(ε))nν, if ε = 1 .

 Remark 8It is noted that if system (2) satisfies condition [START_REF] Cho | Stable bilateral teleoperation under a time delay using a robust impedance control[END_REF] inspired in [START_REF] Ibrir | Observer-based control of a class of time-delay nonlinear systems having triangular structure[END_REF] and [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF], then assumption

In this case, c1(ε) and c2(ε) tend to ∞ as ε tends to zero. This implies that there exists ε1 > 0 such that for all 0 < ε < ε1 conditions (9) and (20) are fulfilled.

Numerical example

This section presents experimental result, we give an example of the orientational motion of polar molecules acted on by an external perturbation. We consider a physical model corresponding to a slow relaxation process. The dynamics model systems are represented by:

where the input u(t) = cos(7t) denote the orientational potential energy, the function τ (t) is defined as follows: τ (t) = 0.25 + 0.01 cos 2 (t) being the Debye relaxation time x(t) is the augmented state vector containing the plant state vector. Following the notation used throughout the paper, let f1(x, x τ (t) , u, u τ (t) ) =

, the method proposed in [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] is not applicable in this case. The input and the states are bounded, which make assumption H1 holds. It is easy to check that system (30) satisfies Assumption A1 with γ1(ε) = So, λmax(P ) = 1.1101 and λmin(P ) = 0.1099. This implies that condition [START_REF] Naifar | Practical stability for a class of nonlinear time varying systems including delayed perturbation[END_REF] is satisfied for all 0 < ε < 0.06.

According to the practical stability improved in the proof of Theorem 2, it is clear from Figs. 1 and2 that the global uniform practical convergence is ensured with radius For our numerical simulation, we choose ε = 0.05.

Conclusion

In this paper, the problem of global uniform practical exponential stability and an observer for a class of time-delay nonlinear systems have been considered. This class of systems covers the systems having a triangular structure. In the case of a constant time delay, we have derived delay-independent conditions to ensure global exponential stability. We have suggested sufficient conditions to guarantee a practical stability of the proposed observer in the case of a bounded and unknown variable time delay. Finally, the effectiveness of the conditions obtained in this paper is verified in a numerical example.