N

N
N

HAL

open science

On-the-Fly Generation of K-Path Tests for C Functions
Nicky Williams, Bruno Marre, Patricia Mouy

» To cite this version:

Nicky Williams, Bruno Marre, Patricia Mouy. On-the-Fly Generation of K-Path Tests for C Functions.
19th IEEE International Conference on Automated Software Engineering (ASE 2004), 20-25 September

2004, Sep 2004, Linz, Austria. pp.290-293, 10.1109/ASE.2004.10020 . hal-01810203

HAL Id: hal-01810203
https://hal.science/hal-01810203

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01810203
https://hal.archives-ouvertes.fr

© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

On-the-Fly Generation of K-Path Tests for C Functions

Nicky Williams, Bruno Marre and Patricia Mouy
CEA/Saclay, DRT/LIST/ SOL/LSL, 91191Gif sur Yvette, France
{Nicky.Williams, Bruno.Marre, Patricia. Mouy}@cea.fr

Abstract

We propose a novel method, called PathCrawler,
for the automatic generation of structural tests
satisfying the all-paths criterion or its K-path variant.
The source code is instrumented so as to recover the
symbolic execution path each time that the program
under test is executed. This code is first executed using
inputs arbitrarily selected from the input domain. The
resulting symbolic path is transformed into a path
predicate by projection of the conditions onto the input
variables. The next test is obtained by using constraint
logic programming to find new input values outside the
domain of the path which is already covered. The
instrumented code is then executed on this test and so
on, until all feasible paths have been covered. Our
method combines static and dynamic analysis in a way
that avoids the disadvantages of both. It is currently
being implemented for the C language.

1. Introduction

Rigorous testing of delivered software, by its
implementers or by external certifiers, is increasingly
demanded, along with some quantification of the
degree of confidence in the software implied by the test
results. This sort of testing cannot be based on a
restricted set of hand-crafted test objectives or use-
cases, which may have to be manually updated if the
software requirements change. Testing must be made
as automatic as possible, with automatic generation of
a large number of test cases according to a well-
justified selection criterion.

This article describes PathCrawler, a novel method
for the efficient generation of tests for 100% coverage
of feasible execution paths. The strict interpretation of
the all-paths criterion soon becomes unrealistic for
programs containing loops with a variable number of
iterations. The all-paths criterion is therefore often
relaxed to impose coverage of only those paths
containing numbers of iterations within a user-defined

limit, k. We show that our method is easily modified to
satisfy the k-path criterion.

2. Related Work

Most previous work on test data generation for
structural testing of sequential programs addresses the
problem of finding data to cover a test objective in the
form of given node, branch or path of the control flow
graph.

Static approaches to test case generation [2][4][10]
typically extract the constraints on input values (path
predicate) corresponding to a path from the control
flow graph covering the test objective and then solve
these constraints to find a test case which activates the
path. In theory, symbolic execution can be used to
construct the path predicate. However, in practice
symbolic execution encounters problems in the
detection of infeasible paths (notably in the case of
loops with a variable number of iterations), the
treatment of aliases and the complexity of the formulae
which are gradually built up. Various ways around
these shortcomings have therefore been proposed.

Dynamic approaches [1][5][7] avoid the problems
of symbolic execution by not using the path predicate.
Instead, the program is instrumented so as to evaluate,
at each execution, the “distance” from the test
objective and general heuristic function minimisation
techniques are used to search for input values to reduce
this distance to zero. The disadvantages of these
techniques are that they may need a great many
executions before a test case is found and they may fail
to find a test case even when one exists.

The contributions of this paper are the following:

1) We maintain that, for full structural coverage, we
do not need to construct the control flow graph.
Instead, we iteratively cover “on the fly” the
whole input space of the program under test. This
is similar to an idea for branch coverage sketched
out in [9], but we do not leave feasible paths
uncovered by limiting exploration of each
previous path predicate to only one prefix.

2) If each path to be covered is selected from the
control flow graph then the feasibility of each
one must be checked. This problem is reduced in
our approach to the detection of the infeasibility
of negating the last condition in a satisfiable path
predicate prefix. Infeasibility is detected as soon
as the shortest infeasible path prefix has been
constructed and we can immediately eliminate,
without even constructing them, all the paths
containing this prefix. We thus avoid the
combinatorial explosion of infeasible paths
encountered by other approaches and which
prevents them from being scaled up to path
coverage of realistic programs.

3) Like the dynamic approaches to test data
generation, our method is based on dynamic
analysis, but instead of heuristic function
minimisation, we use constraint logic
programming to solve a (partial) path predicate
and find the next test case, as in the approaches
based on static analysis. We suffer neither from
the approximations and complexity of static
analysis, nor from the number of executions
demanded by the heuristic algorithms used in
function minimisation.

3. Our Approach

Our approach is illustrated in Figure 1. The source
code is instrumented so as to recover the symbolic
execution path each time that the program under test is
executed. This code is first executed using inputs
arbitrarily selected from the input domain. The path
predicate is deduced from the resulting symbolic path.
The next test is obtained by using constraint logic
programming to find new input values outside the
domain of the path which is already covered. The
instrumented code is then executed on this test and so

. definition domain of program l

on, until all feasible paths have been covered.. This
approach is currently being implemented for C.

4. Instrumentation

The instrumentation stage is an automatic
transformation of the source code so as to print out the
symbolic execution path, i.e. each assignment carried
out and each condition satisfied during execution. The
code is first transformed so as to eliminate conditional
statements with side effects and multiple assignments,
function calls or conditions in the same statement.

A trace instruction is then inserted after each
assignment and each branch of the source code. All C
data access paths are represented in a canonical form.
To implement the #A-path criterion, the trace of
conditions in the head of loops is annotated with
additional information used during constraint solving.

5. Substitution

A path predicate is a conjunction of constraints
expressed in terms of the values (at input) of the input
variables. However, the symbolic conditions output by
the instrumentation of the conditional statements in the
source code may be expressed in terms of local
variables (or intermediate values of input variables).
The substitution stage of our approach carries out the
projection of these conditions onto the values of the
inputs. The sequence of statements output by the
execution of the instrumented program is traversed and
each assignment is used to update a “memory map”
which stores the current symbolic value of local
variables in terms of the input values, as well as other
symbolic information needed in the case of aliases.
When a condition is encountered, all occurrences of
local variables are replaced by their current symbolic
values. Because we analyse a single, unrolled, path, we

‘ source code ‘

path predicates
of previous tests
difference
‘ domain not yet covered ‘ conjunction
constraint solving
path predicate
‘ input values for next test ‘
substitution

instrumentation

injection of input values

: compilation
‘ instrumented source ‘ p

‘ instrumented object ‘

execution -
execution path

Figure 1 : our approach

do not need to use the SSA form used in [2] and
instrumentation and alias analysis is greatly simplified.
We can thus treat C data structures and pointers.

6. Test Selection and Constraint Solving

The first test case is obtained by picking input values
inside the input domain DD, of the program under test.
DD, is defined by a pre-condition consisting of the
Cartesian product of the domains of the input parameters
and a conjunction CD, of constraints reflecting input
parameter dependencies. Domain definitions and
constraints can be universally quantified to some extent.

The input values of the first test case, ¢, are found by
solving of this constraint satisfaction problem. The
consistency of the constraints to be solved throughout the
test selection phase is decidable for (finite) C integer
values and we use constraint logic programming
techniques for computing their solutions. This can
theoretically be NP-complete but we use heuristics
developed for test case generation problems in [4][6] and
which perform far better than this in practice. For
floating-point numbers, we currently use the incomplete
procedure provided by the Eclipse CLP environment [11],
whilst awaiting the results of research [8][10] which
holds the promise of decidable and precise constraint
solving for these numbers too.

From the execution of ¢, we derive the corresponding
path predicate PP; This defines the “domain” of the path
covered by the first test case, i.e. the set of input values
which cause the same path to be followed. In order to
cover a new path, we have to generate test inputs from the
difference, DD, of DD, and the domain of PP, (see
Figure 2). If DD, is not empty, we can generate a new test
case f,, from DD, which exercises a new path whose
predicate is PP,. This process is repeated until an empty
selection domain DD, is reached, in which case we have
covered every feasible path of the program under test. Let
us assume that there exist »n feasible paths, then, given
CD,, each conjunction CD; of constraints characterising
domain DD; can be recursively defined as follows:

Viel.n,

CDl = CDi—l /\—|1)1)1 = CD()/\—|PP1 /\/\—|1)])1

Note that each path predicate PP; is the ordered
conjunction of the number p; of successive conditions C;
encountered along the corresponding path:

PPi=C'A...ACP

The negation of PP; is just the disjunction of all the
prefixes of PP; with the last condition negated :

—PPi= =~ C'vVos i (C'A L AC A= CM
Note that each term of this disjunction is a conjunction of
conditions corresponding to a (possibly infeasible) path
prefix in the control flow graph, which is unexplored at
the /™ step of our selection strategy. Let us consider the

DD,

Figure 2 : input domains

longest feasible conjunction MaxC;. We choose to
generate the next test case #;+; from the domain of MaxC;.
This has two important effects : the path predicate PP;;,
of t,;; must contain MaxC; as prefix and so the negation of
PP, (expressed in the above form) subsumes the
negation of all previous paths.

Indeed, the longest feasible conjunction MaxCi., in
—PP;;; contains all the conditions with unexplored
alternatives from path predicates PP; to PP;. These
alternatives can be seen as choice points in the search for
a solution. Our strategy corresponds in this sense to a
depth-first construction of the graph of the feasible paths
in the control flow graph. Choice points are placed on
each condition encountered and when all the choice points
have been explored, there are no more feasible paths to
cover.

To respect the k-paths criterion, the definition of
MaxC; must be modified to take into account the
annotations of conditions from the heads of loops with a
variable number of iterations. If the negation of a
condition will certainly give rise to paths containing more
than £ iterations of a loop then we do not explore it. We
cannot prevent constraint solving of some path predicate
prefix resulting in a path which, after the prefix, executes
more than k£ iterations of a loop. However, our strategy
does ensure that we never generate any new path
predicate prefixes containing too many loop iterations. In
the example shown in Figure 3, in which £ is set to 2, the
predicate PP; of the path covered by the first test ¢
contains the following conditions, of which the third is
annotated: C,' = Cond,, C,*> = Cond,, C;°> = Cond, (loop
exit after O iterations).

From PP,, we derive MaxC, = Cond, A Cond, n —Conds.
Constraint solving of MaxC, generates the second test
case in which there is one loop iteration. The third test
effects two iterations and is generated in a similar way.
With no limit on loop iterations, MaxC, would be the
conjunction of :

C31 = Condl, C32 = CondQ, C33 = —|Cond3, C34 = —|C01’ld4,
—C5> =—Conds (entry 3" loop iteration).

Because it would entail more than £ iterations of the loop,
this conjunction is not solved. Our strategy thus
backtracks to the lowest unexplored branch and constructs
the path prefix Cond; A —Cond,. Suppose, however, that
this is unsatisfiable. MaxC, is then —Cond,.

ONOM.

Q Q
Cond, \\iondz
—~Cond; O Cond; ~Cond; ©
loop enV Vop exit entry
MaxC, PP, —Cond, O Cond,
entry exit
MaxC; PP,

ONOM.

.
—|Cond./

/
2
’

MaxCJ'

—Cond, ,

—Conds
entr)/
—Cond, O

entry

nds ®)

—Co Conds
entry / int

>k PP;

unsatisfiable

Figure 3 : an example of the test selection strategy

We tried out our prototype implementation on an
example program containing many infeasible paths (see
[12]). k was set to 5, giving 4536 theoretical paths. 337
tests were generated, of which 16 contained more than 5
loop iterations, and 317 infeasible path predicate prefixes
were detected to eliminate the 4215 infeasible paths. The
CPU time, excluding execution of the 337 tests, was 1.6
seconds on a 2GHz PC running under Linux.

7. Further work

Our basic test generation method provides a good
starting-point for the design and automation of test
selection strategies which alleviate the disadvantages of
pure structural testing. This is because it is both efficient
and open to various types of modification, as we have
shown.

Firstly, information collected during execution of the
program under test can be used to influence test selection,
as illustrated by the use of annotations of loop-head
conditions to implement the k-path criterion.

Secondly, constraints other than those from a path
predicate can be taken into account, as is already done for
the treatment of the pre-condition on the input values of
the program under test.

If we had not only a pre-condition but a more complete
specification of the program under test in the form of pre-
and post-conditions on the C variables (or assertions at the
program entry and exit points), then we could implement
a grey-box testing strategy. This would consist of
analysing the specification to define functional domains,
each of which would then be covered structurally. Such a
specification would also enable us to automatically
generate the oracle, which must currently be hand-coded.

We could also use constraints derived from such a
specification to replace function calls and implement a
structural integration testing strategy.

References

[

[2]

[3]

[4]

[5]

[6]

(7

[8]

91

[10]

[11]

[12]

M.J. Gallagher and V.L. Narasimhan, ADTEST : A Test
Data Generation Suite for Ada Sofiware Systems, IEEE
Transactions on Software Engineering, Vol. 23, No. 8,
August 1997

A. Gottlieb, B. Botella and M. Reuher, 4 CLP Framework
for Computing Structural Test Data, CL2000, LNAI 1891,
Springer Verlag, July 2000, pp 399-413

E. Goubault, A. Pacalet, B. Starynkévitch, F. Védrine and
D. Guilbaud, 4 Simple Abstract Interpreter for Threat
Detection and Test Case Generation, WAPATV'01,
Toronto, Canada, May 2001

S-D Gouraud, A. Denise, M-C. Gaudel and B. Marre, 4
New Way of Automating Statistical Testing Methods, ASE
2001, Coronado Island, California, November 2001

B. Korel, Automated Software Test Data Generation,
IEEE Transactions on Software Engineering, Vol. 16, No.
8, August 1990

B. Marre and A. Arnould, Test sequences generation from
Lustre descriptions: GATeL, ASE 2000, Grenoble, pp
229--237, Sep. 2000

C. Michael and G. McGraw, Automated Sofiware Test
Data Generation for Complex Programs, ASE, Oct 1998,
Honolulu

C. Michel, M. Rueher and Y. Lebbah, Solving Constraints
over Floating-Point Numbers, CP’2001, LNCS vol. 2239,
pp 524-538, Springer Verlag, Berlin, 2001

R.E. Prather and J.P. Myers, The Path Prefix Testing
Strategy, IEEE Transactions on Software Engineering,
Vol. 13, No. 7, July 1987

N.T. Sy and Y. Deville, Consistency Techniques for
Interprocedural Test Data Generation, ESEC/FSE’03,
September 1-5, 2003, Helsinki, Finland

M. Wallace, S. Novello and J. Schimpf, ECLiPSe: A
Platform for Constraint Logic Programming, 1C-
Parc, Imperial College, London, August 1997

N. Williams, B. Marre and P. Mouy, On-the-fly
Generation of K-Path Tests for C Functions,
Rapport DRT/LIST/DTSI/SOL/LSL/04-162, CEA,
France, 2004

