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A new method for computing the minimum distances of linear error-correcting codes is proposed and justi ed. Unlike classical techniques that rely on exhaustive o r partial enumeration of codewords, this new method is based on the ability of the Soft-In decoder to overcome Error Impulse input patterns. It is shown that the maximum magnitude of the Error Impulse that can be corrected by the decoder is directly related to the minimum distance. This leads to a very fast algorithm to obtain minimum distances of any linear code whatever the block size and the code rate considered. In particular, the method can be advantageously worked out for turbo-like concatenated codes.

Introduction

The asymptotic performance of a linear block error correcting code at very low error rates is completely determined by its minimum distance d min and by the multiplicity n(d min ) if one considers the Frame Error Ratio (FER).

Consider a C(n k) linear block code (k is the number of information bits, n is the size of the codewords). Denote by d min its minimum distance for any distance d d min , denote by n(d) its multiplicity ( n umber of codewords with weight d). On the Gaussian channel with maximum-likelihood (ML) decoding the Frame Error Ratio (FER) can be upperbounded by the union bound: (1)

where erfc(x) is the complementary error function: erfc(x) = 2 = p R 1 x exp(;t 2 ) dt.

At l o w error rates, this upper bound is very tight moreover, as the coe cients erfc(x 1=2 ) decrease exponentially This work will be presented at ISIT'02, Lausanne, Switzerland, July 2002. with x, the FER can be approximated, at low error rates, by the rst term of the union bound: FER ' 1 2 n(d min )erfc((d min R Eb N0 ) 1=2 )

(2)

When designing a code that operates at very low error rates, it is very di cult to determine its performance by Monte Carlo simulations. It is highly desirable to propose some techniques to determine the minimum distance d min and its multiplicity n(d min ).

For algebraic codes such as BCH codes or Reed Solomon codes, d min is a parameter that is speci ed prior to the design of the code. For elementary convolutional codes, the Viterbi algorithm 4] can be practically used to estimate the minimum distance, but this algorithm cannot be used to estimate the minimum distance of concatenated codes and in particular of Turbo Codes (TCs).

It is then important to develop some fast algorithms to compute the minimum distance d min of concatenated codes and, in particular, of TCs. This will make it possible to design e cient TCs without intensive computations. This will for example make it possible to design good component codes and good interleavers in record time. Some authors have suggested a simpli ed approach t o determine the minimum distance d min of TCs: looking for the minimum weight d (2) min of the codewords generated by weight 2 information words 8]. With statistical interleaving, when the interleaver size tends to in nity, t h e codewords of weight d min are generated by information words of weight 2 with a high probability. But for non statistical interleavers, this method only provides an upper bound on the minimum distance: d min d (2) min , and in general this bound is not tight.

Another method has been proposed recently to compute the minimum distance d min , its information bit multiplicity w(d min ) and its multiplicity n(d min ) for parallel and serially concatenated convolutional codes 7]. This method does not make any assumption about the weight of the input sequence. It is based on the notion of constrained subcode i.e. a subset of a code de ned via constraints on the edges of its trellis. It consists of an iterative construction of the information words that generate codewords of minimum weight. This method keeps track of the di erent \candidate" information words that are under construction in a stack. For large interleavers, the memory requirements of the method can be very large.

The method that we propose in this paper is based on the notion of the Error Impulse Response of the decoder. The Error Impulse Response of the iterative Soft-In/ Soft-Out (SISO) decoding algorithm was introduced in 2]. It has also been used in 5]. The proof of our method is based on a reasoning in the Euclidean space R n . For the proof, we suppose that the decoder is a maximum likelihood (ML) decoder on the Gaussian channel and that the modulation is BPSK or QPSK. In practice, the turbo decoder on the Gaussian channel is used.

Principle of the method

We use the following notations:

x = ( ;1 ;1 ;1) is the word associated with the \all zero" codeword by the modulation. y = ( ;1 ;1 ;1 ;1 + A i ;1 ;1) is the input to the decoder. A i is a positive real number called the error impulse. i is the position of error. y is decoded according to the ML criterion on the Gaussian channel. The decoded codeword x is such that:

< x y > < z y > 8z 2 C (3)
where < > is the scalar product and C is the code. Theorem 1 If there exists a position of error i and an error impulse A i such that the decoded codeword is not the \all zero" codeword, then

A i min z2C=zi=+1 w H (z) (4) 
where the minimum is taken over all codewords z such that z i = + 1 and where w H (z) is the Hamming weight of z.

Proof:

Assume that x 6 = x. 

Theorem 3 for any error position i, there exists a positive error impulse A i such that A i = m i n fA i = x 6 = xg = m a x fA i = x = xg = min z2C zi=+1 w H (z) [START_REF]3rd Generation Partnership Project. Multiplexing and Channel Coding (FDD)[END_REF] The minimum distance of the code is :

d min = min i A i (13) 

Proof

It results from Th. (1) and (2) that

maxfA i = x = xg min z2C zi=+1 w H (z) minfA i = x 6 = xg (14) 
Suppose that maxfA i = x = xg 6 = m i n fA i = x 6 = xg. There exists A i such t h a t m a x fA i = x = xg < A i < minfA i = x 6 = xg. For this A i , either x 6 = x which is contradictory to A i < minfA i = x 6 = xg, or x = x which is contradictory to A i > maxfA i = x = xg. Therefore, the inequalities in -Eq.-( 14) are equalities and there exists A i such that: A i = m i n fA i = x 6 = xg = m a x fA i = x = xg = min z2C zi=+1 w H (z) 

Practical issues

In most cases, the code is cyclic, which means that if a circular shift is applied to a codewo r d i t i s s t i l l a c o d e w ord.

In this case, it is su cient to test one position of error i to obtain the minimum distance. This is, for example, the case for convolutional codes if one neglects possible side e ects due to termination.

For concatenated codes, when iterative SISO decoding is not available, the method cannot be applied because one-step decoding is largely suboptimal.

For turbo like (serially or parallel) concatenated codes the method can be applied with an iterative SISO decoder, although it has not been proved that turbo decoding is ML. This pattern of noise (no noise at all except in position i where A i is large) is very improbable on the Gaussian channel. It is not sure that the turbo decoder maximizes < y z > since the quasi optimality of turbo decoding has been proven only by simulation with realistic patterns of noise.

Nevertheless the experiment s h o ws good agreement b etween the minimum distances of TCs obtained with this algorithm and the asymptote obtained by s i m ulation. The appropriate SISO decoder for each component c o d e i s t h e max-log-MAP algorithm 6]. This algorithm does not require the knowledge of the channel parameters. The extrinsic information should be passed from one component decoder to the other without any alteration (no attenuation, no saturation). The number of iterations needed for convergence depends on the expected value of d min .

It may v ary from a few tens to several hundreds for very large minimum distances. For example, in some cases, when d min is around 20, the estimated d min with 256 iterations is one point up on the value obtained with 128 iterations.

For the parallel concatenation of recursive systematic codes with interleaving, some restrictions should be made to the algorithm given in Section (3.1). In this case the error impulse A i should be applied only on the systematic bits, but not on the parity bits.

When examining a turbo like concatenated code, the number ofsymbols to be tested is related to the periodic properties of the code. In the case of a classical turbo code, this number, denoted T, is the lowest common multiple of the period of the interleaver and of the period of the puncturing pattern, if any. The former depends on the permutation model that was adopted in the design of the interleaver. When no periodicity is observable (for instance when the permutation function was obtained by some pragmatic computer-based research), T must be maximum (i.e. T = k).

Multiplicity o f d min

Because the method does not explicitly provide the multiplicity of codewords of weight d min and higher, we m ust introduce some further hypotheses to use the asymptote on the FER given in -Eq.-(2). These assumptions seem to be in good agreement w i t h the performance obtained by s i m ulation, although they are irrelevant for some other codes, such as product codes.

Hyp. 1: there is only one codeword z with weight A i and such t h a t z i = +1.

Hyp. 2: all the distances A i obtained for the whole set of positions i (1 i k) concern distinct codewords (there is no overlapping).

The former hypothesis is optimistic, while the latter is pessimistic. Both together, as con rmed in the examples given in the next Section, provide a good estimate of the FER, that can thus be calculated as:

FER ' 1 2 X i=1 k erfc( r RA i Eb N0 ) (17) 
Note that if the spectral thinning is pronounced the error oor will be completely determined by the minimum distance d min = m i n i A i and its multiplicity n(d min ) w h i c h 

UMTS/3GPP standard

A TC has been speci ed in the UMTS/3GPP 1] standard for personal communications. This standard uses binary 8-state RSC codes as component codes. The error impulse method has been tested on this turbo code for a relatively small interleaver: k = 640 bits. In this case the spectral thinning is not extremely pronounced because the interleaver size is moderate. Therefore, we have t a k en into account not only the codewords of weight d min but also codewords with weights d d min . There is good agreement b e t ween the performance simulated, and the performance estimated by the Error Impulse method. A loss of 0.2{0.3 dB can be observed this loss has been observed by many contributors 2] 9] and may be due to the suboptimality of the decoder.

Conclusion

A p o werful tool for the design of linear codes, and in particular of turbo codes, has been introduced and justi ed. Whatever block sizes and coding rates, it gives the possibility to forecast performance at very low error rates in seconds or minutes. It may be used for instance as a fundamental algorithm in the search for good permutations in the construction of turbo codes. Nevertheless, further investigation has to be conducted to understand better the behavior of turbo decoders facing Error Impulse sequences.

  We i d e n tify any c o d e w ord with a sequence of +1s and ;1s. The Hamming weight o f a c o d e w ord is the number of +1's in this codeword.

  codeword z 6 = x has at least one position i such t h a t z i = +1. Therefore d min is equal to d min = m i n i min z2C zi=+1 w H (z) = m i n i Estimation of the minimum distance as the minimum error impulse We assume that d min is in the range d 0 d 1 ] where d 0 and d 1 are two i n tegers. Then d min can be determined as follows. set A min = d 1 + 0 :5. for i=1 to n do { A = d 0 ; 0:5 { set (x = x) = T R UE] { while (x = x) = T R UE] and (A A min ; 1:0) do A = A + 1 :0 y = (;1;1 ;1 + A ;1 ;1) where ;1 + A is in position i ML decoding of y ) x if (x 6 = x) t h e n ( x = x) = F ALSE] end while { A min = A end for d min is the integer part of A min .
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 1 Figure 1: Frame Error Rate of the DVB-RCS turbo code for k = 1504 and rates 2=3 and 4=5. Both simulated FER and estimated FER (UB, eq. (2))) are given.

Figure 4 .

 4 1 shows the performance in FER measured on FPGA hardware, for MPEG packets (188 bytes) and for rates 2=3 and 4=5. The asymptotic performance given by -Eq.-(2) is also displayed. The parameters obtained by the error impulse method are: d min = 1 3 a n d n(d min ) = 752 for R = 2 =3 d min = 8 a n d n(d min ) = 9 4 0 f o r R = 4 =5 Measured and estimated curves are in good agreement.
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  Figure 2: Frame Error Rate of the UMTS/3GPP turbo code for k = 640 and rate 1=3. Both simulated FER and estimated FER (UB, eq. (17)) are given.