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Stabilization of walls in notched ferromagnetic nanowires

Gilles Carbou* and David Sanchez!

Abstract

In this paper we study a one-dimensional model of ferromagnetic nanowire presenting notches.
We prove the existence of stable wall profiles even under a small applied magnetic field with the
walls localized in notches. Moreover, in order to illustrate wall depinning by applied magnetic
field, we prove the non-existence of stationary wall profiles in the presence of a large applied
magnetic field.

Keywords: Landau-Lifshitz equation, ferromagnetism, nanowire, stability

MSC: 35K55, 35Q60

1 Introduction

In [10], new applications of ferromagnetic nanowires in the domain of data storage are highlighted.
Domain walls formation in such devices allows bits encoding, and walls motion induced by a spin
current injection makes data reading faster than in classical devices. In such applications, the
stability of walls positions is crucial since an undesired wall motion can deteriorate the information.
As it is proved in [5], walls configurations in straight nanowires are stable but not asymptotically
stable, so that both chirality and position of walls are not fixed. In addition, (see [6]) in finite
length nanowire, walls configurations are unstable. Therefore, a stronger control of walls positions is
indispensable. In racetrack memory nanowires, this control is ensured by patterning notches along
the wire (see [10]). Then we observe that the domain walls are located at the notches, and between
two consecutive notches, the magnetization is almost constant, oriented toward the direction of the
wire, in one sense or in the other one. This property is used to encode the data: each bit is encoded
by the sense of the magnetization between two consecutive notches.

In this paper, we deal with a one-dimensional model of nanowire obtained by asymptotic analysis
in the same spirit as in [4] and [6]. We establish rigorously that walls positions are stabilized by
notches. Let us first recall the 3d-model.

We denote by (e, es,e3) the canonical basis of R3. The euclidean scalar product and norm are
denoted respectively by - and | |. The cross product is denoted by x.

The magnetic moment m(t,x) is defined for t > 0 and x € Q C R?, where Q is the ferromagnetic
sample. We assume that the material is saturated so that m : (¢,x) — m(t,x) takes its values in
the unit sphere of R3. The ferromagnetism energy associated to a configuration m is given by

1 1
Emic(m) = 3 /Q |Vm|?dx + 3 /3 |ha(m)|2dx — /QHa - mdx,
R

where

e the first term is called the exchange energy,
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e the second term is called the demagnetizing energy. The demagnetizing field hy(m) is the
magnetic field generated by the magnetization, and is given by the following system coupling
the static Maxwell equation and the law of faraday:

curl hg(m) = 0 in R3,
div (hgq(m) +m) = 0, where 7 is the extension of m by zero outside Q.
e The last term is the Zeeman energy describing the effects of the applied field H, on the
magnetization.

The variations of m fulfill the Landau Lischitz equation:

om

S = —m % Heg(m) — am x (m x Heg(m)), (1.1)

where a > 0 is called the damping coefficient and where the effective field Hgg(m) is derived from
the energy Enic by:
Heg(m) = —0mEmic = Am + ha(m) + H,.

The natural boundary conditions is the homogeneous Neumann condition:

om
ain =0on 39,

where n is the outward unit normal.

In order to obtain a one-dimensional model of ferromagnetic wire with notches, we consider a ferro-
magnetic sample 2, given by

Q, ={(z,y,2) eR® 2 eI, 2> +y> <n?p*(2)},
where I is an interval and p : I — R is smooth on I and satisfies:
3p1>0,3pa >0, Ve eI, pr < p(x) < po.

By using the same techniques as in [2, 4, 5], we take the limit of the dynamical model (1.1) when
7 tends to zero, and we obtain the following one-dimensional model: the nanowire is assimilated to
the interval I, the magnetization is described by the magnetic moment m : Rt x I — R3, which
satisfies the saturation constraint:

|m(t,z)| =1 forall (t,z) € RT x L (1.2)
The one-dimensional ferromagnetic energy is given by

1 1
Emic = 3 /I a(m)|c’9zm|2dm + 1 /Ia(x) (|m2\2 + |m3|2) dxr — /Ia(x)m -h,dz,

where
e m,; are the coordinates of m,
e a(z) = m(p(z))? is the area of the wire section at the point x,

e h,(z) is the resulting applied field, obtained by taking the limit when 7 tends to zero, of the
mean value of the applied field H, on the cross section:

hy (z) = 1

= lim 7/ H,(z,y,z)dydz.
10 n?a(x) J(y,2) 42422 <n2p2 ( )



As remarked in several papers on ferromagnetic-nanowire modeling [9, 4, 5], the limit demagnetizing
field reduces to an anisotropy term for which the wire axis Re; is the easy axis.

The variations of m satisfy the following Landau-Lifshitz type equation:

%’? = —m x He(m) — am x (m x He(m)) for (t,z) € RT x L, (1.3)

where the resulting effective field H.(m) is given by

a/

He(m) = Ozam + ;a;cm - 1

9 (m262 + m363) + ha (14)

(we denote by a’ the derivative of a with respect to ). In the case of a finite wire [a, b] we add at
the ends of the wire the homogeneous Neumann boundary conditions:

VteR, 9,m(t,a) =0, m(t,b) =0. (1.5)

Remark 1.1. The model we consider is invariant by rotation around the wire axis, that is: if m
satisfies (1.3)-(1.4) and eventually the boundary conditions (1.5), then (t,x) — R,m(t,x) is also
solution of the same system, where R, is the rotation around the axis Rey defined by:

1 0 0
R,=|0 cosp —sing
0 sinp cosp

At first, we will consider an infinite-length nanowire with one notch. It is assimilated to the interval
I = R. The pinched zone is supposed to be symmetric and centered at 0, so that the radius of the
wire section, denoted by p: R — R, fulfills:

0 = 1 outside [—lo, lo},
p is even and non decreasing on [0, ly], (1.6)
0<p1 <px)<1,

i.e. the notch is restricted to the domain [—ly,lp] C R, where Iy > 0 is fixed. We denote a(z) =
7(p(z))?. We assume that the applied field vanishes, so we deal with the equation:

%—T:fmxh(m)famx (m x h(m)) on RT x R,
(1.7)
h(m) = 0z,m + E/awm 1
a 2
We look for stationary magnetization distributions describing one wall separating a left hand side
—ej-domain to a right hand side +e;-domain, i.e. with the limit condition:

(mgeg =+ mgeg) .

m(z) — —e; when x — —oo  and  m(x) — e; when © — +o0. (1.8)

The first question we address is the existence of such one-wall profile which is a stationary solution
for (1.3)-(1.4) with vanishing h,. Once this question solved, the second problem we tackle is to prove
the stability of this wall and the asymptotic stability of its position. The following stability result
establishes that the wall is pinned at the notch:

Theorem 1.1. There exists a stationary solution mg for (1.2)-(1.7)-(1.8). This solution is stable
and asymptotically stable modulo rotations around the wire axis, that is: for all € > 0, there exists
n > 0 such that for all solution m for (1.2)-(1.7) satisfying ||m(0,-) — mg|| 1wy < 7, then

o Vit 2 O, ||m(t, ) — moHHl(R) S g,



e there exists poo such that ||m(t,-) — Ry mol|g1r)y — 0 when t — 0.

We study now the effects of a magnetic field h, applied in the wire direction: h, = he;. We deal
with the system:

—— = —m x h(m) —am x (m x h(m)) on R" x R,
(1.9)

/

a 1
h(m) = Ogam + agaxm - 5 (m2€2 + mgeg) + heq.

In non pinched wire, an applied field of the form h, = h,e; induces a motion of the wall (see [4]
and [6]). In the case of pinched wire, we prove that it is not the case, since the wall is stuck in the
notch for small applied fields:

Theorem 1.2. There exists Nyaqz > 0 such that for all h €]—hpmaz, hmaz|, there exists my, : R — S?
such that:

o for all h €] — hpnaw, Pmaz |, My is a static solution for (1.9) with limit conditions (1.8),
e h—my is C! for the H? norm,
e my is the solution for (1.7) given by Theorem 1.1,

o for all h €] — hpaw, Minaz|, My is stable and asymptotically stable modulo rotation around the
e1-azis for (1.9)-(1.8).

The previous result confirms that in infinite wires, a wall is pinned by the notch, even in presence of
a small applied field. If the applied field is strong enough, wall depinning is stated in the following
theorem:

Theorem 1.3. There exists hg €]0, 1] such that if |h| > hg there is no stationary solution for (1.9)
presenting a magnetization switching, i.e. satisfies (1.8).

Now we aim to consider a wire with several notches. Our goal is to prove that if the length between
two consecutive notches is large enough, whatever the data, we can encode it in such device. We
introduce /; > 0 such that m}, the first coordinate of mg given by Theorem 1.1, satisfies:

Va < —ly, mj(z) < 72 and Va >, mj(z) > % (1.10)

We consider a finite-length wire with N — 1 notches and we denote by L the distance between two
consecutive notches. We assume that L > 2max{lo,l1} and that each notch has the same profile
as the notch we considered in the infinite-wire case, so that the cross-section radius is given by
p € C>([0, NL]):

. L
lifz €0, 5],
_ ) L

p(x) =19 plx—kL)if |z —kL| < 5 k€ {1,...,N -1}, (1.11)

) L

lifz € [NL— §,NL].
We define a by:

a(z) = w(p(x)). (1.12)



We deal with the following model:

om

S = M He(m) —am x (m x He(m)) in RT x [0, NL],

a’ 1
He(m) = 6;cxm + g@wm — 5 (m2€2 + m363) + hael, (113)

0:m(t,0) = 0,m(t, NL) = 0.

Definition 1.1. Let D € {0,1}. Let m : [0, NL] — S? be a static solution of (1.13). We denote
by m! its first coordinate. We say that m encodes D if for all k € {1,..., N}, we have:

1
D(lﬂ) =0 = Vzx e [(k — 1)L+l1,]€L— ll], ml(x) < —57
and
1
D(k) =1 = Va € [(k 1)L+l kL —b], m'(z) > 5.

Theorem 1.4. Let N be in N*. There exists Lyin > 2max{ly,l1} such that if L > Lpn, then for
all data D € {0,1}Y, there exists a stationary solution m of (1.2)-(1.13) with h, = 0 encoding the
data D. In addition, this solution is asymptotically stable modulo rotation around the wire axis Rey
for system (1.2)-(1.13) with h, = 0.

As in the one-wall case, we can prove that a small applied field does not deteriorate the information.

Theorem 1.5. Let N be in N*. There exists hpae Such that whatever L > Lp,;n, whatever D €
{0,1}¥, there exists a one-parameter family h, — m(h,), defined for |hy| < hmaz, such that m(h,)
is a static solutions for (1.2)-(1.13) encoding D, and asymptotically stable modulo rotation around
the wire azis.

The paper is organized as follows. Section 2 is devoted to the construction of a stationary solution
in the infinite-wire case with vanishing applied field. We use a shooting method on an equivalent
pendulum-type equation. We then study the Lyapounov stability of the solution by studying a
small perturbation of the magnetization in section 3. In order to take into account the saturation
constraint (1.2), we rewrite the perturbations of mg in a mobile frame as in [5]. The key point
lies in the study of the linearized part of the Landau-Lifshitz equation. We indeed have to take
into account the invariance by rotation around the wire’s axis of the solution. In Section 4, we
address the existence and stability of solutions in the presence of an applied magnetic field. When
the applied magnetic field is small enough, the existence of a static solution is deduced from the
vanishing-applied-field case thanks to the implicit function theorem and the stability proof is easily
adapted. We also prove that for large enough applied magnetic field there does not exist stationary
solution to the problem (see Section 5).

In Section 6 we detail the general case of a finite wire with multiple notches. The main difficulty is
the construction of the static solution for L great enough. A data being given, using the results of
the infinite case, we construct an approximate solution encoding the data. Using IMS formula we
obtain the coercivity for the linearization around this approximate solution and we construct the
exact solution by a fixed point theorem applied in a neighborhood of the approximate solution.

2 Existence of stationary profiles for infinite wire with one
notch

In this section, we consider an infinite wire with one notch, and we assume that the applied field
vanishes, i.e. we deal with the equation (1.7).



We look for stationary profiles mg : R — S? for (1.7) where one switching of the magnetization
occurs. We write mg under the form

sin O ()
my(z) = | cosbp(z) |,
0

where 0y € C*(R) is non decreasing and tends to —% (resp. +%) when z tends to —oo (resp. +00).
We assume that my is a stationary solution of (1.7), i.e. that

a’ 1
mg X (3mmo + gaxmo - §(m0,262 + m0,363)> =0,
where my ; is the ith coordinate of mg, and we obtain that 6, satisfies:
1 a/ / ]‘ .
Oy + =0y + 5 sin 0o cos by = 0. (2.14)
a
We claim the following result:

Proposition 2.1. There exists a non decreasing odd function 0y € C*(R) such that

. ™
lim 6y=—,
z—>+00 2

and satisfying (2.14) on R.

Proof. We prove the existence of 8y by a shooting method. We denote by ¥(p, -) the solution of the
Cauchy problem coupling (2.14) with the initial condition ¥(p,0) = 0 and 9, ¥(p,0) = p:

=/

PU(p, ) + L0,U(p,) + ~ sinU(p, ) cos U(p,) = 0,
a 2 (2.15)

U(p,0) =0, 9,¥(p,0)=p,

Our goal is to find pg such that 2 +— W(pg, z) is non decreasing on R and tends to +7 when x tends
to 400 (since a is even, the solutions of (2.15) are odd by standard argument).

We set 1
E(p,) = (@0 (p,))* + 5 sin® W(p, ). (2.16)
Using (2.15), we remark that

=/
e ) = 20,0(0.2) (00,0, 2) + gsin B(p. ) cos W(p.z) ) = 25 @1 0(p.2)",
X

so, since a is non decreasing in [0,lp] and constant in [lg, +oo], £ is non increasing in [0,ly] and
constant in [ly, +00].
1
If ¥(p,z) tends to +75 when x tends to +oo, then £(p,z) tends to 3 when z tends to +o0, so
1
E(p,x) = 3 for z > lo.

We remark that p — E(p,lp) is continuous (using the continuity of the solution of an o.d.e. with
respect to the initial data).
On the one hand, £(0,1ly) = 0, since ¥(0,-) = 0. On the other hand,

27/ 2*/ a/
0,6 = — = (0,0)> = - £ + T sin?w,
a a a
SO 2—/ =/
0,6 + gag - %sin2 T >0 on 0,1l



so z +— (a(x))2E(p, x) is increasing on [0, lg], so
(@(0))*€(p,0) < (a(lo))*€(p, lo),
that is
(a(0))*p* < wE(p,lo).
Thus, since a(0) > 0, for p large enough, £(p,ly) > % Therefore, there exists p > 0 such that

1
E(p,lo) = 5 We denote by pg the minimum of these p:

. 1
Po = mln{pa 8(p7 ZO) = 5}

Let us prove that 8y := U(py, -) is a solution of our problem.

1 1
For all p < po, E(p,lo) < 5 80 that (0,¥(p,lo))? < §COS2\I’(p, lo). Thus, (¥(p,lo), 0¥ (p,lp)) is
between the separatrix of the pendulum equations, i.e. is in one connected cell ¢ with:

1
—| cos8|}.

\/§| I}
We remark that (¥(0,1p),0.¥(0,1p)) = (0,0) is in the cell ¢p, so by continuity arguments, for all
p < po, (¥(p,lo), 0:¥(p,lo)) is in the cell ¢y. In particular, we obtain that

T T
e ={(0,p), 6 €] — 3 + km, 5 + kx|, |p| <

(Y(po,lo), 0¥ (po,lo)) € o,

and - -
—— < U ly) < —.
5 = (o, lo) < 9
If W(po,lo) = 5, since E(po,lo) = %, we have 9, U(po,lo) = 0. So, since x — ¥(py, x) satisfies (2.14),
x +— W(pg,x) is constant, which is impossible since ¥(pg,0) = 0. With the same argument, we
obtain that
T T
D) < \I/(po,lo) < 5 (217)

On [0,lo[, £(po, z) is non increasing so that &(pg,x) > % Thus, since (¥(po,0), 0¥ (po,0)) = (0,p)
with p > 0, by continuity argument, (¥ (pg, ), 9, ¥ (po, x)) remains in the domain p > %| cos | for
x € [0,1p]. In particular, 9, ¥ (pg,z) > 0 on [0, o], so, using (2.17),

vz € [0,1],0 < U(po, z) < g
For z > lp, a(x) = m and x — U(pg,z) satisfies the pendulum equation 6" + %cos@sin@ =0,
so x — (U(pg,x),0,¥(po,x)) is a trajectory on the separatrix. Therefore, z — ¥(pg,x) is non

decreasing on [l + oo[ and tends to § when z tends to +oo.

Since x — ¥(po, z) is odd, we conclude that 6y := ¥(pg, z) is a solution of our problem.

Remark 2.1. The uniqueness of 8y remains open.

3 Stability

Let my, given by )
sin Oy (z
my(z) = | cosbp(z) |,
0

be the stationary solution of (1.7) given by Proposition 2.1. We are interested in the Lyapounov
stability of mg for the Landau-Lifschitz Equation (1.7).



3.1 New formulations

In order to deal with perturbations of mg satisfying the saturation constraint (1.2), we use the
mobile frame technique introduced in [5].
We consider the direct orthonormal frame (Mo (z), My (z), M3) given by:

—cos by(x) 0
Mo(x) = 1’110(.58), Ml(l‘) = sin 90(.@) and Mg = 0
0 1

While a perturbation m of mg satisfies ||m — mg||z~ < v/2, we can describe m in the mobile frame
(Mo(z), My (z), Ms) writing:

m(t,x) = Mo(x) + (¢, 2) M (x) + ro(t, &) My + po(r(t, x)) Mo(x), (3.18)

where j1o(€1,&) = /1 — (£1)2 — (&2)2 — 1, so that the constraint |m| = 1 is automatically fulfilled.
Plugging (3.18) in (1.3), we obtain that m satisfies (1.3) if and only if (r1,72) is solution of

Oyr = Ar + F(x,7,0,7,0%r), (3.19)
where
Y i -1 L17"1
o= (7 2 (1)
2 a’ L. o 2
o Li(r)=—-05;r — gam + §(sm 0y — cos= by)r1,

B .
o Lo(rs) = — 9% — %am +5 sin2 0y — (6))%)r2,

e the non-linear part F' writes

F = Hy(r)(0%r) + Ha(x,7)0pr + H3(r)(0pr, 0pr) + Hy(z,7), (3.20)
with
—ar? o — QrTo ro + a(l + po)r:
Hi(r)(Oger) = Opz? — dpo(r)(Ozar),
—Ho — QT2 —ar3 —r1+a(l+ po)rs
N —ar? o — ariTe —a(l—rf)
Hy(z,7)(0,7) = — 1 + 26, dpo(r)(0p7)
a 2
— o — QriTe —arj 1+ po + ariry

ro + (1l + po)re a
_ <2968zr1 + duo(r)(c’?xr)) )
—r1 + a(l + po)ra a

T2 + a1+ o)
H3(r)(&1,&) = — dQNO(T)(amT» 0p1),
—r1 + Oé(l + y,o)’r‘g

1 —ar} 1 wo(r) — aryry
Hy(x,r) = (5 sin? 6y + 962) — =rg
—por1 — arirg —a(rg)?

1 ro + a(l 4+ po)r:
+ (ﬁ sin 0 cos O + (0 + 3 cos? GO)MO(T)>

—r1 + a1l + po)ra



We endow L?(R) with the following weighted scalar product:

<u‘v>ﬁ = /Ré(x)u(ac)v(x) dx,

a

associated to the norme ||-||;» defined by

um@=(4amwmﬁwfm.

a/
Remark 3.1. Since a (—85 — Z@x) = —0,(ad,), the operators Ly and Lo are self-adjoint for the
inner product < . ‘ . >7,
a
As already said in Remark 1.1, Equation (1.7) is invariant by rotation around the wire axis. So for
all p € R, z = R,mg(x) is a stationary solution for (1.7). Projecting this solution on the mobile
frame (M (z), Ms), we define p by:
R, (My(z)) - M1(x) sin Og(x) cos Op(x) (cosp — 1)
plp,x) = = . (3.21)
R, (My(z)) - M> cos Op(z) sin

For all ¢ € R small enough, x +— p(p,x) is a stationary solution (3.19), that is:

AP(QP, ) =+ F('v p(@a ')a 8xp(<p, ')7 83;)((,0, )) =0. (322)
We remark that 0
9pp(0,2) = (cos Ho(x)> ’

and by differentiating (3.22) with respect to ¢ at ¢ = 0, we obtain that Ls cosy = 0. We decompose
T as

T(t,l‘) = p(@(t)7x) + w(t,m), (323)

where the second coordinate wy of w satisfies: <w2’ cos 00> = 0. We remark that for r(¢,-) in a

a
neighborhood of 0, this decomposition is unique. Indeed, taking the inner product of ro(t,-) with

cos By, by the orthogonality condition, we obtain that
<r2(t, )‘ cos 00>_ = <p(<p, )‘ cos 00>_ = sin@/ a(z) cos? O (x)da.
a a R

Thus for r5(t, ) small enough (for the LZ-norm), o(t) is uniquely defined by

<r2(t, )’ cos 90>

©(t) = arcsin —2 |, (3.24)
[[cos Bol|7,2
and w is then uniquely defined by subtraction.
Plugging (3.23) in (3.19), using (3.22), we obtain that
¢ (1)0pp(p, ) + dow = Aw + G(z, 0, w, Oyw, Pw), (3.25)
where A appears in (3.19) and
G = F(w,p+w,0,(p +w),82(p+ w)) — F(z, p, 04p, 82p). (3.26)

Taking the inner product of the second component of the obtained equation with cos 8y, using that
L is self-adjoint and that Lo (cosfy) = 0, we obtain

90/ = F(QP,UJ), (327)



where

Fle.w) = cos <,0< Cos190‘ cos 00>7 (<L1w1‘ €08 90>5 + <G2‘ cos 00>5) ’ (3.28)

a

where G5 is the second component of GG, and by subtraction, we have:
dw=Aw+G+G, (3.29)

with

G = —D(p,w)dyp(p,w). (3.30)

In order to ensure the validity of the coordinates (¢, w) and the condition |r| < 1, which ensures
that (3.19) is equivalent to (1.3), we fix vy > 0 such that while |¢(t)| < vy and ||w(t)|| g < vo, then
System (3.27)-(3.29) remains equivalent to (1.3).

3.2 Estimates on the linear part
3.2.1 Study of L,
The operator Lo, defined for v € H?(R) by

, .
Lo(v) = %0 — %axv + (5 sin” 6 — (6)*)v

is self-adjoint for the weighted scalar product < . ‘ . > and non-negative since Lo = £* o £, with

a

1
v =0v+0 tanfpv and (v = fg&g(éw) + 6 tan Ogv.

1
As z goes to +00, 8’ = 0 and 3 sin? 0y — 02 tends to 1/2, so the essential spectrum of Ly is [1/2, +o0].
We remark that La(cosfp) = 0. In addition, cosfy € LZ(R). Indeed, for all |z| > I, 6)(z) =
1
— cos Op(z). This implies that

V2

/ N a(z) cos? Oy (z) dz = / V2 cos O (2)0) () dx = v/2m (2 — sinfy(a) + siny(—a)) < +oc.

|z|=a

Then cos g € H?(R). Since fv = 0 implies v = K cos g, all the other eigenvalues of Ly are positive
and there exists ¢y € ]0, %] such that

Yo € (cosfy)®, o HU”ig < <L21)"U>7. (3.31)

a

By Cauchy-Schwartz inequality, we obtain also that

Yo € (cosfo)t, ¢ |lvll,2 < || Lav| . and CQ<LQU

11>7 < |L2vlf}s - (3.32)

3.2.2 Study of L,

Let us show thanks to a reductio ad absurdum that
Je1 >0, Vue HY(R), clul?, < <L1u’u>7. (3.33)
Otherwise there exists a sequence (uy)pen in (Hl(R))N such that [lup|/;2 = 1 et <L1un

1
n+1

un>7 <
a

10



We write u,, in the form w, = v, + d, cos by, where v,, € (cos GO)L. We then have
[vnl[72 + 62 llcos Bl 72 = 1
and

1
((00)* = 5 cos” fo)un,

1
<L2un + ((06) — 3 cos Op)uy, 5

)
a

un>5 - <L2un‘un>é+
{ ),

T~

<

1
Since ((6})? —cos? fp) > 0 on R we deduce that <L2vn vn>7 < il and then v,, — 0in H*(R). Up
a

un> <

nr1 Ve get by taking the limit <((96)2 — £ cos? f) cos 90‘ cos 90>7(52 = 0. So § = 0. Therefore,
a

u, = 0 in H'(R) strongly which conflicts with [u,|/;» = 1 for all n € N. Then (3.33) is fulfilled.

1
to a subsequence of (§,,)nen We can assume that §, — 0 in R. Since <((96)2 ~5 cos? 0p)up

By Cauchy-Schwartz inequality, we obtain from (3.33) that
Vue H'R), e lull <[Liull; and cl<L1u‘u>_ < NZyulls - (3.34)

3.2.3 Equivalence of norms

Proposition 3.1. There exists K1 > 0 and K5 > 0 such that

Vv € HY(R) such that <v‘ cos90> =0, Ki|lv|lg: < <L2v’v>7 < Ko vl

a

Vv € H*(R) such that <v

cosbo) =0, Ki vl < Lavl s < Ko vl

voe H'R), Kilvlyp < /(Liojo) < Kalvlp

Vo € HA(R), Kilvlly < [[L1vllz < K o]l -

Proof. Since <L20‘v> = ||3zv||2Lg +<(sin2 90—(96)2)v‘v> , by Estimate (3.31) we obtain the existence
a a

of a constant C' > 0 séuch that "
10,0]] 2 < C (<Lgv‘v>) .
a a

We also have

iy = |-oao- S0 Gt |

L3

IN

1Z20ll 2 + 115 lloo 1001 2 + 115 sin® 6o — (65)*[loc 0]l 2 -
These two inequalities provide us the two first estimates of the proposition since the domination by

the H 1 and ,HQ norms are obvious. We prove the estimates about L1 in the same way, usin 3.33).
p g
O

3.3 Proof of the stability

In order to measure the H' and the H? norms of w, using Proposition 3.1, we define A; and N by:
1
Ni(w) = (<L1w1‘w1>7 + <L2w2‘w2>7) .
a a

11



1
No(w) = (ILvwn |3z + 1 Zzwsll} )
The nonlinear right-hand-side terms in (3.29) and the right-hand-side term in (3.27) are estimated
in the following proposition:

Proposition 3.2. There exists v1 > 0, with v1 < vy, and a constant K such that while |o(t)| < 11
and N1(w) < vy, then
Gl Lz < K (J¢] + Ni(w)) Nz (w),

‘@ (EZ;) >' < Kl ()N (w)

a

and
IT(p,w)| < KN (w).
For the convenience of the reader, the proof of this proposition is postponed into Section 3.4.

We perform estimates on w by taking the inner product of (3.29) with (?51) We get:
2Ws

1d
CPT (<L1w1‘w1>_ + <L2w2‘w2>_> +a <||L1w1||i§ + HnggH%g) =
<G1 + 51‘L1w1>7 + <G2 + éz’L2w2>7.

Thanks to Proposition 3.2, while |p(¢)| < v; and Nj(w) < vy, then

L NG ()? + a(Na(w))? < 2K (Jg] + M (1) (Na(w))?,
and so: 1d
2L M) + (Na(w))? (0 — 2K gl — KNG () < 0.
We set o
v = min{vy, 8—K}

While |p(t)] < vo and Ni(w(t)) < va, then

1d @

L L NG w)? + (a2 <0,

so, denoting ¢ = min{cy, c2}, using (3.32) and (3.34), we obtain that

Ld

53 M) + SN () <0

By comparison argument, we obtain that

act

while |p(¢)] < vg and Ny (w(t)) <wva,  Ni(w(t)) < Ni(w(0))e™ 2 . (3.35)

On the other hand, integrating (3.27), using Proposition (3.2) and the previous estimate on N7 (w(t)),
we obtain that:

. 2
while [p(8)] < v2 and Ny (w(t)) < w2, lp(t)] < [p(0)] + K —Ni (w(0)) (3.36)
We define v3 by:
= vymin{}, 02 )
V3 = Vo INin 4, 16K .

12



We assume that |p(0)| < v3 and M (w(0)) < v3. Let us prove that for all ¢ > 0, |o(t)] < v2 and
Ni(w(t)) < vo. This is true in a neighbourhood of 0 by continuity argument. If it is false at a time
t1 > 0, we introduce 9, 0 < t3 < t; the first time in which the property is false. We have then

Vi <te, |o(t)]<wveand NMi(w(t)) < ve, (3.37)

and
p(t2)] = vo or Ni(w(tz)) = va. (3.38)

By (3.37), (3.35) and (3.36) yield:

Ni(w(t)) = Ni(w(0)) < vs < -1,

and
2 2 1%
(O] < O] + K — N (w(0) < v + Ky < 2.

So, by continuity arguments, we have:
1% 1%
Ni(w(tz)) < f and [p(t2)] < 52,

which is contradictory with (3.38).

Therefore,
Vt>0, |o(t)] < v and Ni(w(t)) < va,

so by (3.35):

Vt>0, N(w()) <N (w(0))e =z,
i.e. w(t) tends to zero in H!(R) when ¢ tends to +oo. In addition, for all ¢ > 0,

acy

' (1) < KNy (w(0))e™ =",
thus ¢’ is integrable on RT and ¢(t) tends to a finite limit ¢, when ¢ tends to +oo. O
3.4 Proof of Proposition 3.2
By (3.21), there exists C such that for all ¢ € R,
1p(6, ) lw200 ) < Cl). (3.39)

We fix v; > 0 such that for all ¢ € R and w = (wy,wy) € H*(R) with <w2‘ cos 90> =0,

a

and [|p(¢,-) +w(-) 1@y < 1.

N | =

6] <1 and Ni(w) <vi == [|p(¢,-) + w(:)|[z= <
We assume in addition that v; < 7 (so that I' is well defined, see (3.28)). Using that G, the right-

hand-side nonlinear term in (3.25), is defined by G = F(x, p(¢) + w, 2 (p(p) + w), d2(p(p) + w)) —
F(z, p(¢), 0xp(p),0%p), using the Taylor expansion of F, we rewrite G as:

G= Kl(xa wvw)a‘gw + K2($7 @)(89311}7 8$w) + K3(.17, (p7w)<a$w) + K4($7p7w)a

13



where

Kl(xv QD,U})(?%LU = Hl(p(‘p) + w)(a:%w)a

KQ(SC’ W)(al’w’ a$w) = HS(p((p) + w)(aww> Oz, w)’

!/

Koo, 0) (0w) = S Hi(plp) + w) (@) + Ha(a, () + w) (@)

+2H3(p(¢) + w)(9zp(9), Ozw),

Ky(z,0,w) = Hi(p(p),w)(w) (520(@ + %axp(w)) + Ha(p(), w)(w)(8up(e))

+Hz(p(), w) (W) (92 p(0), Dup()) + Halz, p(p), w)(w),

where

o Hi(p,w) = /0 d, Hy(p+ sw) ds € L(R?*; M3(R)),
o Hy(x,p,w) = /0 d, Hy(z, p + sw) ds € L(R?; M2(R)),
o fy(p,w) :/O d, Hy(p + sw) ds € L£(R?; (L2(R2))?),

1
o Hy(x,p,w)= / d,Hy(p + sw)ds € L(R*R?).
0

(we denote by d, the derivative with respect to r. For instance, d,.H;(r) € L(R?; M2 (R))).

Let us estimate the terms Hy, ..., Hy given in (3.20). We remark that H; € C* (B(0,1); M2(R)),
Hy € C™ (R x B(0,1); Ma(R)), Hs € C (B(o, 1); (Eg(RQ))Z), Hy € € (R x B(0,1); R?), so there
exists a constant C' such that for all z € R and all r € B(0, 1), we have:

[Hi(r)| < Clrl?, |deHy(r)] < Clr,

|H2(1‘7’I")| < C|T‘7 |drH2(IZT,T‘)‘ < Oa

(3.40)
[Hs(r)(§1,€2)] < Clr[[&al|€2] and [dr Hs(r)(£)(£1, &2)] < CIEl&] IS,
|Hy(z,7)| < C|r|? and |d, Hy(z,7)| < C|r|

Under the assumptions |¢| < v; and M (w) < vy, using (3.39), (3.40), we obtain that there exists a
constant C' such that

IK1(, @, w)l[Lee < Cllp(e) + wll= < C(lp| + Ni(w)),
||K2('5S0)||L°° < C7

1K3(, 0, w)l[Lee < Cllp(e) + wlL~ < O] + Ni(w)).
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Therefore, we obtain that

||K1(',<P,w)3§wHLg < [K1(+ 9, w) L ||a§w||Lg < O(le] + Ni(w))No(w),

1K (,0)(Oaw, Daw)ll 1z < Tl Ko, )L 10xwl Ty < CllwllL @ l|107wl L2 r) < CNi(w)Na(w)
(by Gagliardo-Niremberg inequality),
1K3(, 0, w) (Orw)l| 2 < [[K3(, 0, w) [ Loe 102w]l 2 < Cllp] + Ny (w))Na(w).
In addition, using (3.39), we have
[E4( 0wl 2 < Cllwll gz |l < ClolNa(w).
Therefore, there exists a constant C' such that if |p| < vy and N (w) < vy, then

|GHL§ < C(|e] +N1(w))N2(w) (3.41)

).

From (3.28), we have, since |¢| < F:

IT(p,w)| < C <‘<L1w’ COSHO>

a

* ‘<G‘ <60290) )

= |<w‘L1 cos90>é| < CNi(w).

We have:
’<L1w) cos 90>7

a

In addition,

< Ki(x, @,w)agw] (COSQO> >é - /R a(z)Hi(p(p) + w)dyw - (COSQ()) ;
- /Ré@iw- 'Ky (o, w) ((:0200) ;
f/Razw -0y (atHl(p(so) +w) <C0290)> )

_/Raww “Hi(p(p) +w) (az(agosﬁo)>

_/Razw f(dTHl(p(sO)er)(azp(w)+3r“’))( . >

cos g

By the estimates on Hy (see (3.40)), we obtain that if |p| < 7 and Nj(w) < vq, then

{F1000920] (ong, ) ), < CNi (w0

a

Furthermore, assuming that |p| < vy and Nj(w) < vy, then

0
(@000 (o0 ) M| < 1000 + )l ol
S CNl(’LU),
and
0
]<K3<-,go,w><axw> + K ,0)| ( 90) >§] < C (19swllz + 1wl 3 ) lleos Bl 3 < CN(w).
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Therefore, there exists a constant C' such that if |p| < vy and N (w) < vy, then
IT(, w)| < CNi(w). (3.42)
We have:

— sin @ sin 6y cos Oy

a‘/’p(qb7 ) =

cos @ cos by

On the one hand:
‘< — sin @ sin 6 00890‘L1w1>7‘ < Clp|Na(w),
a

on the other hand:
< cos ¢ cos 8y ’L2w2>_ = cos <p<L2 cos by ’w2>_ =0.

Therefore, using (3.42), we obtain that

‘@ (Lw) 2,’ < NG () [ Wa ().

Lowo

This concludes the proof of Proposition 3.2. O

4 Existence and stability of stationary profile under an ap-
plied magnetic field

In the presence of an applied magnetic field in the form H, = hej, the magnetization fulfills

Om =m x (He(m) + her) —m x (m X (He(m) + hey)). (4.43)
sin 0y, (z)
Looking for a stationary solution my, of the form x +— | cosfp(z) |, the equation for 8}, writes:
0
1 5/ / 1 s
0, + 3 0 + 3 sin 6y, cos 0y, + hcosfy, =0 (4.44)

Let 6p € C*(R) be the solution to (2.14) given by Proposition 2.1. We look for ), on the form
0, = 0 + g, with g5 € H?(R). Then

a’ 1 a’
an + ggﬁl + 3 sin(fo + gn) cos(0o + gn) + hcos(bo + gn) + 0 + 596 =0.
We define ¥ : R x H%(R) — L*(R) by

a/

a a ,
—0;.
a

/
1
V(h.g) = 9"+ —9'+ 5 sin(0o + g) cos(0o + g) + hcos(0o + g) + 0 +
We then have that ¥(0,0) = 0 since 6 is solution to (2.14) and

/

a 1
D,9(0,0)(u) =u" + Sl 3 (cos? 0y — sin® fp) u = —Lyu.
a

Since L; is coercive on H2(R) we can apply the implicit function theorem and we obtain the existence
of hg > 0 and a function v : | — hg, ho[— H?(R) such that for all h €] — hg, ho[ ¥(h,v(h)) = 0.
Moreover for all h €] — hq, ho[ we classically have that v(h) € C*(R) as solution of a regular ordinary
equation and then 0, = 6y + v(h) € C*(R) satisfies (4.44).
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We aim to study the Lyapunov stability of the constructed solution. We prove the stability of

sin 6y,
my = | cosfy | using the same moving-frame method as in Section 3. We introduce M{L and M
0
given by:
—cos by, () 0
MPMz)=| sin@y(x) | and My =|0],
0 1

and we write a perturbation m of my, as:
m(t, ) = ri(t, ) MP(x) + ro(t, ) My + (1 + po(r(t, z))my, (z).

In this case, the equivalent formulation of (4.43) in the moving frame rewrites:

opr = Apr + FM(x,7, 0,1, 0%r) + hM" (z,7), (4.45)
where
(=1 =1\ [(Lhr .
e Apr = < 1 _1) <L}2LT‘2>7 with
h 2 a’ 1 . 2 2 :
Li(r) =—-05r — gam + i(sm O, — cos” Op)r1 + hsinfpr,

a’ 1
Ly(ry) = —0ary — gaﬂz + (5 sin? 0y, — (0},)%)r2 + hsin 0,77,

e the non-linear part F” as the same form as F (see (3.20)) replacing 6y by 6y,

cos 6y, (uo + r% + 7'1T2) — pory sin 6y,
o M'(x,r)=
—cos O, (po + pd 4+ r¥ — r1r2) + porz sin by,

As in Section 3.1, in order to take into account the invariance of the Landau-Lifschitz equation by
translation in the variable x, we split 7 into:

r(t,x) = pr(p(t), x) + w(t, z), (4.46)
where pp, (¢, -) is the projection of z — R,mj(x) on the mobile frame:

R, (my(z)) - M} sin 0y, () cos Oy, () (cos o — 1)
pr(p, ) = = , (4.47)
R,(my(x)) - Mo cos O (z) sin ¢

and where the second coordinate of w satisfies the orthogonality condition:

<w2(t, )‘ cos 0h> =0.

a

As in Section 3.1, we obtain then an equivalent system for the new unknown (y,w) on the form:
¢ =Tn(p,w),
) (4.48)
Ow = Apw + G, + G,

where I',, Gy and G}, satisfy the same properties as I', G and G in Section 3.4. The key point is
now to study the coercivity of the linear operators L% and L5.
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Concerning L%, as in Section 3.2.1, we prove that we can factorize it as L} = £f oy, with
/ * 1 = /
lpv = 0,v + 0, tanfpv  and Lo = —gai(av) + 0, tan Opv.

and we obtain that the kernel of L% is one-dimensional and is generated by cosfj,. We assume

1
that || < 3. As x goes to +oo, &' = 0 and isin2 0n — (0,)? + hsin@y, tends to 1/2 + h so the

essential spectrum of L is [1/2 — |h|, +-0c0[. The others eigenvalues of L} are positive, so there exists
a constant ¢4 € |0, 3 — |h|] such that for all u € (cos )",

S ullyy < (Lhulu).

a

In order to prove the coercivity of L, we write:
1 1
Lh =L, + ¢t (x), with ¢(z) = i(sin2 0 (x) — sin? Oy (z)) — 5((:052 On(x) — cos? Oy(z)) + hsin ).

Since h + 0, is continuous with values in H?(R), when h tends to 0, ¢? tends to zero in L>(R). So
the coercivity inequality (3.33) yields that for i small enough: for all u € H'(R),

C
S ulgy < (Lhulu).
2 a a

Once this coercivity established, the stability proof for System (4.48) is the same as for System
(3.27)-(3.29).

5 Non-existence of stationary profiles with a large magnetic
field

Proposition 5.1. There exists ho €]0, 5[ such that for all h € R fulfilling |h| > hqo there does not
exist stationary profiles to (4.43) with a magnetization switching, i.e. such that

_, 1
0+ 29+ 5sin9c039—|—hcos9=0 on R,
a

. s
wH2 ) =5
li = —
AP0 =5

6 >0 on R.

Proof. Let us assume that there exists a stationary solution #. We assume first that A > 0. From
(4.43) we obtain as in Prop. 2.1 the energy equation:

0,6 = — (02, (5.49)

1
where £ = (0)* + 5(sine +2h)%. On [~lo,0],a’ <0, so

2a’ 2a’
- T _ 75.

a a

) < -

Therefore we have: 93/
0p€ < ==& on [~1o,0),

and multiplying by a2, we obtain that:

0,(a%€) < 0 on [~lo,0].
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Therefore,
(a(0))%£(0) < 72E(—1p).

In addition, from (5.49), £ is non increasing on [0, ly] since 8’ > 0 on this interval. Therefore,

2

(a(0))?

Now, on [lg, +-00[, £ is constant and since §(x) tends to § when z tends to +o0, this constant equals
1(1+2h)2. In the same way, on | — oo, —ly], € = (1 — 2h)2. Therefore, we obtain:

Elo) < £(0) < E(~ly).

2

v
(1+2h)? < — (1—2h)%,
(a(0))?
=)
< 17 —a(0) '
~ 27 +a(0)
Let us assume now that h < 0. We set 7(z) = —0(—x). Then, since a is even, 7 satisfies:
1 é/ / 1 :
7"+ —7"+ —sinTcosT —hcosT =0 on R,
a 2 .
AT T =5
li = —
ziIJIrlooT(x) 2’
7/ >0on R.

Since —h > 0, we can apply the first case and we obtain that

_p < lr=al)
27w+ a(0)
_ . : 17 —a(0)
This concludes the proof of Proposition 5.1 we setting hg = = ——=.
27+ a(0)

6 Finite wire with multiple notches

In this section, we consider a wire of length NL with NV — 1 notches. The area of the cross section
is described by « — a(z) given by (1.12). The magnetization in this wire is modeled by m :
R x [0, NL] — S% C R3. We assume first that the applied field vanishes so that we consider the
system:

om . +

5 = mX He(m) —am x (m X He(m)) in R™ x [0, NL],

/
1
He(m) = &mm + a;(%m — 5 (m262 + mSeS) , (650)

0:m(t,0) = 0,m(t, NL) = 0.

For u € H2([0, NL];R), we denote F(u) = u" + 2/ + 1 sinucosu, so that m : [0, NL] — S? of

a

sin 0(x)
the form x — [ cosf(z) | is a stationary solution for (6.50) if and only if
0
F6) =0,

(6.51)



A datum D € {0,1}" being given, we look for a stationary solution for (6.50) encoding D on the
form:

sin 0(x)
m(z) = | cosf(z) |,
0
so we look for 6 : [0, NL] — [~7, 5] C R satisfying (6.51) so that m satisfies (6.50), and such

that for all k € {1,..., N}, if D(k) = 0 (vesp. D(k) = 1), then for all z € [(k— 1)L + 1, kL — l4],
O(x) < =% (resp. O(x) > %), so that m encodes D.

The scheme of the proof is the following: first we construct an approximate solution ®app :[0,NL] —

(%, 5], with F(@gpp) close to zero when L is large enough. Then we look for § writing § = ®§pp

so that, writing the Taylor expansion of F' around O = we look for v satisfying:

app’
= F(0, +v) = F(05,,) + 0, F(07,,)(v) + C(6g,,, v)v*
where
L n_ @ 1 2 oL L
0w F(Og,,)(v) = —v"— gv - 5((:05 Oapp — Sin @app)
1
COyt) = [ (1= s)sin(2(0l, +s0)) ds
The key point is now to prove that 9, F(© app) is invertible if L is large enough (see Lemma 6.3 in

Section 6.2). Then 6 = ©L 4 v is solution if and only if v fulfills

app

v=[0,F(OL )] (-F(6L,) - C(Ok

app app app’ ) 2) = (PL('U>-

The existence of v satisfying the previous equation is established by proving that ®; admits a fixed
point.

6.1 Construction of an approximate solution

We assume that L > 3max{lg,l1}. Let 6y be the solution obtained in the infinite-wire case in Section
2. Let ¢ : R — [0,1] be a smooth non decreasing map such that ¢(z) = 0 for < £ and ¢(z) =1
for z > 1. We define Jp, : [-%,£] — [~Z, Z] such that

e J;, is smooth and odd,

o Ji(z) = (1=9(E))bo(x) +¥(F)3

so that Ji(z) = fy(x) for # € [-%, £] and realizes on [£, 5] (resp. [~%,—%]) a smooth junction

between 0p(%) and % (resp. —% and 0p(—%)) .

For u: R — R, we denote F(u) =u" 4+ %u’ + 3 sinucosu. We claim the following lemma:

Lemma 6.1. There exists a constant C such that for all L satisfying L > 3max{lg, 11},
_ _ L
IE ()l g2 (-, zy) < Ce 3v2.

In addition,
3
Vo< —ly, sinJp(z)< ~1 and Va>1y, sinJp(z)>

> w

Proof. For x € [-%, L] Jy(z) = 6o(x) so F(J)(z) = 0.

For # > Iy, a'(z) = 0. So on [lg, +oo[, O satisfies 6, = —=cosf and by solving the pendulum
equation, there exists zg such that:

S

1
Va >y, 6Op(x) = arcsin tanh (\/i(a: - a:o)> .
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Then when x tends to 400,

— -z — 1 P
Oo(z) = g +O0(e”v2), Oy(z) = cosby(z) = O(e” V2), and 6 (x) = -5 cosfysinfy = O(e” V7).

Therefore there exists a constant C' such that for all L > 3, for all z € [£, £],
bo(2) = 5|+ 16 ()| + 165 (2)| < Ce™5v3. (6.52)
Now, we have:
() = $(£)F + (1 - $(£))bo(x),
i (@) = 20 (£)(5 = bo(@)) + (1 —¥(£))0(=),
(@) = 0" ()(5 = 0o(@)) — $/(£)0h(x) + (1 — (%)) ()

So using (6.52), there exists a constant C' such that for x > Iy, ,

SE

‘JL(.Z‘) - g‘ < Ce V2 and ‘J’L’(m)‘ < Ce V3,

and thus - )
|F(Jp(z))| < Ce™ V2.

Therefore, for L such that % > lg, we have:

ot

1P ooy <C [ ¢ Hrdo < 0,

3

By oddness arguments, we obtain the same estimate for z € [—
constant C' such that for all L > 3max{ly, 1},

,—é]. Therefore, there exists a

L

IE(TL (@) 22,57 < Ce 52,

Moreover, if z > Iy, 0 < y(z) < J(z) < 5 and since sinfy(z) > 3 (see (1.10)), then sin Jy (z) > 3.
In the same way, if < —Iy, sin Jp(z) < —%.
O
The data D € {0,1}" being given, we define @5 as follows:
e for z in the left boundary cell [0, £], if D(1) = 0 (resp. D(1) = 1), then 0L, (x) = =% (resp.
() = 3),

o for k € {1,...,N — 1} such that D(k) = D(k+ 1) =0 (resp. D(k) = D(k+ 1) = 1), then for
z in the cell [kL — £, kL + £] around the k-th notch, 0L, (x) = =% (resp. ©F (x) = T),

2

o fork e {1,...,N—1} such that D(k) = 0and D(k+1) =1 (resp. D(k) =1 and D(k+1) = 0),

then for @ € [kL — £ kL + %], ©L () = Jp(x — kL) (resp. O (x) = —Jp(x — kL)), where
Jr, is defined above.

e for x in the right boundary cell [NL — £ NLJ], if D(N) = 0 (resp. D(N) = 1), then @app( x) =
—7 (resp. @app( r)=7F).

Remark 6.1. For the sake of simplicity we assume that the wire is finite and that all the notches

are reqularly spaced. The construction of the approximate solution could be adapted to the case of

different space lengths between consecutive notches, or by adding a semi-finite wire at one end of the
wire.
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Lemma 6.2. There exists a constant K1 such that for all L > 3,

_ L
||F(6aLpp)||L2([0,NL]) < KyVNe 3va.
In addition, for all k € [1, N] ifD( ) =0 (resp. D(k) =1), then for allx € [(k—1)L+1;,kL—14],
sin®f,, < —3 (resp. sin®f, > 2).
Proof. For x € [O,L/Q] U[NL—L/2,NL], ©f,(x) = 5, so F(%,)(x) = 0.
For all & € {1,. — 1}, either ©F (z) = £7 for all x € [kL — & kL + £], or O (2) =
+Jr(x —kL). In the ﬁrst case, F(©%, ) =0on [kL — %, kL + £]. In the second case,
L L . _
Vo€ kLS kL4 5], F(Ok,(2) = £F(J(x — kL)),
By applying Lemma 6.1, we obtain that
_ 2L
I|F(© app)||L2([kL LokL4L S Ce 3v2,
Therefore
I F(© app)||L2 (o.nz) < CNe 3f

and denoting K; = v/C, we have:
__L_
||F( app)||L2([0,NL]) < Kl\/]ve EVER

Let k € {1,...N}. If D(k) = 0, then on [(k — 1)L, (k — 1)L[ either OF ():,z or OL (z) =

app 2 app
—JL(J: — (k—=1)L. In both cases, for z€[(k—1)L+1,(k—3)L[, sin oL, < 2 by Lemma 6.1. On
[(k—3)L, kJL] cither O, (z) = =5 or ©%, (x) = Jo(z—kL). In both cases, forx € [(k—3)L,kL—1],
sin @aLpp < 5. We adress the case D(k) 1 with the same argument, which concludes the proof of
Lemma 6. 2.
O

6.2 Existence of stationary profiles

We endow L?([0, NL]) with the weighted inner product:

and we denote by ||-|| ;. the associated norm.

We let Fl(u) = —u' — a;/u’ — L sinucosu. We aim to prove the existence of § € H?([0, NL]) satisfying

(6.51). We look for 6 as a perturbation of the approximate solution. We denote by V the space:
V = {v € H*([0, NL]), 8,v(0) = d,v(NL) = 0}.

We let § = ©L 4+ v, with v € V. Then we have

app
(65;017 ) (@aLpp) + (9 F(egpp)( )+ C(@gp‘m ) 27
where
L n o @ 1 L L
0, F(Og,,)(v) = —v"— gv - §(COS ek, —sin® 0L ),
1
c(©k,,v) = / ) sin(?(@app + sv)) ds.
0
Let us study the operator 9, F' (@{;pp) defined on the domain V. This operator is self-adjoint for the

weighted inner product < .

. > . We claim the following:
a
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Lemma 6.3. If L is large enough, 0,F(©
(d,dy,ds) € (RT*)3 such that for allv € V

2 . . . .
. V — L*([0, NL)]) is invertible and there exists

app

(0, FOL,)W|v) > dlvliy. [0.F(Ok,))] 5 > dlvll; .

di||lv||g2 < H&,F < ds||v|| g=-

ap) )HLg =
! 1
Proof. We write 0,F(0%,))(v) = —v" — 2’ + f(z)v with f(z) = 5 (sin®©f,, — cos® 0%, ).
When ®£pp = £7, we have
f@) =172
In a junction [kL — L/3,kL + L/3] occurring around kL we have

f(z) = = (sin® O (x — kL) — cos® Op(z — kL)) .

1\9\»—*

1
We remind (see (3.33)) that Liyv = —v" — agv' + 5(81112 0y — cos? Bp)v fulfills <L1v‘v>_ > ¢ o]
with ¢; > 0.

To study the behavior of the linearized part we use the IMS formula to highlight the behavior in
each junction. We let p € C*°(R) such that for all z € R, 0 < p(z) <1, p(z) =1 if x € [-1/6,1/6]
and p(z) =0 if |z] > 1/3. Let vp = /1 — p2.
We now define K = {i € {1,...,N — 1}, D(4) # D(i + 1)} the set of indexes where are located the
junctions.
For every k € K, we set xx(x) = p (%) and

1 if o ¢ | J (kL — L/2,kL+ L/2]

Xo(z) = keK
vo (25EL)  ifw € [kL — L/2,kL+ L/2] and k € K.

We then have Z X2 =1on [0, NL], and so:

ke KU{0}
(0,P©L,)W)|v) = (0.F@L) | Y xdv) = > (0F©h,)0)|dv)
ke KU{0} ke KU{0}
For all k € K U {0},
NL
<8UF( L) (W) xR > = / (—av” —a'v' +afv)xivdr
a 0

NL
(a.F @k, )00 + [ (Gl do
NL 0
+ [ i uads.
0

Since ZkeKU{O} X7 = 1 we obtain ZkeKU{O} XeXj = 0 and

<3 F(Og,,)(v )’v>a = Y <<8$F(®£pp)(ka)‘ka>aJF/ONL(XZU)(ka)adx)'

ke KU{0}
Moreover 1
Ixexil < ﬁHN’NHool[IchL/S,kaL/G]U[kL+L/6,kL+L/3] Vk € K,
Ixoxol < ﬁﬂu{{\\m Z Vkr—1/3,kL—L/6]U[kL+L/6,kL+L/3]-

keK
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So

NL 1 NL
> [ dotaads] < 2 (e + ) [ ac?a
ke KU{0} 0 0

Since [©7,,] € [0o(L/6),7/2] for all 2 € suppyo we have

flx) = 1 (sinz(@L ) — cos? (0L )) = —% cos(20L ) > —%cos(290(L/6)),

2 app app app
and

NL

<5wF (©%,,) (xov) ‘X0U>a = (—a(xov)"” —a'(xov)" +af(z)(xov))xov dz,

N

™~

a(xov')? +af(z)(xov)” da,
NL

Y

[l
S—

1 L
af(x)(xov)*dx > — 5 cos 26 (6) ||X0U||2Lg~

Thanks to Prop. 3.1, for all k € K

<8IF(@£pP)(XkU)‘Xk'U>a 2 ||XkU||ig .

1
Since 6y — +g as x — +oo. If L is large enough, —3 cos 200(L/6) > ¢1 and

C C
2 2 2
) za 3 Il - ol 2 (aLg)nang-
a

kEKU{0}

app

(0.F(0F,) )

If L is large enough then
(0, F(©L,))|0) = T llelis -
The end of the proof follows the proof of Prop. 3.1.
We aim to obtain uniform estimates with respect to L. We have the following lemma:
Lemma 6.4. For all L > 1, for all N,
vue H'([0,NL]), |lullg~([0, NL]) < lull2qo,nr)) + 1wl L2o,n L))

Proof. For u € C1([0, NL]), for all € [0, 1], for all y € [0, NL], we have:

(ul)? = (u))? + 2 [ ) (5)ds < () + 2lulzoova o |2 oy

T

We integrate this estimate for x € [0,1] C [0, NL] (since L > 1). We obtain that for all y,

1
(u(y))? < / (u(@))?da + 2llull 22 o p ¢ |22 on )
< HUH%Q([O,NL])+2||UHL2([O,NL])Hu/”Lz([O,NL)
2
< (lullezqonzy + 191 L2o.n ) -

So, we obtain that for u € C!([0, NL]),

lullzoeo,nzy < lwllzzqo,nryy + 141122 o, L)

We conclude the proof of Lemma 6.4 by density argument.
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Since we established that 0, F (0%, ) : V.— L*([0, NL]) is invertible, § = ©%,  + v is solution if
and only if v fulfills

v=[0,F(OFL )] (~F(OL,) — C(OL v)v*) =& (v).

app app app’
To prove the existence of v we use a fixed point method in the space H!([0, NL]):

Lemma 6.5. For all L, the operator ®y, is well defined from H'([0, NL]) into H'([0, NL]). If
L is large enough, there exists ny such that ®p (Bpi1(0,1n1)) € Bii(0,11) and for all (v,w) €
(B (O,nL))2, Dy, 1s %-Lipschz’tz.

Proof. Since ||U2||L2([0,NL]) < vllzzqo,wpllvll e o,nz)) < [v]|%;: by Lemma 6.4, we have

H __l?(()éhp) __(j(()L

app’

__L_
V)02 < IFO©g)ll2 + [v* ]2 qone)y < KiVNe 32 + ol go.vr)-

Thanks to Lemma 6.3 we have

IN

1
1®L(0)||a2q0,n L)) < dT” —F(0%,) = COL,, v L2q0,nm)

1 __L_
o (BVReS  olln o)

H‘I)L(U)”Hl([o,NL])

IN

Moreover, for all (v, w) € (Hl([O,NL]))Q,

O (v) —Pp(w) = [6UF(®aLpp)rl (C’(@,fpp,w)w2 - C(@gpp,v)v2) ,
w) —C(©L,,,v) = /0 (1—y9) (sin(2(@aLpp + sw)) — Sin(2(@aLpp + sv))) ds

1
1
< 2/(1—5)5d5|w—1}|:7|w7v|,
0 3

||(I)L(U) - (I)L(w)HHl([O,NL]) = ||[8’UF(®£pp)]_1 (C(Ggpp7w)w2 - C(Ggpjﬂv)’lﬂ) ||H1([0,NL])’

! 1
< all(C(Gfpp,w) - C(@‘ILZ’P’U))TUQHLZ([O,NL]) + a‘|c(@£pp7v)(w2 . v2)||L2([0,NL]),
1 2
< EHWHLM([O,NL])HU’ = vlz2(j0,n 1))
1 L
+d71||c(®“pp’ V)llzee o, v [0 +wllzoe o, vy lw =l 22 o, v 1),
1 /2 9
< a0 §||w||L°°([O,NL]) + lwll Lo (o,nz)) + ol Lo o,vry ) 1w = vl o, vL)s
1 /2 9
< — | Slwlf + lwllg: + lellge ) Jlw = vl g
dy \3

We are now looking for n > 0 such that if ||v||z1(jo,nz)) < 7 then
1 _ L
1L (V)| 1o, v ey < @ (le/ﬁe 33 +n2> <.
We fix ng, by:

Ki o~ 1
n = 2d—11\/ﬁe 53, (6.53)
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We have:
77% —ding + le/ﬁe*ﬁ = (4(K1/d1)2N673Li\/§ — Kn/ﬁ) eiﬁ < 0 for L great enough.

So, for L great enough, ®; maps the ball By1(0,7) onto itself. In addition,

IN

1 /2
@1 (v) — @L(w)|l a1 (jo,NL)) o (377% + 277L) lw — vl g1 (0,nL))

IN

§||fu —wl|| g1 (o,nz)) if L is large enough.

O

Proposition 6.1. Let N € N* and a = 7p? as described at the beginning of Section 6. Let D €
{0,1}N. There exists Ly > 3max{ly,l;} such that for all L > Lg there exists € H?([0, NL]) which
fulfills

! 1
o 0 + %0’ + §sin0cost9 =0 on[0,NL],
e 9(0)=6§'(NL) =0,

o ||€—@aLpp||H1([07NL]) < nr where ©F, is the approzimate solution encoding D defined in section
6.1 and 0y, is given by (6.53).

sin 6
e m:= | cosf | encodes the data D.
0

Proof. We can now use a fixed point theorem on ®;, and we deduce the existence of v € H*([0, NL])N

V such that F(©f,, +v) = 0 hence an exact solution in the form § = ©%,  + v to (2.14). Moreover

10— Qgpp”L""([O,NL}) <[6- @aLppHHl([o,NL]) <nL.

We assume that np < % (true if L is large enough). We fix k € {1,..., N}. Let us suppose that
D(k)=0. For all z € [(k—1)N + {3, kL — l1], using Lemma 6.2,

3 5 1
. . L
sinf(z) < sin©,,(z) +nr < ~1 +nr < 3<% (6.54)
In the same way, if D(k) =1, for all x € [(k — 1)N + 1, kL — [;], using Lemma 6.2,
3 5 1
. . L
sinf(z) > sin ©,,,(z) — L > 1 > 3”5
sin 6
Therefore, the map m : x — | cos@ | encodes the data D. This concludes the proof of Proposition
0
6.1.
O
6.3 Stability
sin 0
For L large enough, we define m = | cosf | as in Proposition (6.1). We prove the asymptotic
0

stability modulo rotation of m for the Landau-Lifschitz model (6.50) using the same method as in
Section 3: we introduce the mobile frame (m(z), m;(z), my) with

—cosf(z) 0
my(z) = | siné(x) and mp = | 0
0 1
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We describe the perturbations m of m in the mobile frame writing:
m(t,x) = ri(t, 2)my(z) +ra(t, 2)my + (1+ po(r(t,2)))m(z),  with (1+p0(§)* = 1-(&)* — (&2)?,

and plugging this expression for m in (6.50), by projection on the mobile frame, we obtain an
equivalent formulation for the unknown r = (r1,r2) on the form:

Oyr = Ar + F(x,7,0,7,0%r), (6.55)
where A and F are defined as in the inifinite case by (3.19) and (3.20), replacing 6y by 6 and a by a.
Equation (6.55) is stated in the finite domain [0, NL] and the Neumann homogeneous boundary
conditions of (6.50) yield that:

0,7(t,0) = 0,r(t, NL) = 0. (6.56)
In order to take into account the invariance by rotation of the system, we split r as a rotation of
angle (t) of m plus a term w such that <w2’ cos 9> = 0, and we obtain an equivalent system of

a
the form:

¢'(t) =T (p(t), w(t)) for t € RT,
dyw=Aw+ G+ G on R} x [0, NL],

O, w(t,0) = d,w(t, NL) =0 for t € RT,
where @, T’ and G are defined as in (3.26), (3.28) and (3.30), replacing 6y by 6 and a by a.

Now the only difference lies in the proof of Proposition 3.1 to establish the coercivity of the linear
part.

Concerning the operator Ly, we remark that it is self-adjoint for the L2([0, N L])-inner product, its
resolvent is compact. In addition, we have

2 a’ 1 .2 N\ 2 1 *
LQ(T) = —aIT'— gazr+ §Sln 0 — (9) r= ;g °© <a€)7

with fv = 9,v + 6 tan fv. This induces that Lo is positive. Its kernel is one-dimensional, and is
generated by cosf. Since the other eigenvalues of Ly are non negative, there exists ¢ > 0 such that:

Vo e H2([0, NL]) N (cos§)*, <L2v‘v>é > el|ol2a0n )

Concerning L1, we have

!/
Li(r) = —0%r — ag(r“)xr + % (sin® 6 — cos® ) r = BUF(Ggpp)(T) + % (cos(?@fpp) — cos(20)) r.

Since [|6 — ©F,, oo <71 we have

<L1(r)’r>a = <8UF(@aLpp)r‘r>a + %< (cos(?@aLpp) — cos(29)) 7“‘7‘>5
C1 2 n 2 C1 Ui 2
> Dl -2l = (5 -5) Irli
which proves the property if 7 is small enough.
Once the coercivity established for A, we conclude the proof of Theorem 1.4 as in Section 3.

\%

7 Proof of Theorem 1.5

sin 0
We consider 6 : [0, NL] — R such that m = [ cosf | encodes the data D € {0,1}". For h, small
0
enough, we look for a static solution of (1.13) of the form
sin Qha
my, = | costy, |,
0
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where 0y, : [0, NL] — R satisfies

0. + %92@ + £ sinby, cos Oy, + hq cosby, =0 on [0, NL],
(7.57)
0;,.(0) =6, (NL)=0.

As is Section 4, we construct a solution of (7.57) by using the implicit function theorem on the map
U:R x V— L]0, NL]) given by:
/

a 1
U(h,v) =0"+—0v" + isinvcosv+hcosv.
a

We have ¥(0,0) = 0 and:

!/

D,9(0,0)(u) = u" + %u' + %(cos2 0 — sin® 0)u = —Lyu.

We have proved above that L; is coercive on V, so that we can apply the implicit function theorem.
By continuity argument, for h, small enough,

|| sin @y, —sinf||pe <

| =

So, using (6.54), we obtain that if D(k) = 0, then sinf),, < —1 on [(k—1)L+1y,kL —1;]. With the
same arguments, we prove that if D(k) = 1, then sinfj,, > % on [(k — 1)L + l1,kL — l1]. So, my,
encodes the data D for h, small enough.

We obtain the asymptotic stability modulo rotations of the solutions with the same arguments as
in Section 4. O
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