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PARAMETER ESTIMATION AND TREATMENT OPTIMIZATION IN
A STOCHASTIC MODEL FOR IMMUNOTHERAPY OF CANCER

MODIBO DIABATE, LOREN COQUILLE, AND ADELINE SAMSON

Abstract. Adoptive Cell Transfer therapy of cancer is currently in full development
and mathematical modeling is playing a critical role in this area. We study a stochastic
model developed by Baar et al. [4] for modeling immunotherapy against melanoma skin
cancer. First, we estimate the parameters of the deterministic limit of the model based on
biological data of tumor growth in mice. A Nonlinear Mixed Effects Model is estimated by
the Stochastic Approximation Expectation Maximization algorithm. With the estimated
parameters, we return to the stochastic model and calculate the probability of complete T
cells exhaustion. We show that for some relevant parameter values, an early relapse is due
to stochastic fluctuations (complete T cells exhaustion) with a non negligible probability.
Then, focusing on the relapse related to the T cell exhaustion, we propose to optimize
the treatment plan (treatment doses and restimulation times) by minimizing the T cell
exhaustion probability in the parameter estimation ranges.

1. Introduction

Cancer is a group of more than 100 different diseases causing a large number of deaths a
year worldwide [18]. Cells start growing uncontrollably due to genetic changes which impair
their normal evolution. It can develop almost anywhere in the body. Cancer is a complex
disease, difficult to study biologically (expensive and time consuming to experiment with
animals and humans). In this context, mathematical modeling can be an excellent tool for
stating or confirming biological assumptions with less expensive experiments.

When it is diagnosed quickly, cancer can be treated by chemotherapy, surgery, radio-
therapy or by immunotherapy [2, 20, 26, 36]. Immunotherapy is a recent treatment that
activates the immune system to kill cancer cells. In this paper we are interested by the
Adoptive Cell Transfer (ACT) therapy to treat melanoma in mice with cytotoxic T cells, as
experimented in 2012 by Landsberg et al. [25]. This immunotherapeutic approach involves

Key words and phrases. Immunotherapy, T cell exhaustion, Stochastic modeling, Mixed Effects Mod-
els, Treatment Optimization.

This work has been supported by the Malian Government and the LabEx PERSYVAL-Lab (ANR-11-
61 LABX-0025-01). The authors would like to warmly thank Meri Rogava, Thomas Tüting and Michael
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Figure 1. Cell interactions in ACT therapy: T cells kill differentiated melanoma cells and
produce T cells and cytokines TNFα (line 1); switch between differentiated and dedifferentiated
melanoma cells is reversible (line 2); T cells cannot kill dedifferentiated melanoma cells (line 3).

the stimulation of T cells which recognize one specific type of melanoma tumor cells (dif-
ferentiated melanoma cells) through the antigen gp100 on their surface. The stimulated T
cells are then able to kill these differentiated melanoma cells.

The authors of [25] showed that during the inflammation induced by the therapy, pro-
inflammatory cytokines called TNFα (Tumor Necrosis Factor) which are released in the
body enhance a cell-type switch: the markers on the differentiated cancer cells disappear.
They become dedifferentiated, and cannot get killed by T cells anymore. The resulting
tumor tissue consists of both differentiated and dedifferentiated melanoma cells. Note
that the switch is reversible (i.e. the melanoma cells can recover their initial type) and it
does not require cell division or mutation. Figure 1 illustrates the described interactions
between cells during the treatment.

In immunotherapy as in other cancer treatments, relapse is one of the main problems.
The authors of [4, 25] describe two kinds of relapse in the ACT therapy. First, T cells only
recognize the differentiated cancer cells (through the antigen gp100) and not the dediffer-
entiated cancer cells which they are thus not capable to kill. The growth of dedifferentiated
cells induces a relapse. Second, T cells can become exhausted and no longer able to kill
differentiated cancer cells thus causing a relapse. This problem was addressed in [25] by T
cells restimulation, which only lead to a delay in the occurrence of the relapse.

In these recent years, a lot of potentials have been seen in immunotherapy treatments,
including the possibility of higher effectiveness [37] with lower side effects. But these
promising new treatments are still to be understood, and long-term effects have not yet
been studied in clinical trials, which are long and costly. An alternative is to study treat-
ment failure and relapse through the development of mathematical models. Numerous
deterministic models, mainly based on partial differential equations or ordinary differen-
tial equations, were developed for cancer study [5, 30, 40, 41]. Stochastic counterparts
include branching processes, individual-based or diffusion models [4, 9, 15, 31] and often
a combination of both [3, 34]. The parameter estimation of those models often involve
Mixed Effects Models [33] which are well adapted to observed longitudinal data [8, 14, 21].

The purpose of this paper is to provide a quantitative study of the relapse and failure of
skin cancer immunotherapy in mice using a stochastic individual-based model introduced in
Baar et al. [4] and real biological data provided in Landsberg et al. [25]. We first perform
a statistical estimation of the parameters of the model, and then study the treatment
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relapse and failure focusing on T cell exhaustion. Finally we propose an optimization of
the treatment plan.

The stochastic individual-based model recently proposed by [4] aims to describe the
ACT therapy presented in the article [25]. Its main features are: modeling the proliferation
and the death of cancer cells and active T cells with birth and death processes [23] (the
division of an active T cell is modeled as a birth event, and its exhaustion as a death
event); modeling the switch between the two types of melanoma cancer cells; taking into
account the interactions between cancer cells and T cells in a predator-prey framework
(see related models in [7, 11]). The large population limit of the stochastic model is a
deterministic differential system.

The authors of [4] have provided a set of biologically relevant parameters for which the
stochastic system exhibits exhaustion of the T cells with high probability. However, these
parameters are calibrated numerically but not estimated from real data. Moreover, they
do not evaluate the quality of their model on real data, which is a key step if one wants
to predict the tumor dynamics in a future step.

Our first objective is to validate the mathematical model, estimate its parameters and
provide intervals of values by extracting the information from the biological data given
in [25]. We show that, in the range of parameters estimated from real data, the T cell
exhaustion probability can indeed be non negligible. As the relapse caused by the exhaus-
tion of T cells can be delayed by their restimulation, our second objective is to optimize
the ACT protocol: we compute the optimal treatment doses and restimulation times by
minimizing the T cell exhaustion probability at different stages of the disease evolution.

The paper is organized as follows. In Section 2 we present experimental data which
we use for the parameter estimation. In Section 3, the stochastic model and its deter-
ministic limit are described. In Section 4, we first present the statistical tools involved in
the parameter estimation of the deterministic system, the method to estimate the T cell
exhaustion probability and finally a procedure to optimize the ACT treatment. Section 5
presents the results: the estimated parameter values, the estimated exhaustion probability
and the optimized treatment. The paper concludes with a discussion in Section 6.

2. Experimental data on Adoptive Cell Transfer therapy

We first describe the experimental setup of [25], from which we use the data. Initially,
melanoma cells are injected in each of the 19 mice such that the typical initial tumor
diameter is less than 1 milimeter (' 105 cells). Mice are then split into 3 groups: untreated
mice playing the role of a control group (denoted CTRL) and treated mice composed of
two subgroups: mice treated once with ACT therapy (denoted ACT) and mice treated
twice with ACT therapy (denoted ACT+Re). After a time ta = 70 days, mice of ACT and
ACT+Re groups receive an intravenous delivery of 2 × 106 active T cells which are able
to kill differentiated melanoma cells. We suppose that 2× 103 stimulated T cells actually
enter the tumor. The ACT+Re mice receive an additional injection of immunostimulatory
nucleic acids in order to recover functions of exhausted T cells at time tRe = 160 days.
In our modeling, both restimulated and injected T cells are considered as active T cells.
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Thus, the restimulation reactivates 2× 103 T cells. Note that this value is not regarded as
fixed; we study the impact of different stimulation and restimulation doses in Section 4.4.

During the experiment, the tumor development is measured by palpation when the tumor
is small and digital photography when the tumor is larger. The tumor size is measured
weekly using a vernier caliper and recorded as mean diameter. Longitudinal data for the 19
mice are composed of 5 mice of the CTRL group (with an average number of 10 observations
per mouse); 7 mice of the ACT group (with an average number of 26 observations); and 7
mice of the ACT+Re group (with an average number of 33 observations).

The measure of tumor size, if it is smaller than 2 mm, is very inaccurate due to the
difficulties of palpation. Thus, these values are left-censored. For tumor size between
2 and 3 mm, the inaccuracy is still important, about 1 mm. These values are interval-
censored in [2mm, 3mm]. Mice with tumor size exceeding 10 mm or showing signs of illness
are killed. Thus measurements exceeding 10 mm are considered as right-censored. Tumor
sizes between 3 and 10 mm are considered to be measured correctly with a measurement
accuracy to be estimated.

Figure 2 represents the evolution of the tumor diameter along time for the 19 mice.
The three censorships are illustrated by horizontal lines. Excluding the observations at
t0 = 0, mice in CTRL group are not concerned by left-censorship. Observe that the three
groups of mice are distinguished by the speed of the tumor size evolution: tumor size of
CTRL group (in blue) reaches 10 mm around the 100th day, tumor size of ACT group (in
red) reaches 10 mm between 240 and 300 days and finally tumor size of ACT+Re group
(in green) reaches 10 mm beyond the 300th day. Treatment and retreatment times are
indicated by (black) vertical dotted lines. We distinguish two phases in the ACT therapy
(for treated mice): the growth phase (before ta = 70) and the treatment phase (after
ta = 70). Note that the mice in CTRL group only experience the tumor growth phase.

3. Modeling tumor growth under treatment

3.1. A stochastic model with four cell types. The stochastic model proposed in [4]
for the tumor growth under ACT therapy consists in a four-dimensional continuous time
Markov process

Z(t) = (M(t), D(t), T (t), A(t)) ∈ N4

where population sizes at time t are denoted by M(t) for differentiated melanoma cells,
D(t) for dedifferentiated melanoma cells, T (t) for active T cells, and A(t) for cytokines
TNFα. The carrying capacity K of the system is assumed to be equal to 105 cells, which
corresponds to a tumor diameter of the order of the milimeter. This parameter scales the
interaction rates between different cell populations, since the interaction is assumed to be
mean-field (each cell interacts with all others, no space dependency is considered.) This
value allows to study large impacts of stochastic events (such as complete exhaustion of T
cells).

The main features of this stochastic individual-based process are the microscopic model-
ing of the proliferation of cancer cells and active T cells, the secretion of cytokines TNF-α,
and the death, exhaustion, and clearance of, respectively, cancer cells, active T cells, and
cytokines TNF-α. Those events are modeled with non-linear birth and death processes
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Figure 2. Tumor diameter (mm) along time (days) in the groups CTRL (dashed line in
blue), ACT (solid line in red), ACT+Re (dotted line in green). Censorship indicated by horizontal
lines. Vertical dotted lines: Treatment (day 70) and re-treatement (day 160) (for ACT+Re mice).

including a predator-prey interaction between cancer cells and T cells. The different events
(division, death and switch events) occur at exponential random times whose rates consti-
tute the parameters of the model.

The complex biological process of T cell exhaustion is chosen to be modeled (and sum-
marised) as the death of active T cells. More precisely, the time between the activation of
a T cell and its exhaustion is assumed to be an exponentially distributed random variable.

Another mechanism which is not explicitly modeled concerns interferons IFN-γ which
are a by-product of inflammation and strongly upregulate the expression of the markers on
melanoma cells (see Supplementary Fig. 15 in [25]). Biologically, the upregulation of IFN-
γ-dependent markers and TNF-α-dependent dedifferentiation represent two functionally
connected inflammation-induced adaptive mechanisms that together contribute to acquired
resistance to ACT therapy [25]. In the model of Baar et al. [4], the role of interferons IFN-γ
is qualitatively taken into account in the killing rate of differentiated melanoma cells by
T cells. This significant simplification of real mechanisms underlying T cell exhaustion
allows to work with a mathematically tractable model.

In the growth phase of the tumor (t < 70 days) only division, switch and death of
melanoma cancer cells happen. At this stage, there are no active T cells nor cytokines
TNFα : (T (t), A(t)) = (0, 0). The evolution of M(t) and D(t) is modeled by birth and
death processes [23] including additional terms modeling the switches between the two
cancer cell populations. Initial conditions are (M(0), D(0)) = (M0, 0).

At time t = 70 days (beginning of treatment), a dose of 2000 active T cells is injected
in the system: T (70) = 2000. Then, all cell populations and cytokines (M(t), D(t), T (t),
A(t)) evolve starting with initial conditions (M(70), D(70), 2000, 0). The system models
the evolution of differentiated melanoma cells M(t) (prey) in the presence of active T cells
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Figure 3. Melanoma stochastic process: M : differentiated melanoma cells; D: dedifferenti-
ated melanoma cells; T : T cells; A: cytokines TNFα. †: death of cancer cells and clearance of
cytokines; E: T cells exhaustion. Arrow with same initial and end points indicates a division in
this population. Values above the arrows represent the rate parameters.

T (t) (predators) as a predator-prey framework. An additional natural exhaustion of active
T cells is modeled by a simple death process. A deterministic secretion of cytokines A(t)
occurs at each T cell division event while the clearance of cytokines is modeled by a death
process. An additional switch from differentiated to dedifferentiated melanoma cell due
to the presence of cytokines is also modeled. The ACT group is modeled by the growth
phase and this first treatment phase. At time t = 160 days, an additional dose of T-cell
stimulant is injected for mice in ACT+Re group re-activating T cells. The quantity of
reactivated T cells is unknown (contrary to the first injected dose) but it is biologically
reasonable to assume that it activates the same quantity, i.e. 2000 T cells. Note that the
impact of the two doses is studied in Section 4.4. Thus new initial conditions are (M(160),
D(160), T (160) + 2000, A(160)).

Figure 3 summarizes the dynamics of the process during the treatment phase (see Sec-
tion 2.2 of [4] for more details). All events in the stochastic model (division, death and
switch) occur after random exponential waiting times regulated by rate parameters. Pa-
rameters bM and bD (Figure 3) thus represent division rates of differentiated (respectively
dedifferentiated) melanoma cells and correspond to the inverse of the average waiting time
before observing the division of a differentiated (respectively a dedifferentiated) melanoma
cell. Similarly, dM and dD correspond to natural death rates of differentiated (respectively
dedifferentiated) melanoma cells, while sMD and sDM represent respectively the switching
rates from differentiated melanoma cells to dedifferentiated one and the converse. Param-
eters bT and dT are respectively the division and exhaustion rates of active T cells. To a
certain extent, bT can be seen as an effective parameter corresponding to bT = b0T − d0T
with b0T and d0T respectively the therapy induced division and exhaustion rates of active
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T cells. Indeed, differentiated melanoma cells secrete a substance that exhausts active T
cells with a rate d0T in addition to their natural exhaustion rate dT . The therapy induced
death of differentiated melanoma cells is regulated by the rate parameter dMT while pa-
rameter dA corresponds to the clearance rate of cytokines TNFα. The product lprodA × bT
represents the secretion rate of cytokines induced by the therapy, and sA is associated to
the additional switching from differentiated to dedifferentiated melanoma cells induced by
cytokines. Parameters are recapitulated in Table 3 of the Appendix.

3.2. Deterministic limit of the stochastic model. The rescaled stochastic model con-
verges in the limit of large population of cells (K → ∞) to the solution of the following
deterministic differential system:

ṅM = (bM − dM)nM − sMDnM + sDMnD − sAnAnM − dMTnTnM

ṅD = (bD − dD)nD + sMDnM − sDMnD + sAnAnM

ṅT = −dTnT + bTnMnT

ṅA = −dAnA + lprodA bTnMnT

(3.1)

with initial condition (nM0 , nD0 , nT0 , nA0). Quantity nX(t) ∈ R (with X = M, D, T or A)
represents the quantity of X at time t and ṅX represents the variation of this quantity
along time. Note that we work in this paper on a simplified version of the initial model [4].
Some competition terms were removed as they cannot be estimated from the data. Indeed,
mice are killed before the tumor size (number of cancer cells) reaches the (non trivial) fixed
point regulated by the competition terms. To avoid the problem of identifiability, we set
rM = bM − dM and rD = bD − dD since only the difference between division and death
rates of melanoma cells can be estimated from the data.

The different phases of the therapy are similar to the ones of the stochastic model.
During the growth phase (t < 70), only populations of cancer cells nM(t) and nD(t) evolve
(nT (t), nA(t)) = (0, 0). All parameters associated with the treatment are then equal to
zero. At time t = 70, the quantity of active T cells is set as nT (70) = D70. The four
populations of cells (nM(t), nD(t), nT (t), nA(t)) evolve. Model (3.1) corresponds to the
dynamics of the ACT group. For ACT+Re group, an additional quantity of active T cells
is added in the system at time tRe = 160 (nT (160) = nT (t) +DRe).

4. Methods

First, the statistical mixed model to estimate the parameters of the immunotherapy
model from the data. A direct estimation of parameters is problematic: the likelihood
function of the stochastic model is defined as a multiple integral over a high dimension
event space. To the best of our knowledge, there exists no statistical method to estimate
parameters of such models. As an approximation, we estimate parameters of the model
through its deterministic limit using experimental data of tumor growth in mice provided
by [25]. We analyze these longitudinal data simultaneously with a Nonlinear Mixed Ef-
fects Model (NLMEM) [33] which takes into account the variability between mice, see
Section 4.1. The parameters are estimated using a Stochastic Approximation Expecta-
tion Maximization (SAEM) algorithm [13], see Section 4.2. Once the parameters have
been estimated, T cell exhaustion is studied by returning to the stochastic model. Indeed,
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complete exhaustion is a purely stochastic phenomenon which is not modeled by the deter-
ministic system. As this can be a rare event, we estimate its probability using a splitting
Monte Carlo method [22, 29], see Section 4.3. Section 4.4 presents an optimization of the
treatment in terms of treatment doses and restimulation times.

4.1. Mixed Effects Model for tumor growth under treatment. Parameters are
estimated by analyzing the three groups simultaneously. We use a Nonlinear Mixed Effects
regression Model (NLMEM) to take into account the inter-mice variability [33]. Parameter
estimation with NLMEMs is difficult since the likelihood function does not have an explicit
form. When the regression function of NLMEM is a stochastic model, the high dimension
of the event space prevents to compute the likelihood. Thus, we choose to perform the
parameter estimation based on the deterministic model (3.1).

Let us define yi = (yi1, . . . , yini) where yij is the (noisy) measurement of the tumor
diameter for mouse i at time tij, i = 1, . . . , N , j = 1, . . . , ni, and set y = (y1, . . . , yN). The
NLMEM is defined by:

yij = f(ψi, tij) + εij, (4.1)

ψi = µ�τi exp{ηi � τi},
where � denotes component-wise multiplication and

µ = (rM , rD, sMD, sDM , nM0 , bT , dT , dMT , sA, dA, l
prod
A ) is a vector of fixed effects;

τi = ( 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 ) when i is a control individual;

τi = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) when i is a treated individual;
εi = (εi1, . . . , εini) ∼ N (0, σ2Ini) represents the residual error
ηi = (ηirM , η

i
rD
, ηisMD

, ηisDM , η
i
nM0

, ηibT , η
i
dT
, ηidMT

, ηisA , η
i
dA
, ηilA) ∼ N (0,Ω)

ηi is a vector of random effects independent of εi; ψi represents the vector of individual
regression parameters;

f(ψi, t) = (nM(ψi, t) + nD(ψi, t))
1
3

describes the tumor diameter (up to some constant), with nM and nD being solution of
the nonlinear system (3.1); σ2 is the residual variance; Ini the identity matrix of size ni; Ω
the variance matrix of the random effects quantifying variability between mice. We note
θ = (µ,Ω, σ2) the parameters to be estimated.

Note that a biological constraint states that the natural switch rate from a dedifferenti-
ated melanoma cell to a differentiated melanoma cell (sDM) is larger than the rate in the
other direction (sMD) [25]. This constraint is introduced in the estimation procedure.

4.2. Parameter estimation using SAEM algorithm. The SAEM-MCMC algorithm
which combines the Stochastic Approximation Expectation Maximization algorithm [13]
with a Markov chain Monte Carlo procedure adapted to censored data [24, 38], imple-
mented under the software MONOLIX [28], is used to estimate the model parameters. We
start with the model having random effects on all parameters and then use likelihood ratio
tests (LRT) to select the significant random effects. Then, the effect of the categorical
covariate group denoted by G is tested on the fixed effects µ through LRT. The ACT
group is taken as reference group, G = {ACT*, ACT+Re, CTRL}. Standard errors of the
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estimated parameters of the selected models are estimated through the computation of the
Fisher Information Matrix.

4.3. T cell exhaustion probability estimation using Monte-Carlo and Impor-
tance Splitting algorithms. T cell exhaustion is a cause of relapse [4]. It is defined by
the stochastic event {T (t) ≤ S, t ≤ tF} where S is the exhaustion threshold and t ≤ tF
a condition for the exhaustion to occur in a finite time. The complete T cell exhaustion
(S = 0) is a phenomenon which can only occur in the stochastic system: when the T cell
population is low enough, the stochastic fluctuations can drive it to extinction, whereas
the T cell population can never vanish in the deterministic limiting system. This follows
from the analyticity of the solutions to (3.1), given that T (70) > 0.

We want to estimate the exhaustion probability p = P(T (t) ≤ S, t ≤ tF ). Let
u = 1T (t)≤S. Using the intuitive Monte Carlo method, the T cell exhaustion probabil-

ity is estimated by p̂ =
∑NT

k=1 uk/NT with NT the total number of simulations. However,
depending on the values of the model parameters, the exhaustion threshold S may be
difficult to reach leading to very small probabilities. Monte Carlo method thus requires a
large NT when the probability p is very small. This method is therefore not suitable for
estimating the probability of T cell exhaustion because the variance will diverge when the
probability tends to zero for a reasonable value of NT [29]. To reduce the variance for very
small probabilities estimation, an alternative is the Importance Splitting (IS) algorithm
designed for rare event probability estimation [10, 22, 29]. Indeed, IS gradually calcu-
lates the probability of reaching the threshold S (the rare event) through the calculation
of the probability of reaching intermediate thresholds easier to reach than S. Thus, the
probability P(T (t) ≤ S, t ≤ tF ) is calculated according to the splitting principle by

P(T (t) ≤ S, t ≤ tF ) =
m∏
k=1

pk (4.2)

with p1 = P(T (t) ≤ S1, t ≤ tF ) and pk = P(T (t) ≤ Sk | T (s) ≤ Sk−1, s ≤ t ≤ tF ) for
k = 2, . . . ,m. The Sk (k < m) are the intermediate thresholds and Sm = S the exhaustion
threshold.

At each iteration k, the IS algorithm consists in simulating NT trajectories of process
T (t) and estimating the intermediate probability pk by considering the NSk trajectories

which reach the intermediate threshold Sk before time tF : p̂k =
NSk
NT

. To pass from iteration
k to iteration k+ 1, NT trajectories are sampled from the NSk trajectories having reached
the threshold Sk (by allowing replacement in the sampling) and run the NT new trajectories
in order to reach the next threshold Sk+1. In our setting, T cells are completely exhausted
at time t if the quantity T (t) has reached S5 = 0. In Importance Splitting algorithms, it
is possible to place the intermediate thresholds adaptively using a quantile method. We
can also place these thresholds ”manually” when we have enough knowledge about the
dynamics of the stochastic system, which is the case for the dynamics of T cells. In this
paper, we tested different numbers (3, 4 and 5) and spacing of intermediate thresholds
until the numerical value of the exhaustion probability become stable from one series of
1000 simulations to another. We then fix these thresholds to S1 = 7 × 10−5 (or 0.35%
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of the initial quantity of active T cells), S2 = 5 × 10−5 (0.25% of T (70)), S3 = 3 × 10−5

(0.15% of T (70)), and S4 = 2× 10−5 (0.1% of T (70)). We set NT to 1000.
The computation of the T cell exhaustion probability requires NT = 1000 simulations of

the stochastic model for each of the m = 5 thresholds. Furthermore, each trajectory can
contain up to 100 millions of stochastic events. This stochastic approach is therefore very
expensive in computing time. For example, the average time to calculate the exhaustion
probability is approximately 100 hours (using 3 cores, with 7GB of memory per core).

However, this stochastic approach allows us to highlight a link between the probability of
T cell exhaustion and the depth of the first minimum of the T cell deterministic trajectory.
Indeed, since the stochastic process is locally close to the deterministic system plus a
Gaussian noise [17], the lower the deterministic minimum the larger the probability of T
cell exhaustion. We exploit this relation to ease the study of the impact of remaining
parameters which have a random effect on the T cell exhaustion phenomenon.

4.4. Criteria to optimize treatment doses and restimulation times. The kind of
relapse we can act on without changing the medical setup is the relapse due to T cell
exhaustion. The goal is thus to minimize the probability of T cell exhaustion, which
amounts in the deterministic setting to maximize the value of the first minimum of the T
cell population. Treatment parameters to be optimized are the treatment dose D70, the
retreatment time tRe and the retreatment dose DRe. The cost function (to be maximized)
is thus defined by

g = min{nT (t), t ≤ tF} (4.3)

with nT (t) the solution of deterministic system (3.1) and tF a fixed finite time. Note that
g depends on all the model parameters through nT (t). Its unit is a number of T cells/K.

We optimize the therapy by maximizing g over different subsets of treatment parameters.
We refer to g as the minimum of the T cell trajectory, or simply, as the T cell minimum.

To take random effects into account in the optimization, we consider specific quantiles
of their distribution. We focus on the T-cell related parameters dT (natural death rate of

T cells), dMT (therapy induced death rate of the differentiated melanoma cells) and lprodA

(which, multiplied by bT , leads to the therapy induced secretion rate of the cytokines). We
then set the value of the natural clearance rate dA of cytokines to its population value since
we observed numerically that the cost function g does not depend much on dA. We also
set the value of the disease parameters rM and rD to their population mean assuming that
these are disease-specific parameters that are less under control. As nM0 corresponds to the
initial size of the tumor, we consider different quantiles of its distribution. In summary, we
set rM , rD and dA to their population values and consider quantiles of order 5%, 50%, 95%
for dT , dMT , lprodA and nM0 . These quantiles are denoted qα(φi), with α ∈ {5, 50, 95}% and

the individual parameter φi ∈ {dMT,i, dT,i, l
prod
A,i , nM0,i}, and are provided in Table 1. Our

choice of quantiles give a better idea on the dispersion of the estimated parameters in their
estimation range compared, for example, to the quartiles. In total, we consider 34 = 81
sets of parameter values corresponding to three quantiles for each of the four parameters
dMT , dT , l

prod
A , and nM0 .

We consider two optimization procedures:
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• the first is performed on the ACT group and we focus on the dependence of the
function g on the treatment dose D70. The optimal dose D

opt∗
70 is defined as follows:

D
opt∗
70 = arg max

D70∈[Dmin,Dmax]

g(D70). (4.4)

• the second optimization procedure is performed on the ACT+Re group and we
focus on the dependence of the function g on the treatment dose D70, the restimu-
lation dose DRe and the restimulation time tRe. The optimal treatment dose D

opt∗∗
70 ,

retreatment dose Dopt
Re and retreatment time toptRe are defined as follows:

[D
opt∗∗
70 , Dopt

Re , t
opt
Re ] = arg max

(D70,DRe,tRe)∈D
g(D70, DRe, tRe), (4.5)

where D = [Dmin, Dmax]× [DRe
min, D

Re
max]× [tRe

min, t
Re
max].

We set the following initial values: t0 = 0; nM0 ∈ qα(nM0,i), α ∈ {5, 50, 95}%, indicat-
ing different initial quantities of differentiated melanoma cells; Dinitial

70 = 0.02 the initial
stimulation dose, Dinitial

Re = 0.02 the initial restimulation dose and tinitialRe = 160 the initial
restimulation time.

The treatment dose optimization interval [Dmin, Dmax] is set to [0.005, 0.04] for both
ACT and ACT+Re groups and the retreatment dose optimization interval [DRe

min, D
Re
max] is

set to [0, 0.04] for ACT+Re group (such that Dopt
Re = 0 when D

opt∗∗
70 is sufficient to avoid T

cell exhaustion before time t ≤ tF ). Indeed, from an experimental point of view, the initial
dose dinitial = 0.02 was chosen to have a good control on the tumor [1]. This leads us to
set Dmin, Dmax, D

Re
min and DRe

max not too far from their initial values. Similar considerations
lead us to set the retreatment time optimization interval to [tRe

min, t
Re
max] = [130, 190]. Time

tF is set to tF = 300 in the ACT group and to tF = 400 in the ACT+Re group (based on
experimental data of Figure 2).

The optimal treatment parameter values (doses and restimulation time) are computed
from the plots of the function g over intervals of discrete values of doses and restimulation
time, for fixed sets of {dMT , dT , l

prod
A , nM0} taken in the estimation range.

5. Results

5.1. No effect of the covariate group on the parameters. Likelihood ratio tests lead
to the model given by {ηirM 6= 0, ηirD 6= 0, ηilA 6= 0, ηidMT

6= 0, ηidT 6= 0, ηidA 6= 0, ηinM0
6= 0}.

LRT also showed that none of the parameters is function of the covariate group G, i.e.,
the model captures the differences between groups well enough without the help of an
additional covariate. Thus, we take as final model the one without covariates. Table 1
contains the estimates and the associated standard errors of the final model, Figure 4 (and
Figure 8 in Appendix) shows its individual fits. Figure 9 displays the observations versus
predictions, Figure 10 the Visual Predictions Check (VPC), a prediction band obtained
through simulations from the estimated model that is compared to real data [6]. The
VPC and the observations versus predictions plots are good, showing the good quality of
the fit. The relative standard errors are small and in the range of what is expected for
population parameter estimation [39], except for sMD. This might be an identifiability
problem due to the indirect observation of the model, the four coordinates are not directly
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µ estimation ω estimation Quantile Quantile
(r.s.e (%)) (r.s.e (%)) 5% 95 %

rM 0.09 (4) 0.10 (34)
rD 0.05 (10) 0.35 (20)

sMD < 0.01 (118) 0 (-)

sDM − sMD < 0.01 (-) 0 (-)

nM0 0.08 (28) 0.58 (29) 0.03 0.21

bT < 0.01 (16) 0 (-)
dT 0.02 (34) 1.07 (27) < 0.01 0.09

dMT 1.33 (55) 1.03 (48) 0.24 7.24

sA 77 (37) 0 (-)

dA 0.03 (-) 0.09 (181)

lprodA 0.19 (93) 3.23 (25) < 0.01 39.37

σ 0.44 (6)
Initial values Optimisation range

D70 0.02 0.005 0.04
DRe 0.02 0 0.04
tRe 160 130 190

Table 1. Estimated parameters for the final model: population mean µ and inter-mice
standard deviation ω. r.s.e = standard error

estimation
× 100 (in brackets). ω = 0 for parameters without

random effect, and (-) when the standard error is not estimated. Quantile values for random
effects considered in treatment optimization are given in the last two columns. Optimisation
ranges of (re)stimulation doses and time are given at the bottom part of the table.

observed, only the third root of the sum of nM and nD. Eventually, confidence in the model
predictions might be improved if model predictions could be related to experimentally
measured parameters, like the expected ratios of T cells over tumor cells, or the ratios of
antigen expressing over antigen loss tumor cells. However, we do not have access to such
experimental data.

Note that the value of the death rate of T cells is very variable in different clinical cases
(immunity against cancer, viruses, different markers involved, in-vitro or in-vivo clinical
studies) because the processes underlying cell death are very different in each case. The
values can range from a few days [12] to a few weeks [32] or months [42] depending on the
clinical situation. In our case, the half life of T cells is about 35 days, which is quite in
accordance with [32].

Moreover, the supplementary information of [25] (Figure 9e) provides very partial in-
formation on the switch dynamics for in vitro experiments in the case of inhibited cell
division and constant concentration of TNF-α. Those experimental data allowed Baar et
al. to calibrate the switch parameters sMD, sDM , sA (see [4], Supplementary Information,
Section 2.3), and we checked a posteriori, using the same method as Baar et al. that our
estimated parameter values are compatible with the data points.
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Figure 4. Individual fits (fitted tumor diameter (mm) along time (days)) for mice in CTRL
group (a), ACT group (b), and ACT+Re group (c,d). Blue + marks represent no censored
observations, red asterisk the censored observations, green line the fitted tumor size dynamics.

5.2. Good fits for the three groups of mice. As shown in Figures 4 and 8, data are well
fitted, the growth and treatment phases are well enough captured despite the presence of
censored data. The tumor growth phase is well fitted for CTRL mice as well as for treated
mice (before the beginning of therapy). Treatment effect in the tumor size dynamics from
the 70th day is also well highlighted in both ACT and ACT+Re groups. Furthermore, the
restimulation effect is well marked in the tumor size dynamics for ACT+Re mice.

5.3. Biological relevance of the additional effect due to treatment sA. As cancer
cells escape therapy, it is expected that the additional switching rate sA from differentiated
to dedifferentiated melanoma cells is higher than the killing rate dMT of differentiated cells
by T cells [1]. Indeed, both mechanisms appear as quadratic terms involving the number
of differentiated melanoma cells. Thus, if the cytokines and T cells populations sizes are
similar, rates sA or dMT determine which mechanism prevails.

The estimated parameters confirm this relation: sA > dMT , as shown in Table 1. This
is satisfactory concerning the biological modeling of the escape mechanism. Note that the
calibration of model parameters in [4] led on the contrary to dMT much greater than sA.
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Figure 5. Rescaled dynamics (population size/K) of differentiated cancer cells (top-left),
dedifferentiated cancer cells (top-center), ratio of dedifferentiated over differentiated cells (top-
right), T cells (bottom-left), and cytokines (bottom-center). Scenarios: T cell survive (solid lines,
population parameters of ACT group); T cell exhaustion (dotted lines, population parameters of
ACT group and dT = to its quantile of order 99%). Vertical orange line: treatment start.

However, their results were calibrated manually without any comparison to real biological
data. This reflects the relevance of our statistical approach.

5.4. Very small T cell exhaustion probability for population parameters. The T
cell exhaustion probability estimated by the IS algorithm is very close to zero for individual
and population parameters in both ACT and ACT+Re groups. Figure 5 shows the dynam-
ics of cancer cells, T cells, and cytokines for population parameters in the ACT group. For
these parameter values, T cells thus survive and continue to kill differentiated cells (whose
number is controlled). However, the therapy enhances the switch towards dedifferentiated
melanoma cells, which are not killed by T cells and thus grow exponentially. The tumor
size regrows with a large ratio of dedifferentiated over differentiated melanoma cells. This
is in accordance with Figure 1c of [25].

5.5. Evolution of T cell exhaustion probability with respect to therapy param-
eters. Some of the estimated parameters come with a non negligible random effect. We
study the T cell exhaustion by naturally taking into account their distribution through
the quantiles qα(φi).

Death rate of T cells dT is one of the most relevant therapy parameters. We thus
estimate the T cell exhaustion probability as a function of dT in its estimation range
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Figure 6. T cell exhaustion probability (brown solid line) and global minimum of T cell
population size (green dashed line) according to dT in ACT group (other parameters fixed to
their estimated population mean). Black curve: T cell exhaustion probability as a function of
dT . Red solid vertical lines: quantiles of order 5%, 50%, 95% of dT,i distribution; purple dotted
vertical lines quantiles of order 1% and 99%.

(dT ∈ [0, q99(dT,i)]) when the other parameters are fixed to their estimated population
values (still in ACT group). Figure 6 shows that the T cell exhaustion probability increases
with dT , and even reaches non negligible values. This corroborates the conjecture in [4]
asserting that there exist biological parameters for which the probability of relapse due to
T cell exhaustion is non negligible. Note that when T cell exhaustion occurs, differentiated
melanoma cells grow exponentially fast again, and become the most numerous in the final
state of the tumor.

Figure 6 gives the probability of T cell exhaustion as a function of parameters with
random effects (the others parameters being fixed to their population mean). We observe
that the first minimum of the deterministic T cell trajectory becomes deeper and deeper
as the parameters dT , dMT or lprodA increase. On the other hand, the minimum increases
when disease parameters rM , rD or nM0 increase. Furthermore, the minimum increases
also with the cytokine clearance rate dA. Given these observations, we can expect that the
joint variation of these parameters will lead us to interesting therapeutic scenarios.

5.6. Treatment optimization to minimize the probability of relapse due to T
cell exhaustion. To reduce the number of parameter values of {dMT , dT , l

prod
A , nM0} to

study, we focus on combinations of quantile values leading to an increased risk of T cell
exhaustion. For that purpose, we define a threshold on the value of the function g (giving
the value of the first minimum of the deterministic T cell trajectory) below which stochastic
fluctuations have a good chance to lead to the T cell exhaustion. By setting this threshold
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to S1 = 7 × 10−5 (first threshold of IS algorithm), we identify 9 sets of parameter values

of {dMT , dT , l
prod
A , nM0} for which the deterministic dynamics of the T cell population

crosses the exhaustion threshold S1. Table 2 presents the optimization results for these 9
sets of parameter values presenting an increased risk of T cell exhaustion. Column ACT
corresponds to optimization criterion (4.4) and column ACT+Re to criterion (4.5). Figures
7a and 7b show optimal treatment parameters corresponding to two sets of parameter
values for the optimization criterion (4.4) (Figure 7a presents a risk of T cell exhaustion,
Figure 7b without an exhaustion risk). Figures 7c and 7d show the optimization results for
the same two sets of parameters but for criterion (4.5). Note that parameter values leading
to an increased risk of T cell exhaustion mainly correspond to high values of parameters
dT and lprodA as shown for their quantile of order 95% in Figure 7.

dMT , dT , lprodA , nM0
par. ACT goptACT ginitialACT ACT+Re goptACT+Re ginitialACT+Re

q5, q95, q95, q5

Dopt
70 0.04 8.29× 10−7 6.77× 10−7 0.019 1.92× 10−5 4.45× 10−6

Dopt
Re - 0.04

toptRe - 142

q5, q95, q95, q50

Dopt
70 0.04 1.36× 10−6 1.10× 10−6 0.033 3.49× 10−5 4.73× 10−6

Dopt
Re - 0.04

toptRe - 142

q5, q95, q95, q95

Dopt
70 0.04 2.33× 10−6 1.86× 10−6 0.04 4.66× 10−5 5.22× 10−6

Dopt
Re - 0.012

toptRe - 142

q50, q95, q95, q5

Dopt
70 0.04 7.99× 10−7 6.61× 10−7 0.019 1.87× 10−5 4.44× 10−6

Dopt
Re - 0.04

toptRe - 142

q50, q95, q95, q50

Dopt
70 0.04 1.33× 10−6 1.08× 10−6 0.033 3.40× 10−5 4.72× 10−6

Dopt
Re - 0.04

toptRe - 142

q50, q95, q95, q95

Dopt
70 0.04 2.29× 10−6 1.83× 10−6 0.04 4.66× 10−5 5.20× 10−6

Dopt
Re - 0.019

toptRe - 142

q95, q95, q95, q5

Dopt
70 0.04 6.56× 10−7 5.78× 10−7 0.019 1.64× 10−5 4.38× 10−6

Dopt
Re - 0.04

toptRe - 142

q95, q95, q95, q50

Dopt
70 0.04 1.16× 10−6 9.84× 10−7 0.033 2.99× 10−5 4.65× 10−6

Dopt
Re - 0.04

toptRe - 142

q95, q95, q95, q95

Dopt
70 0.04 2.09× 10−6 1.72× 10−6 0.04 4.63× 10−5 5.13× 10−6

Dopt
Re - 0.019

toptRe - 142

Table 2. Optimization results with quantiles qα(φi), α ∈ {5, 50, 95}%, and φ ∈
{dMT , dT , l

prod
A , nM0} in ACT and ACT+Re groups. Column goptACT corresponds to g(D

opt∗
70 ),

column ginitialACT to g(dinitial), column goptACT+Re to g(D
opt∗∗
70 , Dopt

Re , t
opt
Re ) and ginitialACT+Re to

g(dinitial, dinitial, tinitialRe ). Doses D70, DRe in number of T cells/K, restimulation time tRe in
days.
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Figure 7. Global minimum of T cell population size according to treatment parameters
using quantiles of order {5, 50, 95}%, for dMT , dT , lprodA , nM0 . In ACT group (a,b): solid curve
in cyan (q5(nM0,i)), dashed curve in purple (q50(nM0,i)), dotted curve in yellow (q95(nM0,i)).

Vertical lines: optimal doses D
opt∗
70 for the corresponding nM0 . In ACT+Re group (c,d): curves

for discrete retreatment times tRe = 130 (black solid), 142 (red dashed), 154 (green dotted), 166
(blue dotdashed), 178 (cyan longdashed), 190 (purple twodashed). Vertical lines: optimal Dopt

Re .

6. Discussion on optimized doses and restimulation times

6.1. Higher treatment doses and earlier restimulation times are not always bet-
ter. Using quantiles of order 5%, 50%, 95% of dMT , dT , lprodA , and nM0 , we observe different
therapeutic scenarios. For most of parameter values, the optimal doses are the maximal
ones: Dopt

70 , Dopt
Re = Dmax (see Figure 7a). For other sets of quantile values (not presented
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in this paper), the optimal retreatment time is the minimal one toptRe = tRe
min. We can thus

expect that higher treatment doses would further delay the T cell exhaustion or that an
earlier restimulation would reduce the risk of an early exhaustion. However, the treatment
parameters are optimized over optimization intervals which take into account biological
considerations as explained in Section 4.4. Particularly, the Cytokine Release Syndrome
(one of the most common, and potentially life threatening side effects of immunotherapy)
is associated with increased doses of immunotherapy [27]. It may thus be experimentally
non trivial to go beyond those intervals.

For some parameter values, the optimal restimulation dose is zero: Dopt
Re = 0. In these

cases, the treatment dose D70 is sufficient to avoid exhaustion. Finally, several parameter
values (Figures 7b, 7c, 13, 14, 15) led to optimal treatment doses and restimulation times
which differ from the tested experimental ones.

6.2. Treatment optimization leads to values of g which are higher in the ACT+Re
group than in the ACT group. Optimization benefit is evaluated by the probability
of T cell exhaustion using the IS algorithm. As the function g is related to the exhaustion
probability, we compare the values of g using respectively the initial treatment parameters
(initial doses, and restimulation time provided in Section 4.4, and the optimized treatment
parameters (Section 5.6). More precisely, let ginitialG and goptG (for G ∈ {ACT,ACT+Re})
represent the values of gG computed respectively using the initial treatment parameters
and the optimized treatment parameters. Let ImpACT+Re = (goptACT+Re − ginitialACT+Re)/g

opt
ACT+Re

and ImpACT = (goptACT − ginitialACT )/goptACT denote the relative shifts of g in the ACT+Re (resp.
ACT) groups after treatment optimization, for the same values of the parameters. The two
shifts are positive. Moreover, the difference ImpACT+Re− ImpACT is always positive with a
mean value equal to (65.7± 4.8)% for the nine sets of parameters presenting an increased
risk of T cell exhaustion (Table 2). Thus, the best improvements are noted in ACT+Re
mice compared to ACT mice. This makes sense since ACT+Re mice have benefited from
restimulation, which boosts the effects of optimization.

Note however that the treatment optimization only minimizes the risk of T cell exhaus-
tion, the risk does not vanish completely as seen in Table 2: gopt is still smaller than S1.
Considering wider optimization intervals could improve the results provided that the new
limits remain biologically reasonable.

6.3. The larger nM0, the faster the tumor growth even for higher treatment
doses. It has been biologically observed [1] that when the tumor size exceeds a certain
threshold at the beginning of the treatment (t = 70), the tumor control is less efficient even
if more T cells are stimulated. Figure 16 (Appendix) representing tumor size dynamics
for different values of nM0 supports this observation: the larger nM0 , the larger tumor size

at t = 70, the faster the tumor growth (even for D70 = D
opt∗
70 = Dmax). Large treatment

doses D70 do not slow down much the evolution of the tumor size for large initial value of
differentiated melanoma cells. This is due to the fact that the initial ratio of tumour cells
to T cells is higher when the tumours are larger : even the maximal dose does not allow
to maintain this ratio constant.
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7. Conclusion

In cancer treatment, resistance to therapy is a major problem. Understanding the mech-
anism of this resistance is then crucial. Parameter estimation for mathematical melanoma
cancer immunotherapy model [4] using biological data from [25] was essential in achiev-
ing this goal. Indeed, the estimated parameters lead to a statistically satisfactory model,
which replaces the empirical calibration approach of Baar et al. [4], and which constitutes
a first necessary step for quantitative studies. We use these parameters to simulate real-
istic stochastic phenomena arising in the therapy and to highlight the existence of sets of
biological parameters leading to each of the types of relapses identified by [4]. Moreover,
we are able to quantitatively estimate the probability of relapse due to T cell exhaustion,
which allows to evaluate the quality of the treatment.

In addition, we confirme two important conjectures from the authors of [25]. First, the
therapy escape mechanism suggests that the switch rate sA induced by cytokines should
be higher than the rate dMT at which T cells kill differentiated melanoma cells. Second,
biological observations [1] show that when the tumor size exceeds a certain threshold at
the beginning of the treatment, the tumor control is less efficient even if more T cells are
stimulated. We indeed highlight the low effect of high treatment doses D70 when the tumor
size reaches a certain level at the beginning of the treatment.

With the estimated parameters, we optimize the treatment protocol using the determin-
istic system by plotting the value of the first local minimum of the T cell population as
a function of treatment parameters. By linking the value of the minimum to the exhaus-
tion probability of T cells, we provide optimal treatment doses and (re)stimulation time(s)
which minimize the probability of relapse due to T cell exhaustion.

An alternative to the deterministic system would be a diffusion approximation of the
stochastic model. A stochastic aspect would thus be included in the problem while keeping
reasonable computational costs. An interesting statistical challenge, which is a work in
progress, is to perform the parameter estimation in this stochastic diffusion approximation.
The difficulties are mainly due to the predator-prey setting and the high dimensionality
of the problem.

This paper focuses on the relapse mechanism of melanoma which is mediated by the T
cell exhaustion. As explained in the introduction, we use a model which simplifies a lot
the real mechanisms underlying the exhaustion process. Certain mechanisms must still
be studied for a better understanding of the resistance to the therapy. This includes, for
example, the role of IFN-γ, or the relapse due to dedifferentiated melanoma cells not killed
by T cells. There are experimental prospects (requiring modifications of the treatment
protocol) to handle the latter problem. One solution may be to stimulate another type
of T cells which can kill the dedifferentiated melanoma (see [4] for a theoretical study of
this treatment protocol). Another solution is to find a way to control the switching rate
sA of differentiated melanoma to dedifferentiated melanoma cells, as recently considered
by Glodde, Kraut et al. [19]. Indeed, if sA is well controlled in the therapy (allowing the
number of dedifferentiated cells to be driven to low enough values), then the problem of
complete healing will come down to the control of T cell exhaustion. Thus, our work is a
useful tool for new protocols of tumor treatment.
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A. Appendix

The code used to simulate the stochastic dynamics has been written in C++ and ran
under the software R [35] through the package Rcpp [16].

Parameter (1/days) Interpretation
rM Difference between division bM and death dM rates of differentiated melanoma cells

rD Difference between division bD and death dD rates of dedifferentiated melanoma cells

sMD Natural switch rate from differentiated to dedifferentiated melanoma cells

sDM Natural switch rate from dedifferentiated to differentiated melanoma cells

bT Division rate of T cells

dT Exhaustion rate of T cells (interpreted as death rate of active T cells)

dMT Therapy induced death rate of differentiated melanoma cells

sA Therapy induced switch rate from differentiated to dedifferentiated melanoma cells
dA Clearance rate of cytokines TNFα

lprodA Secretion rate of cytokines TNFα
Treatment doses and time
D70 Treatment dose (rescaled number of active T cells injected at time t = 70)

DRe Retreatment dose (rescaled number of reactivated T cells after restimulation)

tRe Restimulation time

Table 3. Table of melanoma model parameters.
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Figure 8. Individual fits. Blue + marks: no censored observations, red asterisk: censored
observations, green line: fitted tumor size dynamics. From left to right, top to bottom: mice 1
to 5 in CTRL group, mice 6 to 12 in ACT group, and mice from 13 in ACT+Re group.
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Figure 9. Inidividual predicted values versus observed values. Blue points: no censored
observations, red asterisk: censored observations.
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Figure 10. Visual Predictive Checks (pcVPC) for diagnosing the model. y-axis: tumor
size (mm), x-axis: time (day). The blue and pink areas delineate respectively the confidence
intervals for the 10th, 90th and 50th percentiles of the predictions obtained by simulations.
The black curves represent the 10th, 50th and 90th theoretical percentiles. The green curves
represent the empirical percentiles corresponding to the observed data and should remain within
the corresponding prediction intervals to validate the model. The red areas indicate where the
green empirical percentiles exit outside the corresponding prediction intervals (remember that
the tumor size of the mice does not exceed 10 mm in the experiment). The blue and red points
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Figure 11. T cell minimum according to treatment dose D70 in ACT group for dMT =
q5(dMT,i). Top-figures: dT = q5(dT,i) ; Middle-figures: dT = q50(dT,i) ; Bottom-figures: dT =

q95(dT,i). Left-figures: lprodA = q5(lprodA,i ) ; Middle-figures: lprodA = q50(lprodA,i ) ; Right-figures:

lprodA = q95(lprodA,i ). In each sub-figure: nM0 = q5(nM0,i) (solid curve in cyan); nM0 = q50(nM0,i)

(dashed curve in purple); nM0 = q95(nM0,i) (dotted curve in yellow). The vertical solid, dashed

and dotted lines indicate the optimal dose D
opt∗
70 for a given nM0 .
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Figure 12. T cell minimum according to treatment dose D70 in ACT group for dMT =
q50(dMT,i). Top-figures: dT = q5(dT,i) ; Middle-figures: dT = q50(dT,i) ; Bottom-figures: dT =

q95(dT,i). Left-figures: lprodA = q5(lprodA,i ) ; Middle-figures: lprodA = q50(lprodA,i ) ; Right-figures:

lprodA = q95(lprodA,i ).In each sub-figure: nM0 = q5(nM0,i) (solid curve in cyan); nM0 = q50(nM0,i)

(dashed curve in purple); nM0 = q95(nM0,i) (dotted curve in yellow). The vertical solid, dashed

and dotted lines indicate the optimal dose D
opt∗
70 for a given nM0 .
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Figure 13. T cell minimum according to treatment dose D70 in ACT group for dMT =
q95(dMT,i). Top-figures: dT = q5(dT,i) ; Middle-figures: dT = q50(dT,i) ; Bottom-figures: dT =

q95(dT,i). Left-figures: lprodA = q5(lprodA,i ) ; Middle-figures: lprodA = q50(lprodA,i ) ; Right-figures:

lprodA = q95(lprodA,i ).In each sub-figure: nM0 = q5(nM0,i) (solid curve in cyan); nM0 = q50(nM0,i)

(dashed curve in purple); nM0 = q95(nM0,i) (dotted curve in yellow). The vertical solid, dashed

and dotted lines indicate the optimal dose D
opt∗
70 for a given nM0 .
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Figure 14. T cell minimum according to treatment parameters in ACTRE group for dMT =
q5(dMT,i); dT = q95(dT,i); l

prod
A = q95(lprodA,i ); nM0 = q5(nM0,i). From top to bottom and from

left to right: D70 = 0.005, 0.012, 0.019, 0.026, 0.033, 0.040. In each subfigure: curves for
discrete retreatment times tRe = 130 (black solid), 142 (red dashed), 154 (green dotted), 166
(blue dotdashed), 178 (cyan longdashed), 190 (purple twodashed). Vertical lines: optimal Dopt

Re .

D
opt∗∗
70 = 0.019, Dopt

Re = 0.04, toptRe = 142.
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Figure 15. T cell minimum according to treatment parameters in ACTRE group for dMT =
q5(dMT,i); dT = q95(dT,i); l

prod
A = q95(lprodA,i ); nM0 = q95(nM0,i). From top to bottom and from

left to right: D70 = 0.005, 0.012, 0.019, 0.026, 0.033, 0.040. In each subfigure: curves for
discrete retreatment times tRe = 130 (black solid), 142 (red dashed), 154 (green dotted), 166
(blue dotdashed), 178 (cyan longdashed), 190 (purple twodashed). Vertical lines: optimal Dopt

Re .

D
opt∗∗
70 = 0.04, Dopt

Re = 0.012, toptRe = 142.



PARAMETER ESTIMATION IN A STOCHASTIC MODEL FOR IMMUNOTHERAPY 31

0 50 100 150

0
4

8

time

tu
m

or
 s

iz
e

0 50 100 150

0
4

8

time

tu
m

or
 s

iz
e

0 50 100 150

0
4

8

time

tu
m

or
 s

iz
e

Figure 16. Tumor size along time using quantiles qα(φi), α ∈ {5, 50, 95}%, φ ∈
{dTM , dT , lprodA , nM0} with D70 = Dmax, dT = q95(dT,i), l

prod
A = q95(lprodA,i ). Top: dMT =

q5(dMT,i); Middle: dMT = q50(dMT,i); Bottom: dMT = q95(dMT,i). For each subfigure,
nM0 = q5(nM0,i) in black solid line, nM0 = q50(nM0,i) in red dashed line, nM0 = q95(nM0,i)
in green dotted line. Vertical orange line: treatment start.




