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In the most part of chemometrics application concerning the prediction of physico-chemical properties, 12 regression models are preferred as they are easy to implement and their posterior analysis provide simple 13 interpretations. Interpolation methods are most currently used in geostatistics applications where the dimension 14 of study area is generally limited. In this work, we proposed to develop kriging or splines models for predicting 15 petroleum products properties. Kriging and splines have different foundations as the former is based on 16 stochastic assumptions and the latter is built on deterministic approach. A well-illustrated comparison of both 17 methods was carried out through three suitable examples to point their similarities and their divergences. The 18 advantages of using kriging or / and splines instead of classical regression models were also discussed. Results

19

pointed out the flexibility of interpolation methods as they provide good accuracy for linear and nonlinear cases.

20

They also confirmed previous studies which pointed out equivalence between kriging and spline models 21 performances in some situations. However, kriging approach has more valuable aspect among other interpolation 22 methods since it provides a measure of prediction uncertainties. Kriging modeling were finally compared to 23 multilinear regression for the prediction of diesel cloud point ranging from -39°C to -12°C. Models 24 performances pointed out that kriging enables to improve both accuracy and robustness.

Material and methods

20

All the datasets used to test predictive methods in the present work are described here. Main theoretical aspects 21 of the used methods are then recalled.

22

Parametric regression models 23

In this section, ݖ denotes a variable to model and ݔ a set of explanatory variables. It is assumed that a set of 24 measured values ݕ( ଵ , … , ݕ ) at ݊ sampled data ݔ( ଵ , … , ݔ ) was observed. In addition, all measured values are 25 considered to be submitted to an error due to experimental process such that:

26

= ࢠ + ࣕ , = , … , (Eq. 1)

The main idea of parametric regression models is to approximate ݖ by a known mathematical function ݂ such 1 that [START_REF] Hastie | The elements of statistical learning: Data mining, inference, and prediction[END_REF]):

2

= ሺ , ሻ + (Eq. 2)

3
where ߠ denotes the set of parameters related to the analytic expression of ݂ and ߝ is the modelling error at the 4 ݅ ௧ sampled data. In what follows, ߠ is assumed to be a -dimensional vector (݊ >  > 1).

5

Multilinear regression 6

In case of multilinear regression (MLR), ݂ is assumed to have the following form [START_REF] Azaïs | Le modèle linéaire par l'exemple: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS[END_REF]:

7 ሺ, ሻ = + (Eq. 3)
8

where ݔ ் denotes the transpose vector of .ݔ Let ܺ denotes the design matrix i.e. the matrix whose the ݅ ௧ row 9 contains the coordinates of the ݅ ௧ sampled point, and ݕ = ሺݕ ଵ , … , ݕ ሻ ் . The goal of MLR is to estimate "as well 10 as possible" the set of parameters ߠ. The most current approach consists on introducing Gaussian assumptions 11 for modeling errors. The ߝ are then generally assumed as independent identically normally distributed random 12 variables with mean zero value and of unknown variance ߪ ଶ . Under these assumptions, the least of squares (LS)

13

estimators which consists on minimizing the sum of squared deviation has optimal characteristics according to 14 inferential statistics [START_REF] Azaïs | Le modèle linéaire par l'exemple: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS[END_REF][START_REF] Hastie | The elements of statistical learning: Data mining, inference, and prediction[END_REF]). Furthermore, it has been shown that for MLR, the LS-estimator ߠ ௌ can be expressed as a linear combination of measured values, [START_REF] Hastie | The elements of statistical learning: Data mining, inference, and prediction[END_REF]):

16

= ሺ ሻ ି (Eq. 4)

17

This result may be extend to generalized multilinear regression models [START_REF] Azaïs | Le modèle linéaire par l'exemple: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS[END_REF]Dror and 18 Steinberg 2008). Let ݃ denotes a mathematical differentiable function such that:

19

ሺ, ሻ = + ሺሻ (Eq. 5)

20

then, the LS-estimator has the following generalized expression [START_REF] Hastie | The elements of statistical learning: Data mining, inference, and prediction[END_REF]):

21

= ሺሺሻ ሺሻሻ ି ሺሻ (Eq. 6)

22

where ݃ሺܺሻ denotes the matrix of ݔ by the transformation ݃.

23

Although the LS-estimator calculation results in a relatively simple matrix multiplication, it is rigorously 24 based on deterministic approach which does not include the measurement error. Thus, other estimators related to 25 the concept of regularization were developed in statistical learning (Ridge, Lasso, etc.) (Bolasso: Model The main advantages of using regression models is that the relation between input variables and the 1 modeled response are obvious to interpret. However, find the adapted form of the regression function ݂ may be 2 very complex, especially in nonlinear case.

3

Interpolation methods

4

All the definitions made in introduction of the previous section are still effective in what follows. The basic idea

5

of interpolation is to estimate the value of a variable at a given point within the study area by computing a 6 weighted average of the observed value [START_REF] Arnaud | Estimation et interpolation spatiale: Méthodes déterministes et méthodes géostatiques[END_REF][START_REF] Cressie | Statistics for spatial data[END_REF]). Interpolation methods can be 7 divided into two groups:

8

• deterministic method where ݖሺݔሻ is considered as a "regionalized variable" [START_REF] Wackernagel | Multivariate geostatistics: An introduction with applications[END_REF],

9

• probabilistic method where ݖሺݔሻ is assumed to be a realization of random variable [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF].

10

Both types of interpolation methods are illustrated below through spline and kriging approaches.

11

Spline interpolation 12

The aim of splines interpolation is to draw contour lines "as smooth as possible", that is a map which

13

looks like what a draftsman would obtain manually [START_REF] Dubrule | Comparing splines and kriging[END_REF]. The splines consist of polynomials of degree 14 ݉ being local. The polynomials describe pieces of a line or surface. For degree ݉ = 1, 2 or 3, a spline is called linear, quadratic or cubic respectively [START_REF] Ahlberg | The Theory of Splines and Their Applications[END_REF]. In order to simplify the theoretical aspect of spline 16 the study area is assumed to be a subset of the two-dimensional space. Let ሺ,ݑ ݒሻ denotes the coordinates of .ݔ which is solution of the following minimization problem:

19 ܖܑܕ ࣘ ሺࣘሻ = ∬ ቈቀ ࣔ ࣘ ࣔ ቁ + ቀ ࣔ ࣘ ࣔ ቁ + ቀ ࣔ ࣘ ࣔࣔ ቁ ℝ (Eq. 7)
20 among all the functions ߶ honoring the sampled data points. ܬ ሺ߶ሻ can be interpreted, in first approximation as 21 the bending energy of a thin plate represented by ߶ [START_REF] Dubrule | Comparing splines and kriging[END_REF]. Thus, the function that minimizes ܬ ሺ߶ሻ 22 takes the shape of a thin plate which would be forced to pass through sampled data points. However, this 23 approach does not consider the measurement error related to the observed data. In practice, a most useful approach called "smoothing spline" is preferred. It consists on adding a term of regularization to the objective 25 function. The function to minimize become [START_REF] Dubrule | Comparing splines and kriging[END_REF][START_REF] Wahba | Some New mathematical -Methods for Variational Objective Analysis Using Splines and Cross Validation[END_REF]:

26 ∑ ୀ ሾࣘሺ ሻ -ሿ + ሺࣘሻ (Eq. 8)
ߣ is called the "smoothing parameter" and the weights ݓ ଶ are generally chosen inversely proportional to the 1 error variance. Consequently, the added term force the solution to pass "not too far" from the measured values 2 [START_REF] Dubrule | Comparing splines and kriging[END_REF]. [START_REF] Duchon | Spline associated to n observations of a random function[END_REF] showed that interpolating and smoothing splines have the same 3 expression. For the two-dimensional case:

4

ࢠ ො ሺ , ሻ = + + + ∑ ୀ ܗܔ (Eq. 9)

5

where ݎ represents the Euclidian distance between ݔ and ݔ , i.e.:

6 = ሺ -ሻ + ሺ -ሻ (Eq. 10)
7

However, their coefficients ܽ , ܽ ଵ , ܽ ଶ and the ܾ are obviously different. In case of smoothing spline they are 8 obtained by solving the following system: (Eq. 11) 10

9 ൞ ∑ ୀ = ∑ ୀ = ∑ ୀ = ࢠ ො ሺ , ሻ + = ሺ , ሻ, ∈ ሼ, … . , ሽ,
These results may be extended to -dimensional case. The generalized expression of ܬ ሺ߶ሻ is given below 11 [START_REF] Wahba | Some New mathematical -Methods for Variational Objective Analysis Using Splines and Cross Validation[END_REF]:

12 ሺࣘሻ = ∑ ! ࢻ !ࢻ !…ࢻ !  ⋯  ቆ ࣔ ࣘ ࣔ ࢻ …ࣔ ࢻ ቇ … ℝ ࢻ ା⋯ାࢻ ୀ (Eq. 12)
13

The solution of this generalized minimization problem is discussed in [START_REF] Wahba | Some New mathematical -Methods for Variational Objective Analysis Using Splines and Cross Validation[END_REF].

14

Developing smoothing spline model require to find a suitable value for both smoothing parameter and 15 polynomial order. In practice, a statistical method called generalized cross-validation is usually computed in the 16 learning step [START_REF] Wahba | Some New mathematical -Methods for Variational Objective Analysis Using Splines and Cross Validation[END_REF]. 17

Kriging modeling 18

The goal of kriging is to obtain the best linear unbiased estimate (B.L.U.E.) according to the observed data. Let

19

̂ݖௌ ሺݔ ሻ denotes the kriging estimate of the response ݖ at a given point ݔ . Thus, it must satisfy the following 20 assumptions:

21 ቐ ሺሻ ࢠ ො ሺ ሻ = ∑ ሺ ሻ ୀ ሺሻ ሾࢠ ො ሺ ሻሿ = ࢠሺ ሻ ሺሻ ࢠ ො ሺ ሻ = ܚ܉ ܖܑܕ ࢠ ො ሺ ሻ ሾࢠ ො ሺ ሻ -ࢠሺ ሻሿ (Eq. 13)

22

where ̂ݖሺݔ ሻ denotes any linear estimator of ݔ‪ሺݖ ሻ. The definition above calls for a predefined probabilistic the set of values ሼݖሺݔሻ, ݔ ∈ Αሽ describes a multiGaussian stochastic process [START_REF] Stein | Gaussian approximations to conditional distributions for multi-Gaussian processes[END_REF]. According to the 25 process characteristics, two types of kriging may be distinguished. The method is called "simple or ordinary" kriging when the stochastic process is assumed to be stationary of order two, i.e. the expected value is invariant 1 within the study area and the covariance between two measured values only depend on the deviation vector of 2 their related locations [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF]. Otherwise, the method is called "universal" and the expected value has 3 the analytical expression of a polynomials [START_REF] Dubrule | Comparing splines and kriging[END_REF]. 4

Simple kriging predictor 5

The multiGaussian assumptions related to simple kriging results in the two following 6 constraints:

7 ቊ ሾሺሻሿ = ൫ࢠሺ ሻ, ࢠሺ ൯ሻ = ሺ -ሻ (Eq. 14)
8

where ܧሾݕሺݔሻሿ is the expected value of ݕሺݔሻ. The conditions of optimality verified by the kriging predictor lead 9

to solve the following linear system [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF]: 

10 ൛∑ ሾ൫ -൯ + , ࣕ ൫ ൯ሿ ୀ = ൫ -൯, ∈ ሼ, … , ሽ ( 

15

This result implies that kriging estimator can be written as a linear combination of the ሼܥሺݔ -ݔ ሻ, ݅ = 1, … , ݊ሽ,

16

i.e. [START_REF] Matheron | The theory of regionalized variables and its applications[END_REF]:

17 ࢠ ො ሺ ሻ = ∑ ሺ -ሻ ୀ (Eq. 17)
18

where the coefficients ܾ are solution of the following system:

19 ቊ ∑ ୀ = ࢠ ො ൫ ൯ + ࣕ ሺ ሻ = ൫ ൯, ∈ ሼ, … , ሽ (Eq. 18)

20

The expression above is analogous to Eq.11 which is related to splines interpolation. Thus, the kriging predictor 21 may be interpreted as an exact interpolator.

22

Universal kriging predictor 23

A more generalized kind of kriging so called "universal kriging (UK)" or "kriging regression" was also used in 24 the literature [START_REF] Dubrule | Comparing splines and kriging[END_REF][START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF][START_REF] Matheron | Splines and Kriging: Their Formal Equivalence: Fontainebleau[END_REF]. It consists on introducing a polynomial trend 25 depending on the available observations, such that the may be expressed as follows:

26 ࢠሺሻ = ∑ ࢼ ሺሻ ୀ + ࢻሺሻ (Eq. 19)
where ݉ denotes the degree of the polynomial trend and ߙሺݔሻ is the approximation error. The analytical 1 expression of components ݂ ሺݔሻ are given in Appendix C. It has been shown that the UK weights predictor are 2 solution of the following system:

3 ቊ ∑ ሺ ሻ ୀ = , = , … , ࢠ ො ൫ ൯ + ࣕ ሺ ሻ = ൫ ൯, ∈ ሼ, … , ሽ (Eq. 20)
4 5

All the system related to the calculation of kriging weights predictor depends obviously on the chosen 6 covariance model .ܥ Some examples of covariance function are given in Table 1. 7 

ߪ ଶ ݁ ି ∑ ఏ ೕ ห௦ ೕ ି௪ ೕ ห ೕసభ Gaussian ߪ ଶ ݁ ି ∑ ఏ ೕ ሺ௦ ೕ ି௪ ೕ ሻ మ ೕసభ Linear ݉ܽݔ൛0,1 -ߠ หݏ -ݓ หൟ Spherical 1-1.5ߦ + 0.5ߦ ଷ , ߦ = min ൛1, ߠ หݏ -ݓ หൟ 9
In the simplest case, the measurement errors variance is assumed to be homogeneous around the study area. In 10 case of a heterogeneous errors variance the method is then called "cokriging" [START_REF] Dubrule | Comparing splines and kriging[END_REF][START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF].

11

Kriging also requires previous analysis to choose the most adapted covariance structure. Geostatisticians use a

12

graphical recognition tool called "semi-variogram" [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF][START_REF] Isaaks | Applied geostatistics[END_REF]). However,

13

there is no method that enables to compute this step automatically. In this work we only used a Gaussian model

14

(see Error! Reference source not found.) for all developed kriging models. Thus, the learning step consists on 15 estimating intrinsic parameters of Gaussian covariance (including a possible nugget effect, see Appendix E). 16

This step is usually computed by maximizing the likelihood function (see Appendix C) (Isaaks and Srivastava 

18

In what follows, only simple kriging was considered.

19

Prediction uncertainty 20

Most of the predictive methods are deterministic as they have no assessment of errors with predicted values. The 21 traditional approach for modeling prediction uncertainty at an unsampled location ݔ consists on computing a minimum error variance ݕ ොሺݔ ሻ of the unknown value ݔ‪ሺݕ ሻ and the associated variance ߪ ଶ ሺݔ ሻ = ݕ‪ሾݎܸܽ ොሺݔ ሻ -1 ݔ‪ሺݕ ሻሿ. The estimate and error variance are then typically combined to derive a Gaussian-type confidence 2 interval centered on the estimate value [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF]. For example, the 95% confidence interval is taken as:

3 4 ሼሺ ሻ ∈ ሾ ෝሺ ሻ -ሺ ሻ, ෝሺ ሻ + ሺ ሻሿ ሽ = . ૢ
(Eq. 21)

5

For example, it has been shown that an estimate of the minimum error variance related to MLR model is 6 expressed as follows (Azaïs and Bardet 2012):

7 ෝ ሺ ሻ = ෝ ሺ + ᇱ ሺ ሻ ି ሻ (Eq. 22)
8

where ߧ ො ଶ is the commonly used estimate of the modeling errors variance which is defined as (Azaïs and Bardet 9 2012):

10 ෝ = ି ∑ ሺ -ෝ ሻ ୀ (Eq. 23)
11

A more rigorous approach consists on assessing first the uncertainty about the unknown, then deduce an estimate 12 optimal in some appropriate sense [START_REF] Journel | When do you need a trend model in Kriging ?[END_REF][START_REF] Srivastava | Maximum variance of profitability[END_REF]. Let ݔ‪ሺݑ ሻ denotes the random where ܽ and ܾ are scalars. Note that these probability intervals are independent of any particular estimate ݕ ොሺݔ ሻ

18

of the unknown value ݔ‪ሺݕ ሻ, but only depend on the available information ሺܫሻ and ݔ . Each conditional

19

probability distribution function provides a measure of local uncertainty in that it relates to a specific location ݔ .

20

Under the multiGaussian assumptions related to simple kriging (paragraph 2.2.2.1), it has been shown that the 21 mean and the variance of the conditional distribution function at ݔ are equal to the simple kriging estimate

22

̂ݖௌ ሺݔ ሻ and simple kriging variance obtained from the available sampled data [START_REF] Journel | Mining geostatistics[END_REF].

23

2.4 Data sets 24

Simulated data 25

Dataset 1 and dataset 2 are represented in Fig. 1a and Fig. 1b respectively. Each dataset contains 50 26 points uniformly distributed around ሾ-3; 3ሿ ଶ . For the dataset 1, the function to model is affine. For the dataset 2, 27 the function to model is rational fraction. Their analytical expression is given in Table 2. 28 1

Where ߝ were chosen as a normally distribute random variable with mean zero and a fixed variance ߪ ଶ . Details 2 are given in Table 2.

3

In the third situation, we considered a function ݂ which may be interpreted as the sum of two potential 4 functions centered in ܲ ଵ = ሺ-0.5; -0.5ሻ and ܲ ଶ = ሺ0.5; 0.5ሻ respectively. The sampled points were generated 5 such that they describe two well-identified clusters. Then, the coordinates of points were assumed to follow a 6 two-dimensional Gaussian distribution (see Appendix B). Half of coordinates were distributed such that:

7 ሺ , ሻ ~ घ ቆ൫ . . ൯; ቀ . . ቁቇ (Eq. 26)
8

The second part were distributed such that: 8

Models performances were then evaluated using the following process: 9

1. the study area was discretized as a 100x100 grid points regularly spaced to use them as validation set 10 2. both theoretical and predicted values were calculated at each grid point.

11

3. the root mean square error )ܧܵܯܴ( of prediction and the mean relative deviation )ܦܴܯ( were 12 calculated on validation set as detailed in Table 5.

13

For real data, models were compared in two ways: 

15

All models performances are discussed in the following paragraphs.

Models comparison on simulated database 1

In each case of simulated data, classical regression, kriging and spline models were developed. The intrinsic 2 parameters estimates related to spline and kriging model (introduced in paragraph Error! Reference source not 3 found.) are specified in Table 6. The models performances are discussed in three ways:

4

• First by overlapping the response surface that the model provided with the original graph of the 5 function to fit.

6

• Secondly by plotting a 2D-graphics of the prediction errors distribution within the study area.

7

• Thirdly by comparing their statistics given in Table 7.

8 9 

4

Results for kriging and splines models are illustrated in Fig. 5c and Fig. 5d respectively where the 5 corresponding prediction errors are plotted. The proximity between kriging predictions and real values is also 6 effective. However, some differences may be noted relative to MLR model: Firstly, it may be observed in Fig. 5c 7 that the points where prediction error is close to 0 describe a nonlinear curve which is the intersection line 8 between kriged surface and original map. Then, kriged surface is curved and the quality of the fit is less effective 9 for kriging than for MLR. Indeed, red regions that refers to absolute deviation around 1.5 may be observed in 10 Fig. 5c whereas the maximum value of absolute deviation for MLR model is less than 1 (see Fig. 5b).

11

The curvy characteristic of the response surface may be extended to the thin plate spline (Fig. 5d).

12 However, the prediction error distribution that spline model provides is closer to MLR than kriging. Globally, all 13 obtained models provided good performances since blue regions are predominant in absolute deviation plots 14 (Fig. 5b, c andd). Models statistics given in Table 7 are in accordance with these observations above. Indeed, a 15 MRD value of 0.07 was obtained for MLR against 0.10 and 0.13 for spline and kriging respectively. 

Data set 2 (rational function) 7

For simulated data set 2, the function to fit is a rational fraction. Therefore, MLR is obviously low 8 performing here since it is clearly impossible to correctly fit the sampled data by a plane surface. Moreover, find to spline model (Fig. 6b). This relative equivalence between both models is supported by statistics since RMSE 2 value of 1.69 was obtained for spline model against 1.88 for kriging (see Table 7). Note also that the high values For this third example, the same process was used to compare models. As in previous case, we 11 obviously considered that MLR cannot be appropriate to the simulated data observed in Fig. 2. Then, only 12 kriging and spline models performances were illustrated in Fig. 7a and Fig. 7b respectively. As in the previous 

Uncertainties of prediction 8

Uncertainties of predicted values were computed by estimating their 95% level confidence interval amplitudes.

9

Results are illustrated for datasets 2 and 3 in Fig. 8 

2

Interval amplitude that stochastic approach provided are illustrated in Fig. 8 for dataset 2 and 3. 3 Amplitudes level are given through a color scale (blue regions correspond to lowest interval amplitude and red 4 regions indicate highest amplitudes). It may be observed in Fig. 8a and Fig. 8b Energy & Fuels However, previous examples showed that this polynomial structure is not always appropriate, especially in case 1 of potential function. An advantage in using Gaussian type is that the predicted value always aims at an expected 2 value.

3

Globally, the results showed the adaptability of both kriging and spline models to linear or nonlinear situations 4 whereas classical regression require to find the suitable model structure according to the observed data. Except 5 for classical functions (linear, affine, second degree polynomial, etc.), this may be very complex.

6

Kriging and spline provided very close performances in the tested situations. In addition, the stochastic approach dimensional study remains always challenging. The real difficulty consists on recognizing the adapted 1 covariance structure. On this point, Gaussian structure appears as a good default alternative.

26

  Consistent Lasso Estimation Through the Bootstrap; Hastie et al. 2001; Mohri, Rostamizadeh and Talwalkar 27 2012).

  13 variable modeling the uncertainty about ݔ‪ሺݕ ሻ. The distribution function ݔ‪ሺܨ , ݖሻ = ݔ‪ሺݑ‪ܾሼݎܲ ሻ ≤ |ݖሺܫሻሽ made 14 conditional to the available information ሺܫሻ fully models that uncertainty in the sense that probability intervals 15 can be derived, such as: 16 ሼሺ ሻ ∈ ሾ; ሿ|ሺሻሽ = ሺ , ሻ -ሺ , ሻ (Eq. 24)

Fig. 1 5 Fig. 2 :

 152 Fig. 1 : a) 2D plots of dataset 1 in the corresponding study area; b) 2D plots of dataset 2 in the

8 2 .Page

 2 2D points were then randomly generated around the study area as sampled data 9 3. A predefined bivariate function ݂ was applied to each sampled data and a "white noise" (i.e. normally 10 distributed random variable with mean zero and a fixed variance) was added to the result to obtain the 11 corresponding observed responses.12 Thus, each data set consists on ݊ triplet ሺ,ݔ ,ݕ ݖሻ such as 13

Page

  Fig. 3 : Block flow diagram for data acquisition

7Page

  samples) sets. Training samples were selected using a space filling algorithm(Santiago, Sergent 2012) in order to ensure that most predictive situations may be rigorously considered as interpolation 9 cases. The projection of training samples in Conversion-T 95 space is plotted in Fig.4. The color scale is related 10 to measured CP (using NF ISO 23015 (NF EN ISO 23015 1994)). Samples were numbered and labeled from 1 to 11 40. A gradient of CP may be globally observed since CP tends to increase with the T 95 value. In contrast, the 12 higher the conversion rate, the lower the CP is. These observations are in accordance with previous study which 13 pointed that diesel CP and T 95 values are both strongly dependent on its heavy n-alkanes contents. Furthermore, 1 hydrocracking enables to convert molecules combining cracking and isomerization reactions. Then, n-alkanes 2 are mostly converted into branched alkanes when the conversion rate is high. The third variable used to model 3 CP is related to Feedstock which may also significantly affect the diesel quality.

7

  Fig. 4 : Projection of training samples in conversion rate-T95 space

  leave-one-out (LOO) cross-validation was first applied to training data and a ܧܵܯܴ of cross 15 validation and the percentage of predicted points with a precision less than confidence interval (CI) of 16 the standard measurement method were then deduced (see formulae in Table5) (Wahba and models were developed for each simulated database introduced in paragraph 2.4. Their 14 performances were evaluated over the study area and were compared with those of classical regression model.

  13 obviously provides very good performances as all the assumptions of gaussian model are verified. Results are 14 illustrated in Fig. 5. Consider first the results for MLR model. Fig. 5a illustrates the overlapping of the MLR 15 response surface (plane colored in blue) to the original graph (plane colored in black); green points represent the 16 training data. The corresponding prediction errors are plotted in Fig. 5b; the study area is delimited by the two-17 dimensional space and the absolute deviation related to each point is represented by a color scale; white circles 18 localize training points It may be observed in Fig. 5a that MLR response surface and original graph are 19 obviously very close. Note also that blue regions which refers to low prediction errors are predominant in Fig.

  20

  5b. Both above observations show the good quality of the fit, in accordance with the good properties of the LS 21 estimator in case of Gaussian linear model. However, MLR response surface and original graph are not entirely equivalent. Indeed, the visual contrast between blue and black color that appears in Fig.5acombined with the 1 symmetric distribution of prediction errors observed in Fig.5bsuggest a slight tilt of MLR response surface 2 relative to the original plane. Note also that the symmetrical aspect of the prediction errors distribution does not 3 depend on the training set configuration.

Fig. 5 :

 5 Fig. 5 : a)-Overlapping of MLR response surface (blue) and original map (black) for affine function (data

9

  the adapted analytical expression to compute classical regression (linear or nonlinear) appears unlikely. Thus, 10 only kriging and spline response surface are discussed below. Prediction errors distribution is represented in Fig.116a for kriging model. The model appears to provide good accuracy in the most part of the study area. The dark 12 blue regions that refer to the lowest prediction errors are localized around the training samples locations (white 13 circles). A low quality of fit is particularly observed in a well-localized region that correspond to both low 14 samples and a high variability of the function to fit. These observations may be extended 1

3 5 Fig

 5 Fig. 6 a)-Overlapping of kriged response surface (blue) and original map (black) for rational function

  Fig. 7 : a)-Overlapping of spline response surface (blue) and original map (black) for sum of potential

  for stochastic approach. Classical intervals have obviously 10 Page 20 of 30 ACS Paragon Plus Environment Energy & Fuels ellipsoidal form due to their analytical expression. The ellipsoid size increases regularly with the distance from 1 global barycenter of training data.

Fig. 8 :

 8 Fig. 8 : Amplitude of 95% level confidence interval within the study area; a) for dataset 2; b) for dataset 3

7Fig. 9

 9 Fig. 9 for kriging model. Statistics of Models performances are available in Error! Reference source not 18 found.. On training set, MAD and RMSE values are clearly better for kriging (2.1°C and 2.9°C respectively) than for MLR (3.0°C and 4.0°C respectively). Moreover, the percentage of predicted values at a precision level

1 2

 1 Fig. 4 that all these samples are located relatively far from the rest of training data. That points the most valuable

6

  On prediction set, models performance are also quite better for kriging model than for MLR. Actually,7kriging model provides a RMSE value of 2.0°C and predicts 94% of test samples at a precision level under the 8 confidence interval of the standard measure, whereas the corresponding values are respectively 2.5°C and 75% 9 for MLR model.

Fig. 9 :4

 9 Fig. 9: Parity plots of kriging model for prediction of diesel cloud point; a) on training set; b) on

Table 1 : Example of covariance models 8

 1 

	Type of covariance	Expression
	Exponential	

Table 3 : Properties of the seven different VGO used to produce diesel samples 1

 3 

	VGO	Origin	Density at	Nitrogen	Sulphur	IBF -FBF (°C)	Kinematic	Kinematic viscosity
			15°C				viscosity	at 100°C
			(g/cm 3 )	(wt	(wt%)		at 70°C	
				ppm)				
	B	Gansu	0,8974	1190,00 1,0409	348,00 -584,00	82,25	12,55
		(Chine)						
	C	Iranian Saniya	0,9375	1300,00 2,8743	321,90 -615,10	124,74	11,11
	G	Husky	0,9580	1080,00 3,0300	215,00 -565,00	126,70	25,20
	K	SR	0,9346	1755,00 2,2375	337,70 -632,50	25,24	9,73
	M	Hoil+Oural	0,9314	2160,00 1,0777	292,00 -606,20	81,87	8,06
	N	Etats-Unis	0,9208	1160,00 0,2974	158,20 -581,40	32,07	4,69
	P	Mix of	0,9284	1395,00 1,8921	316,00 -624,00	133,24	11,93
		Arabian						
		Light/Basrah						
		(Irak) 85/15						
	2							
	3							
	4							

Table 4 : Measured and evaluated properties of feedstock and diesel samples 5

 4 

	Property	Petroleum cut	Standard Methods	References
	Cloud point (CP)	diesel	NF ISO 23015	(NF EN ISO 23015
				1994)
	Simulated distillation	diesel	ASTM D2887	(ASTM D2887 2016)
	(ܶ , ݅ =			
	5, 10, 15, … , 90, 95ሻ			
	6			
	For the prediction of diesel CP, samples were divided into training (40 samples) and prediction (16

Table 6 : Intrinsic parameters estimates in learning step for interpolation methods 10

 6 

	Interpolation method	Intrinsic	Data set 1	Data set 2	Data set 3
		parameters			
	Splines	Order (݉)	2	2	3
		Smoothing (ߣ)	0.17	4e-4	3e-6
	Kriging	Nugget	1.12	0.70	2e-3
		ߠ ଵ	11.50	1.24	0.45
		ߠ ଶ	10.43	1.21	0.50
	11				
	3.1				

.1 Data set 1 (affine function) 12

  Statistics for models performance in simulated situations are given in Table7. For data set 1, MLR

Table 7 : Statistics for Models performances in simulated situations 7

 7 

	Data	Model	MRD	RMSEP
		Regression	0.13	0.24
	Data set 1	Kriging	0.07	0.40
		Spline	0.10	0.23
		Regression	7.80	2.52
	Data set 2	Kriging	3.83	1.88
		Spline	3.60	1.69
		Regression	0.40	0.32
	Data set 3	Kriging	0.10	0.18
		Spline	0.22	0.29

Table 8 : Statistics for Models performances in prediction of diesel cloud point 18

 8 

	Type of	Model	MAD	RMSEP	% points	% points
	Validation		(°C)	(°C)	predicted at	predicted at
					± CI	± 2CI
	Leave-one-out	MLR	3.0	4.0	60	82
		Kriging	2.1	2.9	70	90
	Prediction	MLR	2.0	2.5	75	94
		Kriging	1.8	2.0	94	94

where ߳ denotes the measurement error related to the ݅ ௧ observation.

The simplest approach of spline so called "Interpolating spline" consists on assigning a local estimate ,ݑ‪ሺݖ ݒሻ

model which is generally based on a stochastic approach. Let ܣ denotes the study area. Thus, it is assumed that

[START_REF] Wahba | Some New mathematical -Methods for Variational Objective Analysis Using Splines and Cross Validation[END_REF] 

Same statistics were evaluated on prediction set

ACS Paragon Plus Environment

Energy & Fuels

and MacOS. Various performing packages are available and allow to implement models from personal data. The 9 package "stats" contains function that allow fitting linear regression models and statistical calculations. The 10 package "DiceKriging" was used to implement kriging models (Olivier Roustant 2015). The package "fields" 11 contains a function called "Tps" that enables to develop smoothing spline models.

Appendix A : Estimation of regression parameters

In statistics, an estimator is a rule to calculate an estimate of a given quantity based on observed data [START_REF] Azaïs | Le modèle linéaire par l'exemple: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS[END_REF]. Let ߠ denotes an estimator of ߠ. It is generally obtained by solving an optimization problem such as:

where ܬ is an objective function that depends on the available observed data. There are various types of estimator according to the analytic expression of the objective function. The most currently used is the least squares (LS)

estimator which is defined as follows:

The quality of an estimator is evaluated by two statistical characteristics:

• Its bias

where ܧሾܺሿ and ܸሾܺሿ denotes respectively the expected value and the variance of the random variable ܺ. An estimator is considered as an optimal one whether it is an unbiased with a minimal variance [START_REF] Azaïs | Le modèle linéaire par l'exemple: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS[END_REF]. Under the assumptions that modelling errors are normally independently identically distributed (i. i. d.), it has been shown that the LS-estimator presents optimal characteristics (Antoniadis, Berruyer and Carmona 1992;

Azaïs and Bardet 2012).

Regression models may be divided into two groups: the generalized linear models if ݂ can be expressed as a linear combination of its parameters (affine, polynomial, quadratic, etc.); the nonlinear models (rational fraction, exponential, logarithmic, etc.)

Appendix B : multivariate normal distribution

A gaussian vector is a numeric vector such that any linear combination of his components is a normally distributed random variable. A multivariate normal distribution is entirely characterized by its mean vector ݉ and its variance-covariance matrix Σ. Let ሺܺ ଵ , … , ܺ ௗ ሻ denotes a Gaussian vector. The probability density is defined as follows:

Appendix C : General trend for universal kriging

The ݂ that appear in the definition of universal kriging predictor (paragraph Error! Reference source not found.) are polynomials of degree lower or equal to ݉. If ݔ is a ݀dimensional vector, they are denied as follows [START_REF] Journel | When do you need a trend model in Kriging ?[END_REF]: In statistics, a likelihood function is a function of a statistical model parameters given data. Likelihood functions play a key role in statistics inference. The basic idea of likelihood function consists on considering models parameters as a set of random variable. It is then defined as the probability density function of parameters given the observed data. The maximum likelihood estimate is the set of values that maximizes the likelihood function [START_REF] Myung | Tutorial on maximum likelihood estimation[END_REF].

Appendix E : Nugget effect

In the early development of geostatistics, the term 'nugget effect' was coined for the apparent discontinuity at the beginning of many semi-variogram graphs. This name was chosen to reflect the large differences found between neighboring samples in 'nuggety' mineralization such as Wits gold reefs [START_REF] Goovaerts | Geostatics for natural Resources evaluation[END_REF]. It may be defined as follows:

where ܥ is the recognized covariance model by plotting semi-variogram.