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Abstract
We show that when we formulate the lattice Boltzmann equation with a small time step ∆t

and an associated space scale ∆x, a Taylor expansion joined with the so-called equivalent
equation methodology leads to establish macroscopic fluid equations as a formal limit. We
recover the Euler equations of gas dynamics at the first order and the compressible Navier-
Stokes equations at the second order.

1) Discrete geometry
• We denote by d the dimension of space and by L a regular d-dimensional lattice. Such
a lattice is composed by a set L0 of nodes or vertices and a set L1 of links or edges between
two vertices. From a practical point of view, given a vertex x, there exists a set V (x)

of neighbouring nodes, including the node x itself. We consider here that the lattice L
is parametrized by a space step ∆x > 0. For the fundamental example called D2Q9 (see
e.g. Lallemand and Luo, 2000), the set V (x) is given with the help of the family of vectors
(ej)0≤j≤J defined by J = 8,
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and the vicinity
(1.2) V (x) = {x + ∆x ej, 0 ≤ j ≤ J } .
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• In the general case, we still suppose that the equation (1.2) holds but we do not make any
precise definition concerning the integer J and the nondimensionalized vectors (ej)0≤j≤J .

Nevertheless if x is a node of the lattice (x ∈ L0), then yj = x + ∆x ej is an other node
of the lattice, i.e. yj ∈ L0.

2) Lattice Boltzmann framework
• We introduce a time step ∆t > 0 and we suppose that the celerity λ defined according
to

(2.1) λ =
∆x

∆t
remains fixed. Then we introduce a local velocity vj in such a way that
(2.2) ∆t vj = ∆x ej , 0 ≤ j ≤ J .

In this d-dimensional framework we will denote by vαj (1 ≤ α ≤ d) the Cartesian components
of velocities vj. Recall that if x is a node of the lattice, the point x + ∆t vj is also a node
of the lattice:
(2.3) x ∈ L0 =⇒ x + ∆t vj ∈ L0 , ∀j = 0, . . . J.

• According to D’Humières (1992), the lattice Boltzmann scheme describes the dynamics
of the density f j(x, t) of particles of velocity vj at the node x and for the discrete time
t. We introduce the d+ 1 scalar “conservative variables” W (x, t) composed by the density
ρ and the momentum q. Note that it is also possible to take into account the conservation
of the total energy (see D’Humières’s article for example). We have

(2.4) ρ(x, t) =
J∑
j=0

f j(x, t) ≡ W 0(x, t)

(2.5) qα(x, t) =
J∑
j=0

vαj f
j(x, t) ≡ Wα(x, t) , 1 ≤ α ≤ d ,

and
(2.6) W (x, t) =

(
ρ(x, t), q1(x, t), · · · , qd(x, t)

)
.

When a state W is given in space Rd+1, a Gaussian (or any other choice) equilibrium
distribution of particles is defined according to
(2.7) f jeq = Gj(W ) , 0 ≤ j ≤ J

in such a way that

(2.8)
J∑
j=0

Gj(W ) ≡ W 0 ,

J∑
j=0

vαj G
j(W ) ≡ Wα , 1 ≤ α ≤ d .

• Following D’Humières (1992), we introduce the “moment vector” m according to

(2.9) mk =
J∑
j=0

Mk
j f

j , 0 ≤ k ≤ J .

For 0 ≤ i ≤ d, the moments mi are identical to the conservative variables:


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(2.10) m0 ≡ ρ , mα ≡ qα , 1 ≤ α ≤ d .

In other words, the matrix M satisfies
(2.11) M0

j ≡ 1 , Mα
j ≡ vαj , 0 ≤ j ≤ J , 1 ≤ α ≤ d .

We assume that vectors (ej)0≤j≤J are chosen such that the (d + 1) × (J + 1) matrix
(Mk j)0≤k≤d, 0≤j≤J is of full rank. With this hypothesis, the conservative moments W intro-
duced in relation (2.6) are independent variables.

• When a particle distribution f is given, the moments are evaluated according to (2.9).
The matrix M is supposed to be invertible and the inverse relation takes the form:

(2.12) f j =
J∑
k=0

(M−1)jk m
k , 0 ≤ j ≤ J .

When f jeq is determined according to the relation (2.7), the associated equilibrium moments
mk

eq are given simply according to (2.9), i.e. in this case

(2.13) mk
eq =

J∑
j=0

Mk
j f

j
eq , 0 ≤ k ≤ J .

We remark also that by construction (relation (2.8)), we have
(2.14) mi

eq = mi = W i , 0 ≤ i ≤ d .

3) Collision step
• The collision step is local in space and is naturally defined in the space of moments. If
mk(x, t) denotes the value of the kth component of the moment vector m at position x

and time t, the same component mk
∗(x, t) of the moment after the collision is trivial by

construction for the conservative variables:
(3.1) mi

∗(x, t) = mi(x, t) , 0 ≤ i ≤ d .

For the non-conservative components of the moment vector, we fix the ratio sk (k ≥ d+ 1)
between the time step ∆t and the relaxation time τk of an underlying process:

(3.2) sk =
∆t

τk
, d+ 1 ≤ k ≤ J .

• Then mk
∗(x, t) after the collision is defined according to

(3.3) mk
∗(x, t) = (1− sk)mk(x, t) + skm

k
eq , d+ 1 ≤ k ≤ J .

Proposition 1. Explicit Euler scheme.
The numerical scheme (3.3) is exactly the explicit Euler scheme relative to the continuous
in time relaxation equation

(3.4)
d

dt

(
mk −mk

eq

)
+

1

τk

(
mk −mk

eq

)
= 0 , d+ 1 ≤ k ≤ J .


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Proof of Proposition 1.
Following e.g. Strang (1986), we know that the explicit Euler scheme for the evolution (3.4)
takes the form

(3.5)
1

∆t

[(
mk −mk

eq

)
(t+ ∆t)−

(
mk −mk

eq

)
(t)
]

+
1

τk

(
mk −mk

eq

)
(t) = 0 .

We have by construction the relation (3.1), that is mi(t + ∆t) = mi(t) for 0 ≤ i ≤ d with
these notations. Then W (t+∆t) = W (t) and, due to the relation (2.7), f jeq(t+∆t) = f jeq(t)

after the collision step for all the components j of the particle distribution. Due to (2.13),
we deduce that mk

eq(t + ∆t) = mk
eq(t) for all k ≤ J. Thus the expression (3.5) takes the

simpler form

(3.6)
1

∆t

[
mk(t+ ∆t)−mk(t)

]
+

1

τk

(
mk −mk

eq

)
(t) = 0 ,

which is exactly (3.3), except the change of notations: mk(t+ ∆t) is replaced by mk
∗. �

• We remark also that the classical stability condition for the explicit Euler scheme (see
again e.g. the book of Strang) takes the form
(3.7) 0 ≤ ∆t ≤ 2 τk .

We will suppose in the following that
(3.8) 0 < sk ≤ 2 , d+ 1 ≤ k ≤ J .

to put in evidence that the moments mk are not conserved for index k greater than d+ 1.

We remark also that for the physically relevant Boltzmann equation, the relaxation times
τk have a physical sense. With the lattice Boltzmann scheme itself, these physical constants
are no longer correctly approximated whereas the ratios sk = ∆t

τk
are supposed to be fixed

in all what follows. Despite the usual “LBE” denomination, a lattice Boltzmann scheme is
not a numerical method to approach the Boltzmann equation !

• The particle distribution f j∗ after the collision step follows the relation (2.12). We have
precisely after the collision step

(3.9) f j∗ =
J∑
k=0

(M−1)jk m
k
∗ , 0 ≤ j ≤ J .

4) Advection step
• The avection step of the lattice Boltzmann scheme claims that after the collision step,
the particles having velocity vj at position x go in one time step ∆t to the jth neigh-
bouring vertex. Thus the particle density f j(x+ vj ∆t, t+ ∆t) at the new time step in the
neighbouring vertex is equal to the previous particle density f j∗ (x, t) at the position x after
the collision:
(4.1) f j(x+ vj ∆t, t+ ∆t) = f j∗ (x, t) .

We re-write this relation in term of the “arrival” node x+vj ∆t. We set x̃ = x+vj ∆t, then
we have x = x̃− vj ∆t and going back to the notation x, we write the relation (4.1) in the
equivalent manner


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(4.2) f j(x, t+ ∆t) = f j∗ (x− vj ∆t, t) , 0 ≤ j ≤ J , x ∈ L0 .

Proposition 2. Upwind scheme for the advection equation.
The scheme (4.2) for the advection step of the lattice Boltzmann method is nothing else that
the explicit upwind scheme for the advection equation

(4.3)
∂f j

∂t
+ vj •∇f j = 0 , 0 ≤ j ≤ J ,

with a so-called Courant-Friedrichs-Lewy number σj in the jth direction of the lattice
defined by

(4.4) σj ≡ | vj |
∆t

∆x | ej |
equal, due to the definition (2.2), to unity: σj = 1.

Proof of Proposition 2.
When the Courant-Friedrichs-Lewy number σj is equal to unity, it is classical (see e.g.
Strang, 1986) that the upwind scheme is exact for the advection equation. �

5) Equivalent equation at zero order
• The lattice Boltzmann scheme is defined by the relations (2.4) to (2.9), (3.3) and (4.2).
It is parametrized by the lattice step ∆x, the matrix M linking the particle distribution f

and the moment vector m, the choice of the conservative moments, the nonlinear equilibrium
function G(•), the time step ∆t and the ratios sk between the time step and the collision
time constants for nonequilibrium moments. In what follows, we fix the geometrical and
topological structure of the lattice L, we fix the matrix M and the equilibrium function
G(•), we fix also the ratio λ defined in (2.1) and last but not least, we suppose that the
parameters sk for k ≥ d+ 1 have a fixed value. Then the whole lattice Boltzmann scheme
depends on the single parameter ∆t.

• We explore now formally what are the partial differential equations associated with the
Boltzmann numerical scheme, following the so-called “equivalent equation method” intro-
duced and developed by Lerat-Peyret (1974) and Warming-Hyett (1974). This approach is
based on the assumption, that a sufficiently smooth function exists which satisfies the differ-
ence equation at the grid points. This assumption gives formal responses to put in evidence
partial differential equations that minimimize the truncation errors of the numerical scheme.
Nevertheless, we note here that this method of analysis fails to predict initial layers and
boundary effects properly, as discussed by Griffiths and Sanz-Serna (1986) or Chang (1990).
The idea of the calculus is to suppose that all the data are sufficiently regular and to expand
all the variables with the Taylor formula.





François Dubois

Proposition 3. Taylor expansion at zero order.
With the lattice Boltzmann defined previously, we have

(5.1) f j(x, t) = f jeq(x, t) + O(∆t) , 0 ≤ j ≤ J ,

(5.2) f j∗ (x, t) = f jeq(x, t) + O(∆t) , 0 ≤ j ≤ J ,

with f jeq defined from the conservative variables W according to the relation (2.7).

Proof of Proposition 3.
The key point is to expand the relation (4.2) relative to the infinitesimal ∆t. We have on
one hand

(5.3) f j(x, t+ ∆t) = f j(x, t) + O(∆t)

and on the other hand

(5.4) f j∗ (x− vj ∆t, t) = f j∗ (x, t) + O(∆t)

Then mk
∗(x, t) =

J∑
j=0

Mk
j f

j
∗ (x, t) = mk(x, t) + O(∆t) and

(5.5) mk
∗(x, t) − mk(x, t) = O(∆t) .

But, due to (3.3), we have

(5.6) mk
∗(x, t) − mk(x, t) = −sk

(
mk(x, t)−mk

eq(x, t)
)
.

From (5.5) and (5.6) we deduce, due to the fact that sk 6= 0 when k ≥ d+ 1 :

(5.7) mk(x, t) = mk
eq(x, t) + O(∆t) , k ≥ d+ 1 .

We insert (5.7) into (5.5) and we deduce

(5.8) mk
∗(x, t) = mk

eq(x, t) + O(∆t) , k ≥ d+ 1 .

Taking into account the relations (2.14) and (3.1) on one hand and (2.12) and (3.9) on the
other hand, we deduce (5.1) and (5.2) from (5.7) and (5.8). �

6) Taylor expansion at first order
• We expand now the relation (4.2) one step further with respect to the time step ∆t.

We introduce the second order moment

(6.1) Fαβ ≡
J∑
j=0

vαj v
β
j f

j
eq , 1 ≤ α, β ≤ d .

We denote in the following ∂t instead of ∂
∂t

and ∂β in place of ∂
∂xβ

. Then we have the
following result at the first order.

Proposition 4. Euler equations of gas dynamics.
With the lattice Boltzmann scheme previously defined, we have the conservation of mass
and momentum at the first order:

(6.2) ∂tρ +
d∑

β=1

∂β q
β = O(∆t)


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(6.3) ∂tq
α +

d∑
β=1

∂β F
αβ = O(∆t) .

Proof of Proposition 4.
We expand both sides of relation (4.2) up to first order:
f j(x , t + ∆t) = f j(x , t) + ∆t ∂tf

j + O(∆t2)

f j∗ (x − vj ∆t , t) = f j∗ (x , t) − ∆t vβj ∂βf
j
∗ + O(∆t2) .

We take the moment of order k of this identity:

mk(x , t) + ∆t ∂tm
k + O(∆t2) = mk

∗(x , t) − ∆t
J∑
j=0

Mk
j v

β
j ∂βf

j
∗ + O(∆t2)

and we use the previous Taylor expansions (5.1) (5.2) at the order zero:

(6.4) mk(x , t) + ∆t ∂tm
k
eq = mk

∗(x , t) − ∆t
J∑
j=0

Mk
j v

β
j ∂βf

j
eq + O(∆t2) .

We take k = 0 inside the relation (6.4). We get (6.2) since m0(x , t) ≡ m0
∗(x , t) ≡ ρ(x , t).

Considering now the particular case k = α with 1 ≤ α ≤ d, we have also mα(x , t) ≡
mα

∗ (x , t) ≡ qα(x , t) and the relation (6.3) is a direct consequence of the definition (6.1) and
the property (2.11). �

Proposition 5. Technical lemma.
We introduce the “conservation defect” θk according to the relation

(6.5) θk(x , t) = ∂tm
k
eq +

J∑
j=0

Mk
j v

β
j ∂βf

j
eq ≡

J∑
j=0

Mk
j ( ∂tf

j
eq + vβj ∂βf

j
eq ) .

Then we have the following properties:

(6.6) mk(x , t) = mk
eq(x , t) − ∆t

sk
θk + O(∆t2) , k ≥ d+ 1 ,

(6.7) mk
∗(x , t) = mk

eq(x , t) −
( 1

sk
− 1

)
∆t θk + O(∆t2) , k ≥ d+ 1 ,

(6.8) ∂βf
j
∗ = ∂βf

j
eq − ∆t

J∑
k=d+1

( 1

sk
− 1

)
(M−1)jk ∂βθ

k + O(∆t2) .

Proof of Proposition 5.
We start from the relation (6.4) and we have observed at the previous proposition that
(6.9) θi = O(∆t) , 0 ≤ i ≤ d .

We remark also that from the relation (5.6), we have

mk(x , t)−mk
eq(x , t) =

1

sk

(
mk(x , t) − mk

∗(x , t)
)

if k ≥ d+ 1.

Then the relation (6.6) is a direct consequence of (6.4) and the definition (6.5). In conse-
quence, the relation (6.7) follows from (6.6) and (6.4). Due to (6.7), (6.9) and (3.9), we
have

(6.10) f j∗ (x , t) = f jeq(x , t) − ∆t
∑
k≥d+1

( 1

sk
− 1

)
(M−1)jk θ

k + O(∆t2)


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and the relation (6.8) follows from derivating (6.10) in the direction xβ. �

7) Equivalent equation at second order
• We introduce the tensor Λαβ

k according to

(7.1) Λαβ
k ≡

J∑
j=0

vαj v
β
j (M−1)jk , 1 ≤ α, β ≤ d , 0 ≤ k ≤ J .

We can now establish the major result of our contribution.

Proposition 6. Navier-Stokes equations of gas dynamics.
With the lattice Boltzmann method defined in previous sections and the conservation defect
θk defined in (6.5), we have the following expansions up to second order accuracy:

(7.2) ∂tρ +
d∑

β=1

∂β q
β = O(∆t2)

(7.3) ∂tq
α +

d∑
β=1

∂β

(
Fαβ −∆t

∑
k≥d+1

( 1

sk
− 1

2

)
Λαβ
k θk

)
= O(∆t2) .

• A consequence of relation (7.3) is the fact that a lattice Boltzmann scheme approximates
at second order of accuracy a Navier-Stokes type equation with viscosities µk of the form

(7.4) µk = ∆t
( 1

sk
− 1

2

)
.

We refer for the details to D. D’Humières (1992), Lallemand and Luo (2000) or to our recent
survey (2007). The relations (7.4) are known as the “D’Humières relations”. We observe that
in practice, the scalar µk is imposed by the physics and by the parameter ∆t is constrained
by the space discretization ∆x and the relation (2.1). Then the parameter sk must be
chosen in order to satisfy the D’Humières relations (7.4).
Proof of Proposition 6.
We start again from the identity (4.2). We expand both terms up to second order accuracy:

f j(x , t + ∆t) = f j(x , t) + ∆t ∂tf
j +

1

2
∆t2 ∂2

ttf
j + O(∆t3)

f j∗ (x − vj ∆t , t) = f j∗ (x , t) − ∆t vβj ∂βf
j
∗ +

1

2
∆t2 vβj v

γ
j ∂

2
βγf

j
∗ + O(∆t3) .

We take the moment of order i (0 ≤ i ≤ d) of this identity. We obtain:

(7.5)


mi(x , t) + ∆t ∂tm

i +
1

2
∆t2 ∂2

ttm
i + O(∆t3) = mi

∗(x , t) +

−∆t
J∑
j=0

M i
j v

β
j ∂βf

j
∗ +

1

2
∆t2

J∑
j=0

M i
j v

β
j v

γ
j ∂

2
βγf

j
∗ + O(∆t3) .

We use the microscopic conservation mi
∗(x , t) ≡ mi(x , t) in (7.5) and the previous Taylor

expansion at order one, in particular the relation (6.8). We divide by ∆t and we deduce:


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∂tm
i +

1

2
∆t ∂2

ttm
i = −

J∑
j=0

M i
j v

β
j ∂βf

j
eq +

+ ∆t
J∑
j=0

∑
k≥d+1

M i
j v

β
j

( 1

sk
− 1
)

(M−1)jk ∂β θ
k +

+
1

2
∆t

J∑
j=0

M i
j v

β
j v

γ
j ∂

2
βγf

j
eq + O(∆t2) .

Then

(7.6)



∂tm
i +

d∑
β=1

J∑
j=0

M i
j v

β
j ∂βf

j
eq =

= ∆t
d∑

β=1

J∑
j=0

∑
k≥d+1

M i
j v

β
j

( 1

sk
− 1
)

(M−1)jk ∂βθ
k +

+
∆t

2

(
− ∂2

ttm
i +

d∑
β=1

J∑
j=0

M i
j v

β
j v

γ
j ∂

2
βγf

j
eq

)
+ O(∆t2) .

• We set i = 0 in the relation (7.6) and we look for the conservation of mass. Due to the
property M0

j ≡ 1, the sum over j in the second line of (7.6) is null since
∑J

j=0v
β
j (M−1)jk

is equal to zero. We have also the following algebraic calculus:

∂2
ttm

0 = ∂2
ttρ = −

d∑
β=1

∂2
tβ q

β + O(∆t) = −
d∑

β=1

∂β ∂t q
β + O(∆t) =

=
d∑

β=1

d∑
γ=1

∂2
βγ F

β γ + O(∆t) =
d∑

β=1

d∑
γ=1

J∑
j=0

vβj v
γ
j ∂

2
βγf

j
eq + O(∆t)

and the third line of (7.6) is null up to second order accuracy. Thus the conservation of mass
(7.2) up to second order accuracy is established.
• We set i = α with 1 ≤ α ≤ d and we look for the conservation of momentum. In this
particular case, the relation (7.6) takes the form:

(7.7)



∂tq
α +

d∑
β=1

J∑
j=0

vαj v
β
j ∂βf

j
eq =

= ∆t
∑
k≥d+1

( 1

sk
− 1
) d∑

β=1

[ J∑
j=0

vαj v
β
j (M−1)jk

]
∂βθ

k +

+
∆t

2

(
− ∂2

ttq
α +

d∑
β=1

J∑
j=0

vαj v
β
j v

γ
j ∂

2
βγf

j
eq

)
+ O(∆t2) .

We have now to play with some algebra:


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−∂2
ttq

α +
d∑

β=1

J∑
j=0

vαj v
β
j v

γ
j ∂

2
βγf

j
eq =

=
d∑

β=1

(
∂t∂βF

αβ +
J∑
j=0

vαj v
β
j v

γ
j ∂

2
βγf

j
eq

)
+ O(∆t)

=
d∑

β=1

∂β

( J∑
j=0

vαj v
β
j

(
∂tf

j
eq + vγj ∂γf

j
eq

) )
+ O(∆t)

=
d∑

β=1

∂β

( J∑
j=0

vαj v
β
j

J∑
k=0

(M−1)jk θ
k
)

+ O(∆t)

=
d∑

β=1

∂β

( ∑
k≥d+1

[ J∑
j=0

vαj v
β
j (M−1)jk

]
θk
)

+ O(∆t)

=
d∑

β=1

∂β

( ∑
k≥d+1

Λαβ
k θk

)
+ O(∆t)

due to the definition (7.1). We deduce from (6.1), (7.7) and the above calculus:

∂tq
α +

d∑
β=1

∂βF
αβ = ∆t

∑
k≥d+1

( 1

sk
− 1
) d∑

β=1

Λαβ
k ∂β θ

k +

+
∆t

2

d∑
β=1

∂β

( ∑
k≥d+1

Λαβ
k θk

)
+ O(∆t2)

= ∆t
d∑

β=1

∑
k≥d+1

( 1

sk
− 1

2

)
Λαβ
k ∂β θ

k + O(∆t2) .

and the relation (7.3) is established. �

8) Equivalent equation at second order
• The previous propositions establish that the equivalent partial differential equations of
a Boltzmann scheme are given up to second order accuracy by the same result as the formal
Chapman-Enskog expansion. We find Euler type equation at the first order (Proposition 4)
and Navier-Stokes type equation at the second order (Proposition 6). Note that with the
above framework no a priori formal two-time multiple scaling is necessary to establish the
Navier-Stokes equations from a lattice Boltzmann scheme, as done previously in the contri-
bution of D’Humières. We remark also that a so-called diffusive scaling like ∆t

∆x2
= constant,

instead of our condition (2.1) ∆t
∆x

= constant, leads to the incompressible Navier-Stokes
equations, as proposed by Junk, Klar and Luo (2005). In both cases, we have just to use
the Taylor formula for a single infinitesimal parameter.


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