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ABSTRACT
This work addresses the scarcity of annotated hyperspectral
data required to train deep neural networks. Especially, we
investigate generative adversarial networks and their applica-
tion to the synthesis of consistent labeled spectra. By training
such networks on public datasets, we show that these mod-
els are not only able to capture the underlying distribution,
but also to generate genuine-looking and physically plausible
spectra. Moreover, we experimentally validate that the syn-
thetic samples can be used as an effective data augmentation
strategy. We validate our approach on several public hyper-
spectral datasets using a variety of deep classifiers.

Index Terms— hyperspectral image classification, gener-
ative models, deep learning, data augmentation.

1. INTRODUCTION

Data augmentation consists of introducing unobserved sam-
ples into the optimization process of a statistical model [1].
Since the reintroduction of Convolutional Neural Networks
(CNN) for image classification [2], this practice has been crit-
ical to avoid overfitting of deep networks. Therefore, as anno-
tated hyperspectral data is scarce, overfitting is an even more
common pitfall compared to multimedia image processing.
Although recent efforts have been made to use CNN for hy-
perspectral image classification [3, 4, 5, 6], successes are lim-
ited to small datasets that do not leverage the generalization
capacity of deep networks.

To this end, recent works have started to investigate data
augmentation as a way to artificially enlarge the quantity of
annotated samples. For example, [7] suggested a model of re-
lighting to simulate the same hyperspectral pixel under differ-
ent illuminations. With a more data-driven approach, [8] in-
troduced a label propagation strategy to incorporate observed
but unlabeled samples to the training set. However, these
methods require either unlabeled samples or physics-related
assumptions and modeling. On the other hand, [9] introduced
generative models in hyperspectral image processing by using
variational autoencoders to find the endmembers composition
of spectral mixtures.
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Fig. 1: The generative adversarial network used for hyper-
spectral sample synthesis. Red arrows denote the training of
the classifier and discriminator, while the blue arrows denote
the training of the generator. Dashed lines denote connections
used in the supervised setting.

In this work, we introduce a way to artificially synthe-
size new annotated hyperspectral samples using a purely
data-driven approach based on generative adversarial net-
works [10]. More specifically, we use a GAN to approximate
the distribution of the observed hyperspectral samples and to
generate new plausible samples that can be used to train deep
networks. Our method can exploit both labeled and unlabeled
samples and is validated on several datasets covering both
aerial and satellite sensors over rural and urban areas.

2. GENERATIVE MODELS

The Generative Adversarial Network framework has been in-
troduced in [10]. It uses deep neural networks to approxi-
mate an unknown data distribution based on its observations.
The idea is to generate new samples of a given distribution
by training a generator to map random noise from the latent
space to the distribution. However, the target distribution is
observed only on some data points and we wish to use the
generator to create new data points that also still belong to the
underlying distribution. To this end, the generator is trained
to approximate the distribution using an adversarial objective
function. This function is obtained by introducing another



network called the discriminator – or critic. The discrimina-
tor learns to infer whether a given sample belongs to the true
or the fake distribution, i.e. if the sample belongs to the train-
ing set or was created by the generator. The discriminator is
trained for a few steps, and then the generator is optimized to
fool the critic, i.e. to generate samples that are indistinguish-
able to the discriminator.

Several flavors of GAN have been introduced that use var-
ious objective functions. In this work, we use a generator G
and a discriminator D in the Wasserstein GAN [11] fashion,
trained with the gradient penalty from [12]. However, this
GAN setup alone only makes it possible to infer a global dis-
tribution. In our case, we wish to condition the output of the
generator w.r.t. the hyperspectral classes. More specifically,
we want our generator to take as an input a random noise and
class label, so that it learns to generate a sample beloging to
the specified class. This is called conditioning a GAN. To
do so, we introduce an additional classifier network C. This
classifier adds a conditional penalty on the generated distri-
bution by enforcing that the generated spectra are classified
in the same class as the conditional label G that was given.
The whole framework is illustrated in Fig. 1. While G and
D can be trained without label knowledge (i.e. unsupervised
training), C needs annotated samples to learn.

3. EXPERIMENTAL SETUP

We train our GAN on four datasets: Pavia University and
Pavia Center (urban aerial scenes at 1.3m/px and 103 bands),
Indian Pines (agricultural scene at 20m/px and 224 bands)
and Botswana datasets (swamps, acquired by the Hyperion
sensor at 30m/px with 242 bands). We use atmospheric cor-
rection when available and we normalize the reflectance be-
tween [0, 1]. As we try to approximate individual hyperspec-
tral pixels with no spatial context, we use 4-layers deep fully
connected networks with 512 neurons for G, D and C using
the leaky ReLU non-linearity [13]. G is followed by a sig-
moid activation and outputs a vector which length equals the
expected number of bands, while C has as many outputs as
classes and D only has one output.

Optimization is done for all three networks using the RM-
Sprop stochastic gradient descent policy. The GAN is trained
for 100,000 iterations, with C and D being trained twice per
iteration before optimizing G’s weights.

4. SPECTRA ANALYSIS

In this section, we aim to investigate the physical plausibility
of the synthetic spectra. Especially, we compare the real and
fake distributions under several criteria. To this end, we train
two GANs on random samples from the Pavia University and
Indian Pines datasets.

We can visually assess the quality of the generated spec-
tra by comparing their statistical moments, e.g. plotting the

Fig. 2: Mean spectrum and standard deviation per class for
two classes of the Pavia Center dataset. Fake spectra look
noisier as they overfit on local spectral properties.

Split Random (uniform) Disjoint

Train \ Test Real Fake Real Fake

Real 89.5 98.3 87.2 98.8
Fake 87.8 99.2 79.4 99.9

Table 1: Accuracies of a linear SVM on real and fake samples
from the Pavia University dataset.

mean spectra and their standard deviation (Fig. 2). As can be
seen, the spectral shapes are accurately learned by the GAN.
However, we can immediately identify two potential short-
comings. First, the fake mean spectra appear noisier than the
true spectra, which means that the GAN overfitted on some
specific features that are common to only a subset of the real
spectra. Second, the fake standard deviation is lower than the
real one, which means that fake spectra are less diverse than
the real ones. Both of those signs point to a form of overfitting
called mode collapse [14].

To learn more about how this overfitting actually impacts
the distribution of the fake samples in the spectral space, we
apply Principal Component Analysis (PCA) to map the spec-
tra into a 2D space ( Fig. 3). The clusters formed by the differ-
ent classes are reproduced truthfully by the synthesized sam-
ples. However, there are slight deformations that show that
the GAN failed to capture some specificities of each class.

We can form an intuition on how the fake distribution re-
spects the class boundaries of the real spectra by training a
linear Support Vector Machine (SVM) on the latter and ap-
plying it on the former. The SVM will learn the best separat-
ing hyperplanes from the true distribution. Hopefully, these
hyperplanes should separate the synthesized spectra with the
same accuracy. If the accuracy is significantly lower, then the
GAN learned unrealistic samples; if it is significantly higher,
then the GAN learned samples too similar to the center of
each class cluster, i.e. suffered from mode collapse. Results
are presented in Table 1. We consider two train/test splits:
either 3% of randomly selected annotated samples or two dis-
joint halves of the image, i.e. spatially disjoint sets of 50%
of the pixels. In the unsupervised setting, we also use the



(a) Pavia University

(b) Indian Pines

Fig. 3: PCA applied on real and fake spectra. Real spectra
have been randomly sampled from the annotated part of the
image. The two sets have the same number of samples.

unlabeled samples. As expected, it is easier for the SVM to
separate the fake data than the real samples. However, train-
ing on fake samples only still reach encouraging accuracies,
only between 2% and 8% under the reference real/real set-
ting. This means that although the synthesized spectra are
concentrated around the main mode of each class, they still
are representative of their class.

Finally, as GANs map a latent noise space to the signal
space, it is possible to explore the spectral manifold by in-
terpolating between two noise vectors. Within a fixed class,
it allows to generate spectra between two arbitrary points of
the latent space. However, it is also possible to interpolate
between two classes to generate intermediate spectra that do
not necessarily belong to one specific class. This is illustrated
in Fig. 4. There is a continuous progression between the ori-
gin and target vectors, which is especially interesting in the
inter-class interpolation. The generator learns to perform re-
alistic mixing of several materials, which is the reverse of the
unmixing task. Dictionary learning, nearest-neighbors or re-
versibility approaches such as [9] could be used to retrieve the
material mixing if an exhaustive panel of synthetic mixes has
been generated.

(a) Interpolation between two samples of the “bare soil” class.

(b) Interpolation with a fixed noise vector between the “meadows’
and “bare soil” classes.

Fig. 4: Interpolations in the latent noise space allow the gen-
erator to synthesize a continuous variety of samples in the
spectral domain. The GAN was trained on the Pavia Univer-
sity dataset. α controls the interpolation.

5. DATA AUGMENTATION

Considering that the synthesized hyperspectral samples are
both realistic and diverse, we suggest to use the fake spectra
to augment pre-existing hyperspectral datasets. We test this
idea on several datasets: Indian Pines (aerial, rural), Pavia
University (aerial, peri-urban), Pavia Center (aerial, urban)
and Botswana (satellite, rural). Results in the supervised and
semi-supervised settings are illustrated in Table 2. Augment-
ing the dataset with fake samples marginally increase the clas-
sification accuracy when the GAN is trained only on anno-
tated samples. This is expected as the samples would hardly
bring new information compared to the true samples. How-
ever, training the GAN in a semi-supervised fashion allows
us to augment the dataset with fake samples that come from
an approximation of the global distribution, including knowl-
edge of how unlabeled samples look like. It therefore in-



Dataset PaviaU PaviaC Botswana Indian Pines
Classifier Augmentation 3% (r) 50% (s) 3% (r) 50% (s) 3% (r) 50% (s) 3% (r) 50% (s)

NN 1D

∅ 92.72 86.22 98.93 96.26 86.90 84.87 79.44 74.00
GAN 92.95 86.47 99.00 96.26 87.72 84.60 80.01 74.81

ss-GAN 93.12 87.20 98.93 96.70 88.40 85.27 80.42 74.58

Table 2: Overall accuracies (OA) computed on several datasets with different data augmentation strategies. Sampling strategy
is either a 50/50 spatial split of the image (s) or a uniform random sampling of 3% of the labeled samples (r).

creases the model generalization ability, especially in the case
where the training and testing set are disjoint.

It is worth noting that increasing drastically the number of
fake samples does not increase further the classification accu-
racy and even degrades it beyond a certain point. We specu-
late that the introduction of too many approximative samples
hurt the model’s classification ability.

6. DISCUSSION

In this work, we presented a method based on Generative
Adversarial Networks to generate an arbitrary large number
of hyperspectral samples matching the distribution of any
dataset, annotated or not. Through a data-driven analysis, we
showed that the obtained spectra are plausible as they respect
the statistical properties of the real samples. By interpolating
between vectors in the latent space, we show that it is possible
to synthesize any arbitrary combination of classes, i.e. to per-
form realistic spectral mixing. This is especially interesting as
this could form the basis of data-driven unmixing techniques,
e.g. by using a dictionary of synthetic spectra. Finally, we
showed that incorporating synthetic samples can serve as a
data augmentation strategy for hyperspectral datasets, with
positive accuracy improvements on the Indian Pines, Pavia
University, Pavia Center and Botswana datasets.

This opens the door to new possibilities in hyperspectral
data synthesis and manipulation based on generative models,
e.g. domain adaptation by learning the transfer function be-
tween two sensors, unmixing by disentangling spectra in the
latent domain or hyperspectral data augmentation for deep
learning purposes.
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