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Abstract—We present the implementation of a visual localiza-
tion and control system of a low cost quadcopter for an ap-
plication in a remote electronic laboratory. The issues addressed
are: environment exploration in remote laboratories, autonomous
visual inspection of planar objects, and autonomous homing and
landing. The localization system is composed of two comple-
mentary visual approaches: (i) a visual SLAM (Simultaneous
Localization And Mapping) system, and (ii) a homography-based
localization system. We extend the application scenarios of the
first system by allowing close range inspection of a planar electri-
cal instrument and autonomous landing. Experiments conducted
in a remote laboratory workspace are presented. They prove the
performance of the proposed system in terms of real-time and
robustness.

I. INTRODUCTION

Remote labs constitute an interesting and novel way of
doing labs. Anywhere and at anytime the student can access
the lab equipment and do his labwork. This new way of
distance learning can be used to increase the motivation
of nowadays students, especially if it is coupled with new
technologies like quadcopters [1].

Quadcopters equipped with a camera can be used in these
laboratories in order to mimic the student behavior in tradi-
tional lab and increase motivation for learning. It can be an
interesting way to make the lab experience immersive and
ludic. Specifically, in remote electronics laboratories it can
fly and move in 3D space to inspect electrical instruments,
consequently sending direct visual feedback of the results of
an experiment in a new interesting way to the student. To
achieve this, and to make the process autonomous two systems

are needed. First, a localization system that can estimate the
position and orientation of the quadcopter in 3D space with
respect to an object of interest (front panel of an electrical
instrument in our case). Second, a control system that sends
appropriate commands to the quadcopter in order to reach a
desired relative or absolute 3D position.

Many localization systems and sensors can be used in order
to estimate quadcopter position and orientation in 3D space.
For outdoor environments, GPS sensors constitute the best
solution to localize a quadcopter. For indoor environments,
artificial markers can be placed in the scene to facilitate the
task of localization [2]. These markers can also be reflective
and detected by an external localization system that gives
accurate position estimate. However, the challenge in these
applications is to use only available on-board sensors. Differ-
ent sensors can be used to gather information about the en-
vironment and localize the quadcopter. Stereo rig cameras [3]
and RGBD cameras [4] have been investigated. Using stereo
or RGBD cameras allows for absolute pose estimate however
this comes with an additional weight and power consumption.
In this work we used the Parrot AR Drone 2.0 [5], a low
cost quadcopter equipped with two monocular cameras facing
forwards and downwards, in addition to pressure, ultrasound
and inertial sensors. Using the monocular cameras available
on-board constitutes a good trade-off between weight and
information recovery from the environment (3D localization,
environment recognition, etc.). However, a monocular camera
alone cannot give absolute scale pose estimate due to the well
known scale ambiguity rising from the perspective projection



of 3D world into 2D images. Despite this fact, combining the
visual information with some prior knowledge of 3D world or
other sensors, that can give partial but absolute pose estimate,
can overcome this issue and allow for absolute 3D pose
estimate. In [6] authors use the well known SLAM algorithm
PTAM (Parallel tracking and mapping) [7] and combine it
with inertial and ultrasound sensors readings in order to get
the absolute 3D pose estimate. They fuse all the available
information in a Kalman filter allowing for information fusion
and delay compensation. In the present implementation, we
build on their system and use it for 3D pose estimation when
the quadcopter is exploring the 3D world. However, since the
visual SLAM relies on corresponding points detected in the
flow of images, it will drastically fail to give 3D pose estimate
if the quadcopter is asked to inspect an object of interest,
since these points will disappear when the object of interest
occupies the majority of the image pixels. In this scenario,
the quadcopter must move to a position near the object of
interest which will cause the visual tracking of points to fail
because there are not enough points available in the field of
view of the camera. To overcome this limitation, this system
is extended by using the object of interest as a landmark.
In this way two localization modules are available: a visual
SLAM module (needed for localization w.r.t. an arbitrary
world coordinate system) and a localization module that relies
on detecting and localizing a planar object with respect to
the quadcopter and to the arbitrary world coordinate system
(needed for controlling the remote lab activities and sending
visual feedback to the student). The first module is suitable
while exploring the environment whereas the latter is suitable
when the quadrocopter is in a short distance range from the
object of interest or when it needs to land on a landing zone.
The paper is organised as follows: In the second section we
present an overview of the remote electronic lab LaboREM.
In section 3 we explain how detection and 3D localization can
be carried out for a given planar object of interest. Based on
the planar assumption the homography transform is estimated
in order to estimate the quadcopter-object relative pose. It also
presents the 3D pose visual servoing of the quadcopter. In the
final section, we present some experiments and results.

II. REVIEW OF THE REMOTE ELECTRONICS LAB

LaboREM is a remote laboratory in electronics developed
for first year undergraduate students in engineering. The
learning objective of LaboREM is to enable students to wire
and test remotely electronic circuits, make measurements and
characterize each circuit by its time or frequency response.
The electronic circuits consist of operational amplifiers, active
filters and oscillators. Its design is based on a classic client-
server architecture [8]. The student calls for a lab session by
simple URL addressing. A first-in first-out strategy is adopted
to give access to the remote lab to one client (student) at
a time. A 5 minute connection is allotted to each student
for one short manipulation. If he wants to repeat, he has to
queue again. The remote lab application is developed using NI-
LabVIEW software and the easy-to-use RFP protocol to pilot

Fig. 1. Main components of the remote lab LaboREM.

the remote devices. The hardware setup is shown in Figure 1.
It includes: (i) a robotic arm that mimics the student’s hand
for placing electronic components equipped with magnets on
an electronic breadboard, (ii) measurement instruments and
data acquisition system (DAQ), (iii) a webcam with zoom
control that mimics the student’s eye in order that the student
doesn’t feel so far away from what is actually happening in
the lab, (iv) a quadcopter (AR quadcopter 2.0) with the role of
flying in the lab for exploring the environment and inspecting
electrical instruments in order to increase student immersion
and motivation. The pedagogical scenario for the lab activity
is based on a game-like approach: it includes a treasure hunt
and a Top10 of the best measurements. Technically, the game
scenario is built on four basic concepts like in e-games: time
spent, score or mark obtained for an activity, level (beginner,
medium, advanced) and number of lives or repetitions allowed.

III. PROPOSED IMPLEMENTATION

A. Quadcopter-Object relative 3D pose : A real-time and
marker free solution

Planar objects are a well defined type of objects that are
widely available in human made environments. Incorporating
the information that the object of interest is planar is of great
benefit for camera object pose estimation. Suppose we want to
determine the 3D rigid transformation from the planar object
coordinate system to the camera coordinate system by using
the projection of that object into the image. Suppose the coor-
dinate system attached to the planar object is chosen in a way
that the object lies in its XY plane. Any point (Xi, Yi, 0, 1)
on the object will thus have zero Z coordinate. Using the
pinhole camera model, a point on the object (Xi, Yi, 0, 1) will
be projected to an image point pi as follows:
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αu, αv are the focal length in image pixel coordinate system

and uc, vc are the coordinate of the principal point in the
same coordinate system. rij and ti denotes the elements of
the rotation transformation and the translation transformation
respectively. s denotes the scale parameter. The 3 by 3 matrix
H is called homography and it encapsulates the intrinsic and
extrinsic parameters. Once this matrix is estimated, the aim is
to extract the extrinsic parameters and use them for controlling
the quadcopter using the paradigm of 3D pose-based servoing.
However, due to scale ambiguity arising from perspective
projection, there is not one single H matrix that can map the
3D points to the 2D points but a 1D vectorial space of 3 by
3 matrices Hλ = λK T . The ambiguity can be eliminated by
forcing the rotation matrix to be orthonormal and by having
prior information about the dimensions of the object. From this
homography matrix, one can directly calculate the rotation and
translation matrix as follows [9]:r11r21
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B. Estimating the homography matrix

In order to estimate the homography matrix that maps any
plane into another plane by means of perspective projections
several methods can be used. These methods are usually
classified into local (feature-based) and global (featureless)
methods.

Given a template image of the planar object, local methods
extract local keypoints and attribute a descriptor to each of
them both in the template image and the current image. After
this step, keypoints (at least four keypoints) in both images
are matched according to a similarity metric performed on the
descriptors. Given the point correspondences, the homography
matrix is estimated using robust methods like RANSAC (Ran-
dom Sample Consensus) in order to deal with the presence of
outlier correspondences. Local methods can work well with no
prior information on the homography parameters. However, in
some cases the robust computation may be computationally
expensive and do not work in real time. Different descriptors
exist like SIFT [10], SURF [11], ORB [12], BRIEF [13]
and many others. A survey about keypoint detectors and
descriptors can be found in [14].

On the other hand, the global methods use all the infor-
mation in the image and attempt to find the homography
matrix that best aligns the template patch to the test image.
This process however gives rise to non linear minimization
problems that can be solved using iterative algorithms like
gradient descent or Levenberg-Marquardt. Thus, a good ini-
tialization is necessary to guarantee the convergence of those
algorithms. Different similarity functions exist to measure the
degree to which two patches are aligned, the most used ones
being the sum of squared distance (SSD) and the enhanced
correlation coefficient (ECC) [15]. In practice the first one uses
a brightness model in order to cope with variation of additive
and multiplicative change of illumination [16] whereas the
latter is by definition insensitive to those illumination changes.
These methods have the advantage that they can run in
real time and give good results if a rough estimate of the
homography parameters is known. Thus the two families of
methods are complementary: The first one is robust with no
priors needed but computationally expensive, while the second
is fast and works well if a prior is available.

Here, both approaches are used in order to estimate the 3D
pose of the quadcopter with respect to the object of interest.
The first approach is used for detecting the object of interest
as well as for recovering from a tracking loss. The second is
used in the tracking process. The approach is divided into two
steps: detection and tracking. In the detection step, template
matching on a pyramid of the image is used to search for
the desired object. Once the detection is done, a homography
transformation is computed by using the bounding box of
the detected object to determine the quadcopter-object relative
pose. A command is then sent to the drone in order to
move it closer to the object. Template matching is used to
allow successful detection of the object despite its distance
from the camera and its size, as keypoints detector (SIFT)



fails to detect and put in correspondences keypoints if the
object of interest doesn’t occupy a certain amount of image
pixels. However once the quadcopter’s camera is close to the
object we use the SIFT descriptor to allow more robustness
to orientation changes. Once the object is detected, the track-
ing stage begins. As a rough estimation of the homography
matrix is available from the detection stage, it is used as an
initial solution for the next frame and the ECC algorithm
is applied to estimate the homography in this frame. The
homography estimation is propagated in this way from a frame
to the next one, and used as a prior for the ECC algorithm.
However, sometimes the ECC algorithm will fail to converge
due to several reasons. For example, communication problems
between the quadcopter and the computer makes the last
estimated homography not close enough to the real solution
of the current frame, which prevents algorithm convergence.
Besides, the image quality can be degraded by motion blur
or decoding/encoding problems. In this work, tracking loss is
declared if the ECC algorithm is unable to converge or if it
converges to a clearly unrealistic estimation. At each frame,
we compute the 3D pose of the quadcopter with respect to the
planar object. By monitoring the differences in the position of
the quadcopter along time, we can detect a loss of tracking
by setting a threshold on the difference of two consecutive
pose estimates (position and orientation) which works well
in practice. For example if the distance traveled in 3D space
during two consecutive frames is larger than 30 cm, it is clear
that the tracking is not correct and the pose is erroneous. In
the latter case, we resort back to the local method (SIFT) if
the quadcopter-object distance is relatively small, or to the
template matching method in the other case, to reinitialize the
ECC tracker as shown in Figure 2. This pose estimate is fused
with inertial measurements sent by the drone in a Kalman filter
framework in order to smooth this estimate, and to provide
robustness when the visual tracker fails. The Kalman filter is
used also to compensate for time delays as done in [6]. The
homography estimation process is shown in Figure 2.

C. Visual control of the quadcopter

In order to control the 3D position and orientation of
the quadcopter, a feedback control loop is used with two
complementary sensors. One of the sensors is used for feed-
back at a time. The approach in [6] is used, taking as input
video stream, ultrasound and inertial measurements when the
quadcopter is exploring the environment far from the object
of interest and when the quadcopter needs to return to the
base station. The homography algorithm fused with inertial
measurements is used when the quadcopter is inspecting the
object of interest at a close distance. In this way, lost of
localization is avoided when the quadcopter is approaching the
instrument which allows for autonomous object inspection and
environment exploration. The pose derived from either source
is used in a closed servoing loop. The control loop is shown in
Figure 3. The controlled degrees of freedom associated with
the quadcopter are the 3D translation and the yaw angle. Each
degree is controlled by a closed loop control system with a

Fig. 2. Diagram showing the homography estimation process for each input
video frame. The object is declared detected if the normalized correlation
is greater than 0.8 in the case of template matching and if the Number of
corresponding keypoints is greater than 8 in the case of SIFT. The object
is declared tracked correctly if the estimated distance travelled between two
consecutives frames is less than 30 cm or difference of yaw, roll or pitch
angle is less than 15 degrees.

Fig. 3. Control loop using either the visual SLAM when exploring the
environment or the homography estimation algorithm when inspecting a planar
object at a short distance.

traditional PID controller. The other two rotational degrees of
freedom (pitch and roll) cannot be used since they do not allow
for position holding, they are used by the on-board embedded
system on the AR Drone 2.0 to allow the quadcopter to move
in different directions.

IV. EXPERIMENTS

In order to evaluate the proposed implementation of 3D
pose estimation and 3D pose-based servoing, we design three
different scenarios. These scenarios are the following: behavior
of the system in response to perturbations when asked to



inspect an object, autonomous visual inspection of planar
object, and autonomous landing. In all these scenarios, the
controlled degrees of freedom associated with the quadcopter
are the 3D translation and the yaw angle.

a) First scenario: The first experiment is done to test
the quality of the homography based visual feedback control
system. To this end, we control the quadcopter in such a way
that the desired 3D pose of its on-board camera is fronto-
parallel to the planar object with a translation vector allowing
a centered view. The pose used for the visual feedback control
is the homography based pose. Since the servoing objective
is to maintain a rigid link between the quadcopter and the
object of interest, any motion induced to the object will force
the quadcopter to compensate for it. We can induce such
motion by a walking person that carries the object or by giving
manual kicks to the quadcopter. The quadcopter then follows
the object, centering it in the image as show in Figure 5. Two
videos of this scenario are available online [17], [18].

b) Second scenario: In remote lab context, an interesting
scenario is the following: the remote student will send a
command to the quadcopter to go and inspect an electrical
device. After receiving this command, the server tells the
quadcopter to carry out the following tasks: it should first
take off, initialize the SLAM algorithm, and initiate a search
procedure for the required instrument. In a general case, to be
able to search for the instrument a path planning and search
algorithm must be used. However, here this is simplified by
considering that the electrical instrument is already in the
camera field of view and hence only detection and servoing
are required. The instrument is searched for in the image
by using template matching applied on the pyramid of the
image to cope with scale change. Once the object is detected,
the homography from the 3D world plane of the electrical
instrument to the image plane is estimated. Based on the
estimated homography, the 3D pose is estimated. We have
now a 3D rigid transformation between coordinate systems
of the instrument and the camera. Since the 3D pose of
the quadcopter with respect to the visual SLAM coordinate
system is known, the 3D pose of the planar object in that
coordinate system can be calculated by cascading multiple
rigid transforms between coordinate systems as shown in
Figure 4. Thus, two localization sources are now available for
visual feedback control. Based on the pose that is provided, it
is possible to control the quadcopter through visual servoing
in order to have a rigid link between the quadcopter and the
instrument. To this end, at any time one needs the current
localization information for the feedback control loops of the
quadcopter. We emphasize the fact that the two sources of
localization cannot be both available for all configurations
and for all actual poses of the quadcopter. Indeed, the visual
SLAM works well when there is enough keypoints in the
image to detect and put in correspondence with 3D map points.
However, as the quadcopter approaches the planar instrument,
most of the keypoints will disappear and the visual SLAM
algorithm might loose tracking. In the latter case, we use the
3D pose estimate given by the homography algorithm. In this
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Fig. 4. Different coordinate systems and rigid transformations used in the
application.

Fig. 5. Quadcopter and external views of the realization of the object tracking
scenario.

way the quadcopter is able to fly and inspect an electrical
instrument as shown in figure 6.

c) Third scenario: Another scenario is getting the quad-
copter home. The same principle is used, by relying on
the homography algorithm to fly away from the electrical
instrument and then switching to the visual SLAM to go back
to the start point. Once being there, the bottom camera of the
quadcopter and the homography algorithm are used to detect
a landing zone. By doing that, the landing maneouvre can be
acheived in an accurate manner. The ECC and the SIFT based
homography estimation are both robust to partial occlusion as
shown in figure 7. A video showing the hovering and landing
maneouvre is available online [19].

The image-based localization and control work in real-time
at an average of 30 FPS in different scenarios.

Fig. 6. Localization based on an electrical instrument (oscilloscope): From
left to right, images taken from the quadcopter video stream that show how
the system can control the quadcopter to obtain a front view of the instrument.

https://youtu.be/42nZTCsfQjE
https://youtu.be/Kr6TnjoByZ0
https://youtu.be/2gYpB9HaCcA


Fig. 7. Visual servoing for homing. On the left: the quadcopter hovering above
the landing template and performing a controlled landing. On the right: the
view seen from the bottom camera of the quadcopter that shows robustness
to occlusion (when the landing object is partially out of the field of view).

V. CONCLUSION

This paper presents the implementation of a visual servoing
system of a quadcopter in a remote lab environment to increase
student immersion in the lab and hence his motivation. The
localization system is based on two complementary algorithms
that work in real-time at video rate in different scenarios.
Qualitative results are presented demonstrating the ability to
use a low cost quadcopter to inspect an object of interest
and return to its base autonomously using only its on-board
sensors. For future work, we intend to allow remote student-
teacher interaction by using visual servoing for quadcopter
control in order to follow and track the teacher’s face.
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