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Abstract

In this paper, we address the change-point estimation issue in multivariate observations

which consist in functions having piecewise constant �rst derivatives corrupted by some ad-

ditional noise. We propose to solve this problem by rewriting it as a variable selection issue

in a sparse multivariate linear model. Moreover, the methodology that we propose takes

into account the dependence that may exist within the multivariate observations. Then, the

performance of our approach is assessed through some numerical experiments and compared
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to other alternative and classical methods. Finally, we apply our methodology to experi-

mental data in order to study the vegetative development of oilseed rape. The evolution of

the number of leaves of oilseed rape can be modeled as a function having piecewise constant

�rst derivatives corrupted by some additional noise where the change-points correspond to

key times in the plant phenology. Our novel estimation method increases the accuracy of

the change-point estimation in comparison with classical approaches. Moreover, we show

that the parameters of the covariance matrix depend on the level of competition between

plants.

Keywords: Multivariate models; change-point estimation; variable selection; dependence;

application to oilseed rape; phyllochron

1. INTRODUCTION

Vegetative development of crops conditions the leaf surfaces which insure the captation of

light for photosynthesis. At the individual plant scale, the leaf appearance rate is a key

factor of this development because it drives the settings of the number of leaves that is

highly correlated to the leaf surface at the crop scale (Nanda, Bhargava & Rawson 1995)

and in �ne to the crop yield (Morrison & Mcvetty 1991; Diepenbrock 2000). Recent works

have shown that leaf appearance rate may also vary highly with plant-plant competition

within the crop (Baey & Cournède 2011) and explains an important part of the leaf surface

variability under high pressure of competition far before the variation in the individual

leaf surface (Baldissera, Frak, de Faccio Carvalho P.C. & Louarn 2014). For these reasons,

the leaf appearance rate is required by many plant models that integrates physiological

processes of plant growth (Evers, Vos, Fournier, Andrieu, Chelle & Struik 2005; Jullien,

Mathieu, Allirand, Pinet, de Re�ye, Cournede & Ney 2011). Studying the variations of

these variables of plant development according to growing conditions makes it possible to

improve the parameterization of plant models which will in turn increase the accuracy of

model simulations and predictions (Gabrielle, Denoroy, Gosse, Justes & Andersen 1998).
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In agronomy, the evolution of the number of leaves is usually modelled as a linear function

of the thermal time expressed in degree.day, that is the sum of the daily temperature

above a base temperature (Bonhomme 2000). Experimental assessment of the relationships

is carried out by recording the number of leaves emerged once to twice a week during

the whole plant growth and the rate of leaf emergence is computed as the slope of the

relationship between the number of leaves and the thermal time. For many species, this

relationship is linear and the inverse of the slope is called the phyllochron, that is the time

between the appearance of two leaves (Rickman & Klepper 1995). For some species, the

number of leaves on the main stem �ts with a piecewise linear continuous function with

two change-points as observed on wheat (Baker, Allen, Boote, Jones & Jones 1990), rice

(Tivet 2000; de Raissac, Audebert, Roques & Bolomier 2004), beetroot (Lemaire, Maupas,

Cournede & de Re�ye 2008) and rapeseed (Jullien et al. 2011; Gomez & Miralles 1990).

Each change-point is a key time in plant phenology and marks the beginning of a new

developmental phase. As far as oilseed rape is concerned, the �rst phase corresponds to

the rosette stage (Miralles, Ferro & Slafer 2001). The change-point had been manually

estimated at 610 degree.day at the middle of January in the region of the north of France

(Jullien et al. 2011). In the second phase, the phyllochron is reduced (acceleration of the

leaf appearance rate) and the second change-point is the anthesis developmental stage (end

of leaf appearance and beginning of �ower development). The last phase is the reproductive

phase where the appearance of �owers replaces those of leaves.

There is a relationship between the timing at which the change in the rate of leaf

emergence occured and the �nal number of leaves (Miralles et al. 2001). The duration of

the two phases depends on several factors such as sowing dates or crop density (Miralles

et al. 2001; Morrison, Mcvetty & R. 1990). However, the causes and timing of these changes

are still not clear-cut. For oilseed rape, (Tittonel 1990) found a link between the date of

the change-point and the �oral transition on the plant apical meristem while (Miralles

et al. 2001) demonstrated that it could not be associated to any particular leaf number.

In rice, the second phase starts with the beginning of the stem elongation (de Raissac
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et al. 2004) and in beetroot, (Lemaire et al. 2008) highlighted a relationship between the

date of the change-point and the competition level. All these reasons justify all the more

the necessity of determining exactly the dates of the change-points.

As indicated by (Lemaire et al. 2008; Morrison et al. 1990), the parameters of the

dynamics of the number of leaves (rate and change-point) may vary in particular with

the plant density. We thus hypothesized that the change-points could be indicators of the

competition between plants. We de�ned an experimental design for winter oilseed rape with

di�erent levels of competition generated by di�erent densities and heterogeneity in initial

plant size.

In the previously cited studies, change-points were estimated manually or �tted with a

linear regression. However, to address this question, we need a method e�cient to estimate

accurately the change-points and sensitive enough to detect di�erences between growing

conditions. An abundant literature is dedicated to the change-point detection issue for

univariate piecewise constant observations corrupted with additive noise both from a the-

oretical and practical point of view. For a review on the change-point detection �eld, we

refer the reader to (Carlstein, Muller & Siegmund 1994). From a practical point of view,

the standard approach for estimating the change-point locations is based on least-square

�tting, performed via a dynamic programming algorithm (DP). Indeed, for a given number

of change-points K, the dynamic programming algorithm, proposed by (Bellman 1961),

takes advantage of the intrinsic additive nature of the least-square objective to recursively

compute the optimal change-points locations with a complexity of O(Kn2) in time, see

(Auger & Lawrence 1989) and (Kay 1993). This complexity has recently been improved

by (Killick, Fearnhead & Eckley 2012), (Rigaill 2015) and (Maidstone, Hocking, Rigaill &

Fearnhead 2016) in some speci�c cases. A di�erent route to reducing the computational

complexity of the multiple change-point detection problem in the univariate case is consid-

ered in (Harchaoui & Lévy-Leduc 2010) who consider the least-squares criterion with a total

variation penalty, which enables them to use the LARS algorithm of (Efron, Hastie, John-

stone & Tibshirani 2004). Other penalties are proposed in (Ng, Lee & Lee 2018). Another
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very popular approach in the one-dimensional case is the Binary Segmentation method pro-

posed by (Scott & Knott 1974) and more recently the Wild Binary Segmentation approach

proposed by (Fryzlewicz 2014).

A large literature is also dedicated to change-point detection and estimation in the

very general multivariate setting. To list but a few, (Bai 2010) proposed a change-point

estimation method in the case where it is assumed that a change in the mean has taken

place in each series at an unknown common point. (Horvath & Huskova 2012) proposed

a change-point detection approach in the case where the changes occur in the mean and

where there is some dependence within each series and not among the di�erent series. (Cho

& Fryzlewicz 2015) devised a parametric approach for identifying multiple change-points in

the second-order structure of a multivariate (possibly high dimensional) time series based

on localized periodograms and cross-periodograms computed on the original multivariate

time series.

In this paper, we propose a novel statistical method to estimate the two change-points

between the three developmental phases which can be seen as piecewise linear continuous

functions corrupted by some additive noise taking into account the dependence that may

exist between the di�erent plants. More precisely, we propose to model the number of leaves

for the di�erent plants at the di�erent thermal times as a sparse multivariate linear model

where the boundaries between the di�erent development stages correspond to the positions

of the non null coe�cients in the multivariate linear model. Further details on this modeling

are given in Section 2.1.

Our contribution then consists in modeling, estimating and removing the dependence

(also called �whitening�) that may exist between the di�erent plants. The corresponding

�whitening� strategy is precisely described in Section 2.2. Then, after a vectorization of the

data, the Lasso criterion proposed by (Tibshirani 1996) is applied for �nding the positions

of the non null coe�cients after having applied a preconditioning described in (Jia & Rohe

2015) to the �whitened� observations. Our approach can thus be seen as an extension of the

methodology proposed by (Harchaoui & Lévy-Leduc 2010) and (Tibshirani 2014). On the

5



one hand, none of these approaches can deal with multivariate observations and take into

account the dependence that may exist between the di�erent plants. On the other hand, we

can deal with the estimation of change-points in observations modeled as piecewise linear

continuous functions instead of piecewise constant functions, which is the case considered

in (Harchaoui & Lévy-Leduc 2010).

The paper is organized as follows. We �rst present in Section 2 the statistical modeling

and the statistical inference that we propose. Then, in Section 3, we provide some numerical

experiments to investigate the statistical performance of our approach which is compared

to classical univariate change-point estimation methods. Finally, in Section 4, we apply our

methodology to data acquired on winter oilseed rape plants.

2. STATISTICAL FRAMEWORK

2.1 Statistical modeling

Let Y be the n×K observation matrix such that each column corresponds to the number

of leaves for the di�erent dates of observations in thermal time for a given plant. Hence,

n corresponds to the total number of observation dates and K to the number of plants.

According to (Jullien et al. 2011), the number of leaves can be modeled as a function of the

thermal time having piecewise constant �rst derivatives. Thus, estimating the thermal times

corresponding to the boundaries of the di�erent development stages amounts to �nding the

thermal times at which the slopes of this function changes. In order to estimate the thermal

times corresponding to the boundaries of the di�erent development stages, we shall use the

following modeling:

Y = XB + E. (1)

In (1), X = (Xi,j)1≤i≤n,1≤j≤n such that

X =



t1 0 . . . 0

t2 t2 − t1 0 . . . 0

...
. . . 0

tn tn − t1 0 . . . tn − tn−1


,
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where the tk's correspond to the di�erent thermal times recorded and E is the n×K random

error matrix. In (1), B is a sparse matrix such that the positions of its non-null coe�cients

correspond to the change-point positions. Thanks to this modeling, �nding the positions

of the non-null coe�cients in B allows us to �nd the thermal times at which the changes

occur in the slope of the function having piecewise constant �rst derivatives. Note that, as

in (Harchaoui & Lévy-Leduc 2010), we modeled the change-point detection problem as an

estimation issue in a sparse linear model. However, there are some di�erences. First, we

extended their modeling to the multivariate case since, here, Y and E are matrices and not

vectors. Second, the matrix X also changed: it is not anymore a lower triangular matrix

with nonzero elements equal to one since this design matrix is dedicated to the detection of

changes in piecewise constant observations.

In this paper, we shall pay a special attention to the dependence that may exist between

the di�erent columns of E, namely between the di�erent plants. More precisely, we shall

assume that the rows of E are independent, identically distributed and such that

(Ei,1, Ei,2, . . . , Ei,q)
i.i.d.∼ N (0,ΣK).

In the following, the covariance matrix ΣK will be chosen in order to take into account the

spatial dependence that may exist among the di�erent plants. Hence, ΣK = (Σi,j)1≤i,j≤K

will be de�ned by

Σi,j = σ2 exp

(
−‖Pi − Pj‖2

2`2

)
, (2)

where σ is a real parameter, ‖Pi − Pj‖ denotes the euclidean distance in R2 between the

plants i and j computed according to their positions in the containers and ` is in (0, 1).

Our goal will be to devise a methodology for estimating the two change-points corre-

sponding to the boundaries of the di�erent stages of development in the number of leaves

as a function of the thermal time for each plant of a given container using the modeling

described in (1) and (2).
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2.2 Statistical inference

The methodology that we propose is a Lasso based approach thus we �rst brie�y recall the

usual framework in which the Lasso approach is used.

Let us consider a high-dimensional linear model of the following form

Y = XB + E , (3)

where Y , B and E are vectors. Note that, in high-dimensional linear models, the matrix X

has usually more columns than rows which means that the number of variables is larger than

the number of observations but B is usually a sparse vector, namely it contains a lot of null

components. In such models a very popular approach initially proposed by (Tibshirani 1996)

consists in using the Least Absolute Shrinkage eStimatOr (LASSO) criterion for estimating

B de�ned as follows for a positive λ:

B̂(λ) = ArgminB
{
‖Y − XB‖22 + λ‖B‖1

}
, (4)

where, for u = (u1, . . . , un), ‖u‖22 =
∑n

i=1 u
2
i and ‖u‖1 =

∑n
i=1 |ui|, which is usually called

the `1-norm of the vector u. Observe that the �rst term of (4) is the classical least-squares

criterion and that λ‖B‖1 can be seen as a penalty term. The interest of such a criterion

is the sparsity enforcing property of the `1-norm ensuring that the number of non-zero

components of the estimator B̂ of B is small for large enough values of λ. Such a criterion

is very relevant in our framework since the problem of �nding the change-points boils down

to �nding the non null coe�cients in the matrix B.

This methodology cannot be directly applied to our model since we have to deal with

matrices and not with vectors. However, by using the following trick, Model (1) can be

rewritten as in (3) where Y , B and E are vectors of size nK.

Let vec(A) denote the vectorization of the matrix A formed by stacking the columns of

A into a single column vector. Then, with

Y = vec(Y ), B = vec(B) and E = vec(E), (5)
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we get (3) with

X = Iq ⊗X, (6)

where ⊗ denotes the Kronecker product.

Let us now summarize the methodology that we propose for estimating the changes in

the slopes:

• First step: Estimation of the random error matrix E by Ê using a Lasso based ap-

proach.

• Second step: Estimation of ΣK by Σ̂K thanks to an estimation of σ and ` in (2).

• Third step: Thanks to the estimator Σ̂K , transforming the data in order to remove

the dependence between the columns of Y . Such a transformation will be called

�whitening� hereafter.

• Fourth step: Estimation of B using a Lasso based approach.

These di�erent steps are described hereafter.

Estimation of the error matrix E and of ΣK (�rst and second steps). In order

to obtain an estimation of Ê, we use (4) with Y and X de�ned in (5) and (6), respectively

and where λ is chosen by cross-validation (CV). We thus obtain Ê as follows:

Ê = Y − XB̂(λCV),

and hence Ê by using that Ê = vec(Ê). The estimations of ` and σ in (2) are then obtained

thanks to the maximum likelihood approach.

Note that this approach provides better results than the one consisting in estimating

the change-points within each column of Y by using a maximum likelihood approach in

order to have an estimation of E and then to estimate ` and σ by a maximum likelihood

approach.
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Whitening step (third step). In order to remove the dependence that may exist be-

tween the columns of Y , we shall use the following transformation:

Y Σ
−1/2
K = XB Σ

−1/2
K + E Σ

−1/2
K . (7)

Since ΣK is in general unknown, we shall replace it by its estimator Σ̂K de�ned by (2) where

` and σ are replaced by their estimator obtained in the second step of our methodology.

We shall thus consider the following transformation:

Y Σ̂
−1/2
K = XB Σ̂

−1/2
K + E Σ̂

−1/2
K . (8)

Estimation of B (fourth step). In order to take into account the dependence between

the columns of Y we propose using a modi�ed version of the standard Lasso criterion (4).

More precisely, by applying the vec operator to (8), we get (3) where

Y = vec(Y Σ̂
−1/2
K ), X = (Σ̂

−1/2
K )′ ⊗X, B = vec(B) and E = vec(EΣ̂

−1/2
K ). (9)

Hence, retrieving the positions of the non null components in B̂ de�ned in (4) with Y and

X previously de�ned provides the estimators of the change-point locations.

Following (Jia & Rohe 2015) preconditioning X by using a Pu�er transformation may

improve the ability of the Lasso criterion to properly retrieve the null and non-null positions

in B. Hence, we shall use a transformation on Model (3) where Y , X , B and E are de�ned

in (9). Let

X = UDV ′

denote the SVD of X where U and V are orthogonal matrices and D is a diagonal matrix

containing the singular values of X . Let also

F = UD−1U ′

denote the Pu�er transformation de�ned in Section 2.1 of (Jia & Rohe 2015). Then, instead

of applying the Lasso criterion directly on (3) with Y , X , B and E de�ned in (9), we shall

apply it on:

FY = FXB + FE . (10)

10



With such a transformation, FE is a centered Gaussian random vector having a covariance

matrix equal to UD−2U ′, the diagonal values of D−2 may thus be very large for very small

singular values of D. For this reason, we propose in the following to keep only in D the m

largest singular values of X , hence, instead of (10), we shall consider

FmY = FmXB + FmE , (11)

where

Fm = UD−1m U ′,

where D−1m is a diagonal matrix having on its diagonal the inverse of the m largest singular

values of X and 0 on the other entries of the diagonal. We shall explain in Section 3 how

to choose m in practical situations.

The parameter λ in the Lasso criterion (4) is chosen by cross-validation. Then, the

estimated positions of the two change-points for each plant k correspond either to the

two largest values of |B̂·,k| (approach called �two max� in Section 3) or to the largest and

smallest values of B̂·,k (approach called �min/max� in Section 3), where B̂·,k denotes the kth

column of B̂. We refer the reader to Section 3 for a further comparison of these estimation

approaches.

3. NUMERICAL EXPERIMENTS

To assess the performance of our methodology, we generated observations Y according to

Model (1) with n = 28, K = 42 and ΣK de�ned in (2) for ` in {0.2, 0.5, 0.8} and σ in

{1, 2, 5, 10}. In the following, we shall denote by t?,k1 and t?,k2 the positions of the change-

points for the plant k.

Note that we have chosen the values of the parameters n and K in order to be as close

as possible to the real data that we plan to analyze in Section 4.

The performance of our approach described in Steps 1 and 2 for estimating ` and σ

de�ned in (2) are displayed in Figure 1 given in the Supplementary material. We can see

from this �gure that the best estimations of ` are obtained for ` = 0.5 and for the other
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values of ` the best estimations of ` are obtained for large values of σ. We observe from

the right part of Figure 1 that σ is generally underestimated except for small values of σ

(σ = 1). However, we shall see in the following that even if ` and σ are not very precisely

estimated the estimation of the t?,k1 's and t?,k2 's is not altered.

In Figures 2, 3 and 4 given in the Supplementary material, our procedure is compared

with other methodologies for estimating the t?,k1 's. These �gures display for di�erent values

of σ and ` the boxplots of the empirical mean over k of |t̂1
k− t?,k1 | as a function of m for 100

replications obtained with procedures containing a whitening step such as ours and with

procedures which do not contain such a stage. More precisely, the tested procedures are:

• (ML) the maximum likelihood approach which is designed for �nding two change-

points in the slope of a function having a piecewise constant �rst derivative without

taking into account the dependence that exists between the columns of Y .

• (M1) Lasso criterion applied to (11) with Σ̂
−1/2
K = IdRK

• (M2) Lasso criterion applied to (11) with Σ̂
−1/2
K = Σ

−1/2
K , which never occurs in practice

• (M3) Lasso criterion applied to (11) with Σ̂
−1/2
K de�ned by (2) where ` and σ are

replaced by their estimators obtained in the �rst and second step of our method (our

approach).

For each of the last three approaches, t̂1
k
or t̂2

k
correspond either to the two largest values

of |B̂·,k| (two max) or to the largest and smallest values of B̂·,k (min/max), where B̂·,k

denotes the kth column of B̂.

Figures 5, 6 and 7 of the Supplementary material display similar results for the t?,k2 's.

We can see from these �gures that the best results are obtained by our approach (M3)

with the (min/max) method for well chosen values of m and that they are very close to the

method using the knowledge of ΣK which is assumed to be unknown in our strategy.

Let us now focus on the choice of m. After some investigation, we observe that �nding

the best value of m is not an easy task since it is very unstable. Thus, instead of selecting
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the m largest singular values of X , we propose to keep the singular values larger than a

given threshold. In the following, we provide the performance of (M3) when the threshold

is equal to 2 for the two max and min/max approaches and compare them with (ML). More

precisely, Figure 8 given in the Supplementary material displays a comparison of (ML) to

(M3) with two max and min/max. We observe from this �gure that the only regions in

which (ML) provides better results than (M3) with two max are those where σ is small. For

(M3) with min/max we do not observe such a phenomenon. Our approach indeed exhibits

particularly good performance for estimating the t?,k2 's and performance equivalent to (ML)

for small values of `. Further comparisons are given in Table 1 which gives the percentage of

times where the procedures (M3) two max and (M3) min/max performs better than (ML).

Note that we only compared our approaches with (ML) since it provides better results

than the generalized least-squares approach. Indeed, Figure 1 displays the boxplots of |t̂1
k−

t?,k1 | and |t̂2
k− t?,k2 | obtained with (ML) and with the maximum likelihood approach applied

to the whitened observations Y Σ
−1/2
K , denoted by (GLS) in the following, for di�erent values

of ` and σ de�ned in (2). We can see from Figure 1 that the performance of (GLS) are on

a par with those of (ML) for small values of ` and that they are altered for large values

of `. This comes from the fact that for removing the spatial dependence within the plants

(dependence within the columns of Y ), Y has to be multiplied on the right by Σ
−1/2
K , see

Equation (7), which changes the values of B, contrary to our approach, where only the

design matrix is modi�ed.

4. APPLICATION TO THE VEGETATIVE DEVELOPMENT OF OILSEED RAPE

In this section, we apply the methodology devised in Section 3 to the data acquired on

winter oilseed rape plants under agronomic conditions.

4.1 Description of �eld experiments

Field experiments were conducted at the experimental unit of INRA Thiverval-Grignon

(France, N 48˚51′20′′ E 1˚56′25”) on the winter oilseed rape cultivar Pollen. Seeds were

sown in individual pots on August 31st and plants were transplanted about two weeks later

13



Two max min/max
t 1

σ

1 2 5 10

`

0.2 1% 31% 91% 99%

0.5 4% 24% 86% 96%

0.8 2% 25% 88% 98%

σ

1 2 5 10

`

0.2 41% 36% 42% 51%

0.5 56% 29% 56% 57%

0.8 75% 80% 94% 100%

t 2

σ

1 2 5 10

`

0.2 8% 48% 98% 100%

0.5 5% 56% 99% 100%

0.8 7% 64% 99% 100%

σ

1 2 5 10

`

0.2 56% 83% 99% 100%

0.5 53% 86% 100% 100%

0.8 83% 95% 100% 100%

Table 1: Percentage of times where the procedures (M3) two max (left) and (M3) min/max

(right) are better than (ML) for estimating the t?,k1 's (�rst row) and the t?,k2 's (second row)

for ` in {0.2, 0.5, 0.8} and σ in {1, 2, 5, 10}.

into eight containers of 1.2 meter square. We hypothethised that density and heterogeneity

in initial plant size may modify the competition between plants and the individual dynamics

in number of leaves. Therefore three di�erent treatments were carried out, each applied to

one to three plant container: high plant density homogeneous (HO), high plant density

heterogeneous (HE) and low density homogeneous (LD), see Table 1 of the Supplementary
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Figure 1: Boxplots of |t̂1
k − t?,k1 | and |t̂2

k − t?,k2 | for the di�erent values of k for the (ML)

(blue) and (GLS) (red) approaches for di�erent values of σ and `.

material. The highest density was 35 plants.m2 and the lowest one was 20 plants.m2. For

the homogeneous treatment plants were selected at transplantation in order to be as similar

as possible (2 leaves, similar leaf surface) while for the heterogeneous treatment plants

were seperated into three categories of plant leaf surface (small, middle, big) and mixed in

equivalent proportion. For each of the three treatments, containers were harvested at two

dates : 780˚D (Early) and 923˚D (Late).

Thermal time was computed with the daily average temperature of the meteorological

station of Thiverval-Grignon, and base temperature was set to 4.5˚C, which is a classical

value for winter oilseed rape (Gabrielle et al. 1998).

4.2 Results on real data

In order to check the presence of dependence between the di�erent plants, the boxplots of

the p-values of the Pearson correlation tests for the di�erent containers before and after

the whitening step are displayed in Figure 2. We can see from this �gure that there exists

some dependence between the plants and that our whitening approach almost removed this

dependence.

Table 2 displays the estimations of ` and σ de�ned in (2) for the eight plant containers.

The estimations of σ are smaller than 1 and the estimations of ` are close to 0.7. We observe

that σ is slightly higher for Containers 1, 5 and 8 i.e. high density and late harvest date,
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Figure 2: Boxplots of the p-values of the Pearson correlation tests using a logarithmic scale

for the di�erent containers before and after the whitening step.

corresponding to a higher level of competition between plants. However, σ is only 0.38 for

Container 2 that followed the same conditions. Within the HO_Late treatment, plants of

Container 1 had in average higher initial leaf surface areas than plants of Containers 2 and

5 (data not shown) which may explain a higher value of σ. Indeed, the higher the leaf area,

the greater the competition for light.

Based on Table 1, our approach (M3) with min/max provides better results than (M3)

with two max in the range of values of σ and `. Moreover, the performance of our approach

(M3) with min/max are at least comparable with those of (ML) or even better. Figure

3 displays the boxplots of the t̂1
k
's and t̂2

k
's obtained by the (ML) and (M3) approaches

for the di�erent containers. We can see from this �gure that the estimations provided by

(ML) have a very high variability contrary to our approach (M3). The latter is therefore

preferable to have a more precise estimation of the change-points. Taking into account the

spatial correlation improves the estimation of the parameters.

The (M3) method with two max returns more variable results than the (M3) with

min/max. However, the estimations given by the (M3) method with two max are more

coherent from an agronomical point of view. Indeed, the �rst estimated change-point with

the (M3) two max was around 600 to 620 ˚D with variation according to the di�erent
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treatments which is in agreement with the biological model. The value is close to the one

found by (Jullien et al. 2011) (610˚D) and coherent with the datation of �oral initiation in

(Miralles et al. 2001). The (M3) method with two max provides later estimations of t̂1
k
's,

and very close to t̂2
k
's, which contradicts the agronomical knowledge. As far as the second

change-point is concerned, the two (M3) methods gave similar estimations. This can be ex-

plained by the fact that the min/max method looks for a strongly positive slope di�erence

followed by a strongly negative slope di�erence whereas the two max method looks for two

high slope di�erences in absolute value. In our case study, the slopes are very high in the

second phase compared to the �rst phase, and the min/max method tends to locate the

two change-points quite close during this second phase. This is illustrated by Figure 4 that

compares the results of the three methods on the data of individual plants. Each subplot

shows the number of leaves as a function of the thermal time for a given plant and the t̂1
k
's

and t̂2
k
's for the methods (ML), (M3) with two max and (M3) with min/max. Individual

plant data are available for the other containers upon request.

To conclude on methods comparison, the (M3) with two max is both more precise than

(ML) and more coherent with the biological model than the (M3) with min/max, at least

for winter oilseed rape.

For species with di�erent patterns of variations in phyllochron between the two phases,

the method (M3) with min/max could give better results. For instance, for WOSR the

slope increases between the two phases whereas it decreases for wheat (Miralles et al. 2001)

or beetroot (Lemaire et al. 2008).

The (M3) methods with two max provides similar values for the two change-points for

the three containers of treatment HO_Late: between 600 ˚D and 650˚D for the �rst

change-point and between 700˚D and 750˚D for the second one. This shows that despite

di�erent values of σ (see Table 2) revealing di�erent levels of biological variability within a

container, the estimation of the change points were stable.

While this method is robust to the biological variability, it is very sensitive to the last

number of measurement dates. In Figure 3, we observe that treatments harvested earlier
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have a change-point around 580 ˚D (Containers 3, 4 and 6) which is lower than the average

value for the other treatments (about 630˚D). To a lesser extent, this is also the case for

the second change-point. From a methodological point of view, it con�rms that it is crucial

to have the full series of measurements to estimate precisely the change point. This default

could be improved by increasing the frequency of measurements, particularly during the

second phase (600 to 800 ˚D). The three containers present also a smaller inter-plants

variations which can be due to a smaller number of observations (hence a smaller number

of possible positions for the change-point).

Heterogenous size at transplantation and density appeared to have little e�ect on the

estimation of the change-point. Estimations of change-points were not modi�ed even if the

σ has been shown to be higher for the treatments with a high competition level. This shows

that the method was robust to the plant heterogeneity. Or it can also be explained by the

fact that the di�erence in competition levels induced by plant densities and heterogeneity

applied were not very contrasted. The method should be further tested on more contrasted

situations before to conclude. As an example, (Zhu, Vos, van der Wer, van der Putten &

Evers 2014) estimated the phyllochron of maize in crops of di�erent complexity: monocul-

ture or mixed stands associated with wheat with di�erent intercrop. Phyllochron di�ered

according to the crop complexity and it also seemed to a�ect the change-points according

to their data.

Plant container 1 2 3 4 5 6 7 8̂̀ 0.7 0.64 0.6 0.63 0.66 0.64 0.69 0.63

σ̂ 0.70 0.38 0.36 0.33 0.54 0.39 0.32 0.71

Table 2: Estimation of ` and σ for the di�erent plant containers.
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Figure 3: Boxplots of the t̂1
k
's (red) and t̂2

k
's (blue) as a function of the plant container

(x-axis) for each method: (ML) (top), (M3) with two max (middle) and (M3) with min/max

(bottom). Containers 1,2 and 5 are HO_Late treatment; Container 3 is HE_Early treat-

ment, Container 4 is HE_Early, Container 6 is LD_Early, 8 is HE_Late and Container 7

is LD_Late.

5. CONCLUSION

The novel statistical method proposed in this article improves the estimation of the change-

points in leaf development models in comparison with the classical methods used in agron-
19
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Figure 4: Estimation of the t̂1
k
's and the t̂2

k
's with k ∈ {A1, . . . , A7, B1, . . . , F7}\{B5, E4}

for Container 1: (M1) (black), (M3) with two max (red) and (M3) with min/max (green).

Each plot displays the number of leaves (y-axis) as a function of the thermal time (x-axis)

for each plant k, where k ∈ {A1, . . . , A7, B1, . . . , F7}\{B5, E4}.
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omy. Covariance matrices estimated on experimental data presented an increasing variabil-

ity (σ) with increasing levels of competition induced by density or heterogeneity in plant

sizes. However, the selected statistical method was robust to this variability and estima-

tions of change-points were similar between treatments around 620˚D for the �rst one and

750˚D for the second one. The method was sensitive to the time of �nal plant harvest and

thus to the number of measurement dates that should be a particular point of vigilance for

the further experiments. In this paper, we used a Lasso criterion where the least-squares

part is equivalent to the negative log-likelihood only in the Gaussian case. Since the number

of leaves are non negative discrete valued observations it could be interesting to extend our

methodology to deal with this case using, for instance, a Poisson distribution. This will be

the subject of a future work.

REFERENCES

Auger, I. E., & Lawrence, C. E. (1989), �Algorithms for the optimal identi�cation of segment

neighborhoods,� Bulletin of Mathematical Biology, 51(1), 39�54.

Baey, C., & Cournède, P. (2011), Using a hierarchical segmented model to assess the dy-

namics of leaf appearance in plant populations� in 14th Applied Stochastic Models and

Data Analysis International Conference (ASMDA 2011).

Bai, J. (2010), �Common breaks in means and variances for panel data,� Journal of

Econometrics, 157(1), 78 � 92. Nonlinear and Nonparametric Methods in Econometrics.

Baker, J., Allen, L., Boote, K., Jones, P., & Jones, J. (1990), �Developmental responses

of rice to photoperiod and carbon dioxide concentration,� Agricultural and Forest

Meteorology, 50, 201�210.

Baldissera, T., Frak, E., de Faccio Carvalho P.C., & Louarn, G. (2014), �Plant development

controls leaf area expansion in alfalfa plants competing for light,� Annals of Botany,

113(1), 145�157.

21



Bellman, R. (1961), �On the Approximation of Curves by Line Segments Using Dynamic

Programming,� Commun. ACM, 4(6), 284�286.

Bonhomme, R. (2000), �Bases and limited to using 'degree.day' units,� European Journal

of Agronomy, 13(1), 1�10.

Carlstein, E., Muller, H. G., & Siegmund, D. (1994), Change-point problems, Hayward:

Institute of Mathematical Statistics Lecture Notes.

Cho, H., & Fryzlewicz, P. (2015), �Multiple-change-point detection for high dimensional

time series via sparsi�ed binary segmentation,� Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 77(2), 475�507.

de Raissac, M., Audebert, A., Roques, S., & Bolomier, J. (2004), Competition between

plants a�ects phenology in rice cultivars� in New directions for a diverse planet :

Proceedings for the 4th International Crop Science Congress, eds. N. Turner, J. Angus,

L. Mc Intyre, M. Robertson, A. Borrell, & D. Lloyd, Gosford : Regional Institute.

Diepenbrock, W. (2000), �Yield analysis of winter oilseed rape (Brassica napus L.) : a

review,� Field Crops Research, 67, 35�49.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004), �Least angle regression,� The

Annals of statistics, 32(2), 407�499.

Evers, J., Vos, J., Fournier, C., Andrieu, B., Chelle, M., & Struik, P. (2005), �Towards a

generic architectural model of tillering in Graminae, as exempli�ed by spring wheat

(Triticum aestivum),� New Phytologist, 166(3), 801�812.

Fryzlewicz, P. (2014), �Wild binary segmentation for multiple change-point detection,� Ann.

Statist., 42(6), 2243�2281.

Gabrielle, B., Denoroy, P., Gosse, G., Justes, E., & Andersen, M. (1998), �A model of

leaf area development and senescence for winter oilseed rape,� Field Crops Research,

57, 209�222.

22



Gomez, N., & Miralles, D. (1990), �Factors that modify early and late reproductive phases in

oilseed rape ( Brassica napus L .): Its impact on seed yield and oil content.,� Industrial

Crops and Products, 34, 1277�1285.

Harchaoui, Z., & Lévy-Leduc, C. (2010), �Multiple Change-Point Estimation With a Total

Variation Penalty,� Journal of the American Statistical Association, 105(492), 1480�

1493.

Horvath, L., & Huskova, M. (2012), �Change-point detection in panel data,� Journal of

Time Series Analysis, 33(4), 631�648.

Jia, J., & Rohe, K. (2015), �Preconditioning the Lasso for sign consistency,� Electron. J.

Statist., 9(1), 1150�1172.

Jullien, A., Mathieu, A., Allirand, J., Pinet, A., de Re�ye, P., Cournede, P., & Ney, B.

(2011), �Characterization of the interactions between architecture and source-sink re-

lationships in winter oilseed rape (Brassica napus) using the GreenLab model,� Annals

of Botany, 107(5), 765�779.

Kay, S. (1993), Fundamentals of statistical signal processing: detection theory, : Prentice-

Hall, Inc.

Killick, R., Fearnhead, P., & Eckley, I. A. (2012), �Optimal Detection of Changepoints

With a Linear Computational Cost,� Journal of the American Statistical Association,

107(500), 1590�1598.

Lemaire, S., Maupas, F., Cournede, P., & de Re�ye, P. (2008), �A morphogenetic crop

model for sugar-beet (Beta vulgaris L.),� International Symposium on Crop Modeling

and Decision Support: ISCMDS, 5, 19�22.

Maidstone, R., Hocking, T., Rigaill, G., & Fearnhead, P. (2016), �On optimal multiple

changepoint algorithms for large data,� Statistics and Computing, pp. 1�15.

23



Miralles, D., Ferro, B., & Slafer, G. (2001), �Developmental responses to sowing date in

wheat, barley and rapeseed,� Field Crop Research, 71, 211�223.

Morrison, M., & Mcvetty, P. (1991), �Leaf appearance rate of summer rape,� Can. J. Plant

Sci., 71, 405�412.

Morrison, M., Mcvetty, P., & R., S. (1990), �E�ect of altering plant density on growth

characteristics of summer rape,� Can. J. Plant Sci., 70, 139�149.

Nanda, R., Bhargava, S., & Rawson, H. M. (1995), �E�ect of sowing date on rates of leaf

appearance , �nal leaf numbers and areas in Brassica campestris , B . juncea , B .

napus and B . carinata,� Field Crops Research, 42, 125�134.

Ng, C. T., Lee, W., & Lee, Y. (2018), �Change-point estimators with true identi�cation

property,� Bernoulli, 24(1), 616�660.

Rickman, R., & Klepper, B. (1995), �The Phyllochron: where do we go in the future?,�

Crop Science, 35, 44�49.

Rigaill, G. (2015), �A pruned dynamic programming algorithm to recover the best segmen-

tations with 1 to Kmax change-points,� Journal de la Société Française de Statistique,

156(4), 180�205.

Scott, A. J., & Knott, M. (1974), �A cluster analysis method for grouping means in the

analysis of variance,� Biometrics, 30(3), 507�512.

Tibshirani, R. (1996), �Regression shrinkage and selection via the Lasso,�

J. Royal. Statist. Soc B., 58(1), 267�288.

Tibshirani, R. J. (2014), �Adaptive piecewise polynomial estimation via trend �ltering,�

Ann. Statist., 42(1), 285�323.

Tittonel, E. (1990), Evènements liés à l'évolution �orale chez le colza Brassica napus L. var

Oleifera Metzg, PhD thesis, Université Paris Sud, Centre d'Orsay, Paris.

24



Tivet, F. (2000), Etude des facteurs génotypiques et environnementaux déterminant la mise

en place de la surface foliaire chez le riz. Incidence particuliere d'un de�cit hydrique,

PhD thesis, INA P-G.

Zhu, J., Vos, J., van der Wer, W., van der Putten, P., & Evers, J. (2014), �Early competi-

tion shapes maize whole-plant development in mixed stands,� Journal of Experimental

Botany, 65(2), 641�653.

25


