Arthur Mensch
email: <arthur.mensch@m4x.org>

Mathieu Blondel

Differentiable Dynamic Programming for Structured Prediction and Attention

published or not. The documents may come

problem [START_REF] Amos | OptNet: Differentiable optimization as a layer in neural networks[END_REF][START_REF] Niculae | A regularized framework for sparse and structured neural attention[END_REF][START_REF] Djolonga | Differentiable learning of submodular functions[END_REF]; others solve certain combinatorial optimization problems by dynamic programming [START_REF] Kim | Structured attention networks[END_REF][START_REF] Cuturi | Soft-DTW: a differentiable loss function for time-series[END_REF][START_REF] Nowak | Divide and conquer networks[END_REF]. However, because dynamic programs [START_REF] Bellman | On the theory of dynamic programming[END_REF] are usually non-differentiable, virtually all these works resort to the formalism of conditional random fields (CRFs) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF], which can be seen as changing the semiring used by the dynamic program -replacing all values by their exponentials and all (max, +) operations with (+, ×) operations [START_REF] Verdu | Abstract dynamic programming models under commutativity conditions[END_REF]. While this modification smoothes the dynamic program, it looses the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of how to relax and differentiate dynamic programs is lacking. In this work, we propose to do so by leveraging smoothing [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] and backpropagation [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF]. We make the following contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into differentiable operators. Unlike existing works, we propose to change the semiring to use (max Ω , +) operations, where max Ω is a max operator smoothed with a strongly convex regularizer Ω (§1).

2) We show that the resulting DP operators, that we call DP Ω , are smoothed relaxations of the original DP algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their gradient, ∇DP Ω , is equal to the expected trajectory of a certain random walk and can be used as a sound relaxation to the original dynamic program's solution. Using negative entropy for Ω recovers existing CRF-based works from a different perspective -we provide new arguments as to why this Ω is a good choice. On the other hand, using squared ℓ 2 norm for Ω leads to new algorithms whose expected solution is sparse. We derive a clean and efficient method to backpropagate gradients, both through DP Ω and ∇DP Ω . This allows us to define differentiable DP layers that can be incorporated in neural networks trained end-to-end (§2).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§3). The latter is illustrated in Figure 1. Finally, we showcase these two instanti- θ) is an instantiation of the proposed smoothed dynamic programming operator, DPΩ(θ), to the dynamic time warping (DTW) computational graph. In this picture, θ is the squared Euclidean distance matrix between the observations of two time-series. The gradient ∇DTWΩ(θ) is equal to the expected alignment under a certain random walk characterized in §2.3 and is a sound continuous relaxation to the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy regularization (left), ℓ 2 2 regularization leads to exactly sparse alignments (right). Our framework allows to backpropagate through both DTWΩ(θ) and ∇DTWΩ(θ), which makes it possible to learn the distance matrix θ end-to-end.

ations on structured prediction tasks (§4) and on structured attention for neural machine translation (§5).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case letters, e.g., y, y and Y . We denote the elements of Y by y i,j and its rows by y i . We denote the Frobenius inner product between A and B by A, B i,j a i,j b i,j . We denote the (D -1)-probability simplex by △ D {λ ∈ R D + : λ 1 = 1}. We write conv(Y)

{ Y ∈Y λ Y Y : λ ∈ △ |Y| } the convex hull of Y, [N] the set {1, . . . , N } and supp(x) {j ∈ [D] : x j = 0} the support of x ∈ R D . We denote the Shannon entropy by H(q) i q i log q i . We have released an optimized and modular PyTorch implementation for reproduction and reuse.

Smoothed max operators

In this section, we introduce smoothed max operators [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF][START_REF] Niculae | A regularized framework for sparse and structured neural attention[END_REF], that will serve as a powerful and generic abstraction to define differentiable dynamic programs in §2. Let Ω : R D → R be a strongly convex function on △ D and let x ∈ R D . We define the max operator smoothed by Ω as:

max Ω (x) max q∈△ D q, x -Ω(q). (1)
In other words, max Ω is the convex conjugate of Ω, restricted to the simplex. From the duality between strong convexity and smoothness, max Ω is smooth: differentiable everywhere and with Lipschitz continuous gradient. Since the argument that achieves the maximum in (1) is unique, from Danskin's theorem (1966), it is equal to the gradient:

∇max Ω (x) = argmax q∈△ D q, x -Ω(q).

The gradient is differentiable almost everywhere for any strongly-convex Ω (everywhere for negentropy). Next, we state properties that will be useful throughout this paper. 2. Distributivity of + over max Ω : max Ω (x + c1) = max Ω (x) + c ∀c ∈ R.

3. Commutativity: If Ω(P q) = Ω(q), where P is a permutation matrix, then max Ω (P x) = max Ω (x).

Non-decreasingness in each coordinate:

max Ω (x) ≤ max Ω (y) ∀x ≤ y 5. Insensitivity to -∞: x j = -∞ ⇒ ∇max Ω (x) j = 0.

Proofs are given in §A.1. In particular, property 3 holds whenever Ω(q) = D i=1 ω(q i), for some function ω. We focus in this paper on two specific regularizers Ω: the negentropy -H and the squared ℓ 2 norm. For these choices, all properties above are satisfied and we can derive closedform expressions for max Ω , its gradient and its Hessian -see §B.1. When using negentropy, max Ω becomes the log-sum-exp and ∇max Ω the softmax. The former satisfies associativity, which as we shall see, makes it natural to use in dynamic programming. With the squared ℓ 2 regularization, as observed by [START_REF] Martins | From softmax to sparsemax: A sparse model of attention and multi-label classification[END_REF]; [START_REF] Niculae | A regularized framework for sparse and structured neural attention[END_REF], the gradient ∇max Ω is sparse. This will prove useful to enforce sparsity in the models we study.

Differentiable DP layers

Dynamic programming (DP) is a generic way of solving combinatorial optimization problems by recursively solving problems on smaller sets. We first introduce this category of algorithms in a broad setting, then use smoothed max operators to define differentiable DP layers.

Dynamic programming on a DAG

Every problem solved by dynamic programming reduces to finding the highest-scoring path between a start node and an end node, on a weighted directed acyclic graph (DAG). We therefore introduce our formalism on this generic problem, and give concrete examples in §3.

Formally, let G = (V, E) be a DAG, with nodes V and edges E. We write N = |V| ≥ 2 the number of nodes.

Without loss of generality, we number the nodes in topological order, from 1 (start) to N (end), and thus V = [N]. Node 1 is the only node without parents, and node N the only node without children. Every directed edge (i, j) from a parent node j to a child node i has a weight θ i,j ∈ R. We gather the edge weights in a matrix θ ∈ Θ ⊆ R N ×N , setting θ i,j = -∞ if (i, j) / ∈ E and θ 1,1 = 1. We consider the set Y of all paths in G from node 1 to node N . Any path Y ∈ Y can be represented as a N × N binary matrix, with y i,j = 1 if the path goes through the edge (i, j) and y i,j = 0 otherwise. In the sequel, paths will have a one-to-one correspondence with discrete structures such as sequences or alignments. Using this representation, Y , θ corresponds to the cumulated sum of edge weights, along the path Y . The computation of the highest score among all paths amounts to solving the combinatorial problem

LP(θ) max Y ∈Y Y , θ ∈ R.
(2)

Although the size of Y is in general exponential in N , LP(θ) can be computed in one topologically-ordered pass over G using dynamic programming. We let P i be the set of parent nodes of node i in graph G and define recursively

v 1 (θ) 0 ∀ i ∈ [2, . . . , N] : v i (θ) max j∈Pi θ i,j + v j (θ). (3)
This algorithm outputs DP(θ) v N (θ). We now show that this is precisely the highest score among all paths.

Proposition 1. Optimality of dynamic programming

∀θ ∈ Θ : DP(θ) = LP(θ)
The optimality of recursion (3) is well-known [START_REF] Bellman | On the theory of dynamic programming[END_REF]. We prove it again with our formalism in §A.2, since it exhibits the two key properties that the max operator must satisfy to guarantee optimality: distributivity of + over it and associativity. The cost of computing DP(θ) is O(|E|), which is exponentially better than O(|Y|).

In many applications, we will often rather be interested in the argument that achieves the maximum, i.e., one of the highest-scoring paths

Y ⋆ (θ) ∈ argmax Y ∈Y Y , θ . (4)
This argument can be computed by backtracking, that we now relate to computing subgradients of LP(θ).

Linear program, lack of differentiality. Unfortunately, LP(θ) is not differentiable everywhere. To see why this is the case, notice that (2) can be rewritten as a linear program over the convex polytope conv(Y):

LP(θ) = max Y ∈conv(Y) Y , θ .
From the generalized Danskin theorem [START_REF] Bertsekas | Control of uncertain systems with a setmembership description of the uncertainty[END_REF],

Y ⋆ (θ) ∈ ∂LP(θ) = argmax Y ∈conv(Y) Y , θ ,
where ∂ denotes the subdifferential of LP(θ), i.e., the set of subgradients. When Y ⋆ (θ) is unique, ∂LP(θ) is a singleton and Y ⋆ is equal to the gradient of LP(θ), that we write ∇LP(θ). Unfortunately, Y ⋆ (θ) is not always unique, meaning that LP(θ) is not differentiable everywhere. As we will show in §4.2, this hinders optimization as we can only train models involving LP(θ) with subgradient methods. Worse, Y ⋆ (θ), a function from Θ to Y, is discontinuous and has null or undefined derivatives. It is thus impossible to use it in a model trained by gradient descent.

Smoothed max layers

To address the lack of differentiability of dynamic programming, we introduce the operator max Ω , presented in §1, and consider two approaches.

Smoothing the linear program. Let us define the Ωsmoothed maximum of a function f : Y → R over a finite set Y using the following shorthand notation:

max Ω Y ∈Y f (Y) max Ω ((f (Y)) Y ∈Y).
A natural way to circumvent the lack of differentiability of LP(θ) is then to replace the global max operator by max Ω :

LP

Ω (θ) max Ω Y ∈Y Y , θ ∈ R. (5)
From §1, LP Ω (θ) is convex and, as long as Ω is strongly convex, differentiable everywhere. In addition, ∇LP Ω (θ) is Lipschitz continuous and thus differentiable almost everywhere. Unfortunately, solving (5) for general Ω is likely intractable when Y has an exponential size.

Smoothing the dynamic program. As a tractable alternative, we propose an algorithmic smoothing. Namely, we replace max by max Ω locally within the DP recursion.

Omitting the dependence on Ω, this defines a smoothed recursion over the new sequence

(v i (θ)) N i=1 : v 1 (θ) 0 ∀i ∈ [2, . . . , N] : v i (θ) max Ω j∈Pi θ i,j + v j (θ). (6)
The new algorithm outputs DP Ω (θ) v N (θ), the smoothed highest score. Smoothing the max operator locally brings the same benefit as before -DP Ω (θ) is smooth and ∇DP Ω (θ) is differentiable almost everywhere. However, computing DP Ω (θ) is now always tractable, since it simply requires to evaluate (v i (θ)) [START_REF] Verdu | Abstract dynamic programming models under commutativity conditions[END_REF][START_REF] Aji | The generalized distributive law[END_REF]. However, the "and only if" part of the claim is new to our knowledge.

Its proof shows that max -γH is the only max Ω satisfying associativity, exhibiting a functional equation from information theory [START_REF] Horibe | Entropy of terminal distributions and the Fibonnacci trees[END_REF]. While this provides an argument in favor of entropic regularization, ℓ 2 2 regularization has different benefits in terms of sparsity of the solutions.

Relaxed argmax layers

It is easy to check that ∇LP Ω (θ) belongs to conv(Y) and can be interpreted as an expected path under some distribution induced by ∇max Ω , over all possible Y ∈ Y -see §A.4 for details. This makes ∇LP Ω (θ) interpretable as a continuous relaxation of the highest-scoring path Y ⋆ (θ) defined in (4). However, like LP Ω (θ), computing ∇LP Ω (θ) is likely intractable in the general case. Fortunately, ∇DP Ω (θ) is always easily computable by backpropagation and enjoys similar properties, as we now show.

Computing ∇DP Ω (θ). Computing ∇DP Ω (θ) can be broken down into two steps. First, we compute and record the local gradients alongside the recursive step (6):

∀ i ∈ [N] : q i (θ) ∇max Ω (θ i + v(θ)) ∈ △ N ,
where v(θ) (v 1 (θ), . . . , v N (θ)). Since we assume that θ i,j = -∞ if (i, j) ∈ E, we have supp(q i (θ)) = P i . This ensures that, similarly to v i (θ), q i (θ) exclusively depends on (v j (θ)) j∈Pi . Let C j be the children of node j ∈ [N]. A straighforward application of backpropagation (cf. §A.5) yields a recursion run in reverse-topological order, starting from node j = N -1 down to j = 1: ∀ i ∈ C j : e i,j ← ēi q i,j then ēj ← i∈Cj e i,j , where ēN ← 1 and e i,j ← 0 for (i, j) / ∈ E. The final output is ∇DP Ω (θ) = E. Assuming max Ω can be computed in linear time, the total cost is O(|E|), the same as DP(θ). Pseudo-code is summarized in §A.5. Associated path distribution. The backpropagation we derived has a probabilistic interpretation. Indeed, Q(θ) ∈ R N ×N can be interpreted as a transition matrix: it defines a random walk on the graph G, i.e., a finite Markov chain with states V and transition probabilities supported by E. The random walk starts from node N and, when at node i, hops to node j ∈ P i with probability q i,j . It always ends at node 1, which is absorbing. The walk follows the path Y ∈ Y with a probability p θ,Ω (Y), which is simply the product of the q i,j of visited edges. Thus, Q(θ) defines a path distribution p θ,Ω . Our next proposition shows that ∇DP Ω (Y) ∈ conv(Y) and is equal to the expected path E θ,Ω [Y] under that distribution.

Proposition 3. ∇DP Ω (θ) as an expected path

∀ θ ∈ Θ : ∇DP Ω (θ) = E θ,Ω [Y] = E ∈ conv(Y).
Proof is provided in §A.5. Moreover, ∇DP Ω (θ) is a principled relaxation of the highest-scoring path Y ⋆ (θ), in the sense that it converges to a subgradient of LP(θ) as the regularization vanishes:

∇DP γΩ (θ) ---→ γ→0 Y ⋆ (θ) ∈ ∂LP(θ).
When Ω = -γH, the distributions underpinning LP Ω (θ) and DP Ω (θ) coincide and reduce to the Gibbs distribution p θ,Ω (Y) ∝ exp(θ, Y /γ). The value LP Ω (θ) = DP Ω (θ) is then equal to the log partition. When Ω = γ • 2 , some transitions between nodes have zero probability and hence some paths have zero probability under the distribution p θ,Ω . Thus, ∇DP Ω (θ) is typically sparse -this will prove interesting to introspect the various models we consider (typically, the smaller γ, the sparser ∇DP Ω (θ)).

Multiplication with the Hessian

∇ 2 DP Ω (θ)Z
Using ∇DP Ω (θ) as a layer involves backpropagating through ∇DP Ω (θ). This requires to apply the Jacobian of ∇DP Ω operator (a linear map from R N ×N to R N ×N), or in other words to apply the Hessian of DP Ω , to an input sensibility vector Z, computing

∇ 2 DP Ω (θ)Z = ∇ ∇DP Ω (θ), Z ∈ R N ×N ,
where derivatives are w.r.t. θ. The above vector may be computed in two ways, that differ in the order in which derivatives are computed. Using automatic differentiation frameworks such as PyTorch [START_REF] Paszke | Pytorch: Tensors and dynamic neural networks in Python with strong GPU acceleration[END_REF], we may backpropagate over the computational graph a first time to compute the gradient ∇DP Ω (θ), while recording operations. We may then compute ∇DP Ω (θ), Z , and backpropagate once again. However, due to the structure of the problem, it proves more efficient, adapting Pearlmutter's approach (1994), to directly compute ∇DP Ω (θ), Z ∈ R, namely, the directional derivative at θ along Z. This is done by applying the chain rule in one topologicallyordered pass over G. Similarly to the gradient computation, we record products with the local Hessians H i (θ) ∇ 2 max Ω (θ i + v(θ)) along the way. We then compute the gradient of the directional derivative using backpropagation. This yields a recursion for computing ∇ 2 DP Ω (θ)Z in reverse topological-order over G. The complete derivation and the pseudo-code are given in §A.7. They allow to implement DP Ω as as a custom twice-differentiable module in existing software. For both approaches, the computational cost is O(|E|), the same as for gradient computation. In our experiments in §4.2, our custom Hessian-vector product computation brings a 3×/12× speed-up during the backward pass on GPU/CPU vs. automatic differentiation.

Related works. Smoothing LP formulations was also used for MAP inference [START_REF] Meshi | Smooth and strong: MAP inference with linear convergence[END_REF] or optimal transport [START_REF] Blondel | Smooth and sparse optimal transport[END_REF]) but these works do not address how to differentiate through the smoothed formulation. An alternative approach to create structured prediction layers, fundamentally different both in the forward and backward passes, is SparseMAP [START_REF] Niculae | Sparsemap: Differentiable sparse structured inference[END_REF].

Summary. We have proposed DP Ω (θ), a smooth, convex and tractable relaxation to the value of LP(θ). We have also shown that ∇DP Ω (θ) belongs to conv(Y) and is therefore a sound relaxation to solutions of LP(θ). To conclude this section, we formally define our proposed two layers.

Definition 1. Differentiable dynamic programming layers Value layer: DP

Ω (θ) ∈ R Gradient layer: ∇DP Ω (θ) ∈ conv(Y)

Examples of computational graphs

We now illustrate two instantiations of our framework for specific computational graphs.

Sequence prediction

We demonstrate in this section how to instantiate DP Ω to the computational graph of the Viterbi algorithm [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF][START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF], one of the most famous instances of DP algorithm. We call the resulting operator Vit Ω . We wish to tag a sequence X = (x 1 , . . . , x T) of vectors in R D (e.g., word representations) with the most probable output sequence (e.g., entity tags) y = (y 1 , . . . , y T) ∈ [S] T . This problem can be cast as finding the highest-scoring path on a treillis G. While y can always be represented as a sparse N ×N binary matrix, it is convenient to represent it instead as a T ×S×S binary tensor Y , such that y t,i,j = 1 if y transitions from node j to node i on time t, and 0 otherwisewe set y 0 = 1. The potentials can similarly be organized as a T ×S×S real tensor, such that θ t,i,j = φ t (x t , i, j). Traditionally, the potential functions φ t were human-engineered (Sutton et al., 2012, §2.5). In recent works and in this paper, they are learned end-to-end [START_REF] Bottou | Global training of document processing systems using graph transformer networks[END_REF][START_REF] Collobert | Natural language processing (almost) from scratch[END_REF][START_REF] Lample | Neural architectures for named entity recognition[END_REF].

Using the above binary tensor representation, the inner product Y , θ is equal to T t=1 φ t (x t , y t , y t-1), y's cumulated score. This is illustrated in Figure 2 on the task of part-of-speech tagging. The bold arrows indicate one possible output sequence y, i.e., one possible path in G. When Ω = -H, we recover linear-chain conditional random fields (CRFs) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] and the probability of y (Y in tensor representation) given X is

start 1,1 1,2 1,3 θ1,3,1 2,1 θ2,1,3 2,2 2,3 3,1 3,2 θ3,2,1 3,3 0 0 0 end the boat sank Y , θ = θ 1,3,1 + θ 2,1,3 + θ 3,2,1 noun verb det
p θ,-H (y|X)∝ exp(Y , θ)= exp T t=1 φ t (x t , y t , y t-1) . From Prop. 3, the gradient ∇Vit -H (θ) = E ∈ R T ×S×S is such that e t,i,j = p θ,-H (y t = i, y t-1 = j|X).
The marginal probability of state i at time t is simply p θ,-H (y t = i|X) = S j=1 e t,i,j . Using a different Ω simply changes the distribution over state transitions.

When Ω = • 2 , the marginal probabilities are typically sparse. Pseudo-code for Vit Ω (θ), as well as gradient and Hessian-product computations, is provided in §B.2. The case Ω = • 2 is new to our knowledge.

When Ω = -H, the marginal probabilities are traditionally computed using the forward-backward algorithm [START_REF] Baum | Statistical inference for probabilistic functions of finite state Markov chains[END_REF]. In contrast, we compute ∇Vit -H (θ) using backpropagation while efficiently maintaining the marginalization. An advantage of our approach is that all operations are numerically stable. The relation between forward-backward and backpropagation has been noted before (e.g., [START_REF] Eisner | Inside-outside and forward-backward algorithms are just backprop (tutorial paper)[END_REF]). However, the analysis is led using (+, ×) operations, instead of (max Ω , +) as we do. Our Viterbi instantiation can be generalized to graphical models with a tree structure, and to approximate inference in general graphical models, since unrolled loopy belief propagation [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[END_REF]) yields a dynamic program. We note that continuous beam search [START_REF] Goyal | A continuous relaxation of beam search for end-to-end training of neural sequence models[END_REF] can also be cleanly rewritten and extended using Vit Ω operators.

Time-series alignment

We now demonstrate how to instantiate DP Ω to the computational graph of dynamic time warping (DTW) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF], whose goal is to seek the minimal cost alignment between two time-series. We call the resulting operator DTW Ω . Formally, let N A and N B be the lengths of two time-series, A and B. Let a i and b j be the i th and j th observations of A and B, respectively. Since edge weights only depend on child nodes, it is convenient to rearrange Y and θ as N A × N B matrices. Namely, we represent an alignment Y as a N A × N B binary matrix, such that y i,j = 1 if a i is aligned with b j , and 0 otherwise. Likewise, we represent θ as a N A × N B matrix. A classical example is θ i,j = d(a i , b j), for some differentiable discrepancy measure d. We write Y the set of all monotonic alignment matrices, such that the path that connects the upper-left (1, 1) matrix entry to the lower-right (N A , N B) one uses only ↓, →, ց moves. The DAG associated with Y is illustrated in Figure 3 with Again, the bold arrows indicate one possible path Y ∈ Y from start to end in the DAG, and correspond to one possible alignment. Using this representation, the cost of an alignment (cumulated cost along the path) is conveniently computed by Y , θ . The value DTW Ω (θ) can be used to define a loss between alignments or between time-series. Following Proposition 3, ∇DTW Ω (θ) = E ∈ R N A ×N B can be understood as a soft alignment matrix. This matrix is sparse when Ω = • 2 , as illustrated in Figure 1 (right).

N A = 4 and N B = 3 below. start 1,1 θ1,1 2,1 1,2 3,1 1,3 2,2 θ2,2 2,3 θ2,3 3,2 1,4 2,4 3,3 θ3,3 3,4 θ3,4 end Y , θ = θ 1,1 + θ 2,2 + θ 2,3 + θ 3,3 + θ 3,4
Pseudo-code to compute DTW Ω (θ) as well as its gradient and its Hessian products are provided in §B.3. When Ω = -H, DTW Ω (θ) is a conditional random field known as soft-DTW, and the probability p θ,Ω (Y |A, B) is a Gibbs distribution similar to §3.1 [START_REF] Cuturi | Soft-DTW: a differentiable loss function for time-series[END_REF]. However, the case Ω = • 2 and the computation of ∇ 2 DTW Ω (θ)Z are new and allow new applications.

Differentiable structured prediction

We now apply the proposed layers, DP Ω (θ) and ∇DP Ω (θ), to structured prediction [START_REF] Bakır | Predicting Structured Data[END_REF], whose goal is to predict a structured output Y ∈ Y associated with a structured input X ∈ X . We define old and new structured losses, and demonstrate them on two structured prediction tasks: named entity recognition and time-series alignment.

Structured loss functions

Throughout this section, we assume that the potentials θ ∈ Θ have already been computed using a function from X to Θ and let C : Y ×Y → R + be a cost function between the ground-truth output Y true and the predicted output Y .

Convex losses. Because C is typically non-convex, the cost-augmented structured hinge loss [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF] is often used instead for linear models

ℓ C (Y true ; θ) max Y ∈Y C(Y true , Y)+ Y , θ -Y true , θ . (7) This is a convex upper-bound on C(Y true , Y ⋆ (θ))
, where Y ⋆ (θ) is defined in (4). To make the cost-augmented decoding tractable, it is usually assumed that C(Y true , Y) is linear in Y , i. e., it can be written as C Ytrue , Y for some matrix C Ytrue . We can then rewrite (7) using our notation as

ℓ C (Y true ; θ) = LP(θ + C Ytrue) -Y true , θ .
However, this loss function is non-differentiable. We therefore propose to relax LP by substituting it with DP Ω :

ℓ C,Ω (Y true ; θ) DP Ω (θ + C Ytrue) -Y true , θ .
Losses in this class are convex, smooth, tractable for any Ω, and by Proposition 2 property 2 a sensible approximation of ℓ C . In addition, they only require to backpropagate through DP Ω (θ) at training time. It is easy to check that we recover the structured perceptron loss with ℓ 0,0 [START_REF] Collins | Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms[END_REF], the structured hinge loss with ℓ C,0 [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF] and the CRF loss with ℓ 0,-H [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF]. The last one has been used on top of LSTMs in several recent works [START_REF] Lample | Neural architectures for named entity recognition[END_REF][START_REF] Ma | End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[END_REF]. Minimizing ℓ 0,-H (θ) is equivalent to maximizing the likelihood p θ,-H (Y true). However, minimizing ℓ 0, • 2 is not equivalent to maximizing p θ, • 2 (Y true). In fact, the former is convex while the latter is not.

Non-convex losses. A direct approach that uses the output distribution p θ,Ω consists in minimizing the risk y∈Y p θ,-H (Y)C(Y true , Y). As shown by [START_REF] Stoyanov | Minimum-risk training of approximate CRF-based NLP systems[END_REF], this can be achieved by backpropagating through the minimum risk decoder. However, the risk is usually non-differentiable, piecewise constant [START_REF] Smith | Minimum risk annealing for training log-linear models[END_REF] and several smoothing heuristics are necessary to make the method work [START_REF] Stoyanov | Minimum-risk training of approximate CRF-based NLP systems[END_REF].

Another principled approach is to consider a differentiable approximation ∆ :

Y × conv(Y) → R + of the cost C. We can then relax C(Y true , Y ⋆ (θ)) by ∆(Y true , ∇DP Ω (θ)).
Unlike minimum risk training, this approach is differentiable everywhere when Ω = -H. Both approaches require to backpropagate through ∇DP Ω (θ), which is twice as costly as backpropagating through DP Ω (θ) (see §2.4).

Named entity recognition

Let X = (x 1 , • • • , x T) be an input sentence, where each word x t is represented by a vector in R D , computed using a neural recurrent architecture trained end-to-end. We wish to tag each word with named entities, i.e., identify blocks of words that correspond to names, locations, dates, etc. We use the specialized operator Vit Ω described in §3.1. We construct the potential tensor θ(X) ∈ R T ×S×S as Experiments. We measure the performance of the different losses and regularizations on the four languages of the CoNLL 2003 dataset. Following [START_REF] Lample | Neural architectures for named entity recognition[END_REF], who use the ℓ 0,-H loss, we use a character LSTM and FastText [START_REF] Joulin | Compressing text classification models[END_REF] pretrained embeddings computed using on Wikipedia. Those are fed to a word bidirectional LSTM to obtain X. Architecture details are provided in §C.1. Results are reported in Table 1, along with reference results with different pretrained embeddings. We first note that the non-regularized structured perceptron loss ℓ 0,0 , that involves working with subgradients of DP(θ), perform significantly worse than regularized losses. With proper parameter selections, all regularized losses perform within 1% F 1 -score of each other, although entropyregularized losses perform slightly better on 3 /4 languages. However, the ℓ 2 2 -regularized losses yield sparse predictions, whereas entropy regularization always yields dense probability vectors. Qualitatively, this allows to identify ambiguous predictions more easily, as illustrated in §C.1. Sparse predictions also allows to enumerate all non-zero probability entities, and to trade precision for recall at test time.

∀ t > 1, θ(X) t,i,j w ⊤ i x t + b i + t i,j , and θ(X) 1,i,j w ⊤ i x t + b i , where (w i , b i) ∈ R D × R

Supervised audio-to-score transcription

We use our framework to perform supervised audio-toscore alignment on the Bach 10 dataset [START_REF] Duan | Soundprism: An online system for score-informed source separation of music audio[END_REF]. The dataset consists of 10 music pieces with audio tracks, MIDI transcriptions, and annotated alignments between them. We transform the audio tracks into a sequence of audio frames using a feature extractor (see §C.2) to obtain a sequence A ∈ R N A ×D , while the associated score sequence is represented by B ∈ R N B ×K (each row b j is a one-hot vector corresponding to one key b j). Each pair (A, B) is associated to an alignment

Y true ∈ R N A ×N B .
As described in §3.2, we define a discrepancy matrix θ ∈ R N A ×N B between the elements of the two sequences. We set the cost between an audio frame and a key to be the loglikelihood of this key given a multinomial linear classifier:

∀ i ∈ [N A], l i -log(softmax(W ⊤ a i + c)) ∈ R K and ∀ j ∈ [N B], θ i,j l i,bj ,
where (W , c) ∈ R D×K ×R K are learned classifier parameters. We predict a soft alignment by Y = ∇DTW -H (θ).

Following [START_REF] Garreau | Metric learning for temporal sequence alignment[END_REF], we define the relaxed loss

∆(Y true , Y) L(Y -Y true) ⊤ 2 F ,
where Results. We perform a leave-one-out cross-validation of our model performance, learning the multinomial classifier on 9 pieces and assessing the quality of the alignment on the remaining piece. We report the mean absolute deviation on both train and test sets. A solid baseline consists in learning the multinomial classifier (W , c) beforehand, i.e., without end-to-end training. We then use this model to compute θ as in (4.3) and obtain Y ⋆ (θ). As shown in Table 2, our end-to-end technique outperforms this baseline by a large margin. We also demonstrate in §C.2 that the alignments obtained by end-to-end training are visibly closer to the ground truth. End-to-end training thus allows to fine-tune the distance matrix θ for the task at hand.

Structured and sparse attention

We show in this section how to apply our framework to neural sequence-to-sequence models augmented with an attention mechanism [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF]. An encoder first produces a list of vectors X = (x 1 , . . . , x T) representing the input sequence. A decoder is then used to greedily produce the corresponding output sequence. To simplify the notation, we focus on one time step of the decoding procedure. Given the decoder's current hidden state z and X as inputs, the role of the attention mechanism is to produce a distribution w ∈ △ T over X, for the current time step. This distribution is then typically used to produce a context vector c X ⊤ w, that is in turn invoved in the computation of the output sequence's next element.

Structured attention layers. [START_REF] Kim | Structured attention networks[END_REF] proposed a segmentation attention layer, which is capable of taking into account the transitions between elements of X. They use a linear-chain CRF to model the probability p θ,-H (y|X) of a sequence y = (y 1 , . . . , y T), where each y t is either 1 ("pay attention") or 0. They then propose to use normalized marginal probabilities as attention weights: w t ∝ p θ,-H (y t = 1|X). They show how to backpropagate gradients through the forward-backward algorithm, which they use to compute the marginal probabilities.

Generalizing structured attention. Using the notation from §3.1, any y can be represented as a tensor Y ∈ {0, 1} T ×2×2 and the potentials as a tensor θ ∈ R T ×2×2 . Similarly to [START_REF] Kim | Structured attention networks[END_REF], we define θ t,1,j x t M z + t 1,j and θ t,0,j t 0,j , where xM z is a learned bilinear form and T ∈ R 2×2 is a learned transition matrix. Following §3.1, the gradient ∇Vit Ω (θ) is equal to the expected matrix E ∈ R T ×2×2 and the marginals are obtained by marginalizing that matrix. Hence, we can set w t ∝ p θ,Ω (y t = 1|X) = e t,1,0 + e t,1,1 . Backpropagating through ∇Vit Ω (θ) can be carried out using our approach outlined in §2.4. This approach is not only more general, but also simpler and more robust to under- flow problems than backpropagating through the forwardbackward algorithm as done by [START_REF] Kim | Structured attention networks[END_REF].

Experiments. We demonstrate structured attention layers with an LSTM encoder and decoder to perform French to English translation using data from a 1 million sentence subset of the WMT14 FR-EN challenge. We illustrate an example of attenion map obtained with negentropy and ℓ 2 2 regularizations in Figure 4. Non-zero elements are underlined with borders: ℓ 2 2 -regularized attention maps are sparse and more interpretable -this provides a structured alternative to sparsemax attention [START_REF] Martins | From softmax to sparsemax: A sparse model of attention and multi-label classification[END_REF]. Results were all within 0.8 point of BLEU score on the newstest2014 dataset. For French to English, standard softmax attention obtained 27.96, while entropy and ℓ 2 2 regularized structured attention obtained 27.96 and 27.19 -introducing structure and sparsity therefore provides enhanced interpretability with comparable peformance. We provide model details, full results and further visualizations in §C.3.

Conclusion

We proposed a theoretical framework for turning a broad class of dynamic programs into convex, differentiable and tractable operators, using the novel point of view of smoothed max operators. Our work sheds a new light on how to transform dynamic programs that predict hard assignments (e.g., the maximum a-posteriori estimator in a probabilistic graphical model or an alignment matrix between two time-series) into continuous and probabilistic ones. We provided a new argument in favor of negentropy regularization by showing that it is the only one to preserve associativity of the smoothed max operator. We showed that different regularizations induce different distributions over outputs and that ℓ 2 2 regularization has other benefits, in terms of sparsity of the expected outputs. Generally speaking, performing inference in a graphical model and backpropagating through it reduces to computing the first and second-order derivatives of a relaxed maximum-likelihood estimation -leveraging this observation yields elegant and efficient algorithms that are readily usable in deep learning frameworks, with various promising applications.

Property 2 (distributivity of + over max Ω). This follows immediately from

max Ω (x + c1) = max q∈△ D q, x + c1 -Ω(q) = max q∈△ D q, x -Ω(q) + c = max Ω (x) + c.

Using our shorthand notation, this simply becomes max

Ω Y ∈Y (f (Y) + c) = max Ω Y ∈Y f (Y) + c.
Property 3 (commutativity). Assume Ω(P q) = Ω(q) for all permutation matrices P . Let P -1 be the inverse permutation matrix associated with P . Then we have max Ω (P x) = max q∈△ D q, P x -Ω(q) = max

q∈△ D P -1 q, x -Ω(q) = max q∈△ D q, x -Ω(P q) = max q∈△ D q, x -Ω(q).
Property 4 (non-decreasingness in each coordinate). If x ≤ y, then for all q ∈ △ D , x, q -Ω(q) ≤ y, q -Ω(q), as all q coordinates are non-negative. Thus max Ω (x) ≤ max Ω (y).

Property 5 (insensitivity to -∞). Since max Ω (x) = max q∈△ D q, x -Ω(q), if x j =-∞, then q j = ∇max Ω (x) j = 0 is the only feasible solution for the j th coordinate.

A.2. Proof of Proposition 1 (optimality of DP recursion)

Let v i (θ) be the highest-score path up to node i ∈ [N]. Let Y i be the set of paths y = (y 1 , . . . , y L) starting from node 1 and reaching node i, that is y 1 = 1 and y L = i. Note that L may depend on y but we do not make this dependency explicit. Because nodes are sorted in topological order, we can compute v i (θ) by

v i (θ) = max y∈Yi L t=2 θ yt,yt-1 = max y∈Yi L-1 t=2 θ yt,yt-1 +θ y L ,y L-1 = max y∈Yi L-1 t=2 θ yt,yt-1 +θ i,y L-1 .
Recall that P i is the set of parent nodes of node i. From the associativity of the max operator,

v i (θ) = max j∈Pi max y∈Yi y L-1 =j L-1 t=2 θ yt,yt-1 + θ i,y L-1 = max j∈Pi max y∈Yi y L-1 =j L-1 t=2 θ yt,yt-1 + θ i,j .
From the distributivity of + over max, we obtain

v i (θ) = max j∈Pi   max y∈Yi y L-1 =j L-1 t=2 θ yt,yt-1   + θ i,j = max j∈Pi v j (θ) + θ i,j ,
where we used the fact that the inner max operations are independent of y L = i. This concludes the proof of the optimality of (3).

A.3. Proof of Proposition 2 (properties of DP Ω (θ))

We prove in this section the three main claims of Proposition 2. For the first two claims, we rewrite (3) and (6) using the following notations:

v 0 i (θ) max(u 0 i (θ)) and v Ω i (θ) max(u Ω i (θ)), where u 0 i (θ) (θ i,1 + v 0 1 (θ), . . . , θ i,i-1 + v 0 i-1 (θ), -∞, -∞, . . . , -∞) ∈ R N and u Ω i (θ) (θ i,1 + v Ω 1 (θ), . . . , θ i,i-1 + v Ω i-1 (θ), -∞ i , -∞, . . . , -∞) ∈ R N .
These definitions are indeed valid as per Lemma 1, property 5.

Proof of DP

Ω (θ) convexity. Since v Ω 1 (θ) = 0, it is trivially convex. Assume that v Ω 2 (θ), . . . , v Ω i-1 (θ) are convex. Then, v Ω i (θ)
is the composition of max Ω and u Ω i , a convex function and a function which outputs a vector whose each coordinate is convex in θ. By induction, since max Ω is non-decreasing per coordinate (cf. Lemma 1 property 4), v Ω i (θ) is convex (e.g., Boyd & Vandenberghe, 2004, §3.2.4)

. Therefore v Ω i (θ) is convex for all i ∈ [N] and DP Ω (θ) = v Ω N (θ) is convex. Proof of DP Ω (θ) bound. We clearly have v Ω 1 (θ) ≥ v 0 1 (θ). Assume that v Ω j (θ) ≥ v 0 j (θ) - (j -1)U Ω,N for all j ∈ {2, . . . , i -1}. That is, u Ω i (θ) ≥ u 0 i (θ) -(i -2)U Ω,N 1
, where 1 ∈ R N is the unit vector. Then, by induction, we have

max Ω (u Ω i (θ)) ≥ max Ω (u 0 i (θ)) -(i -2)U Ω,N ≥ max(u 0 i (θ)) -(i -1)U Ω,N ,
where we used Lemma 1, properties 1, 2 and 4. Therefore

v Ω i (θ) ≥ v 0 i (θ) -(i -1)U Ω,N for all i ∈ [N] and hence, DP Ω (θ) ≥ LP(θ) -(N -1)U Ω,N . Using a similar reasoning we obtain v 0 i (θ) -(i -1)L Ω,N ≥ v Ω i (θ) and therefore LP(θ) -(N -1)L Ω,N ≥ DP Ω (θ). To summarize, we obtain LP(θ) -(N -1)L Ω,N ≥ DP Ω (θ) ≥ LP(θ) -(N -1)U Ω,N ,
which concludes the proof. Note that using property 1 of Lemma 1, this immediately implies a bound involving LP Ω (θ) instead of LP(θ).

Proof that Ω = -γH ⇒ DP Ω (θ) = LP Ω (θ). We first show that max Ω is associative.

Lemma 2. Associativity of max Ω when Ω = -γH We have max Ω (max Ω (x), c) = max Ω (x, c) ∀x ∈ R D , c ∈ R.
Proof. We simply use the closed form of max Ω when Ω = -γH (cf. §B.1):

max Ω (max Ω (x), c) = γ log(exp(max Ω (x)/γ) + exp(c/γ)) = γ log exp log D i=1 exp(x i /γ) + exp(c/γ) = γ log D i=1 exp(x i /γ) + exp(c/γ) = max Ω (x, c),
and the lemma follows.

Using our shorthand notation, Lemma 2 can be used to write max Ω (y1,...,yi,...,y L)

f (y) = max Ω v max Ω (y1,...,v,...,y L) f (y).
This is precisely the associative property that we used in the proof of Proposition 1. The second property that we used, the distributivity of + over max, holds for any max Ω , as per Lemma 1 property 2. Thus, the same proof as Proposition 1 is also valid when we substitute max with max Ω , when Ω = -γH, which yields LP Ω (θ) = DP Ω (θ).

Proof that Ω = -γH ⇐ DP Ω (θ) = LP Ω (θ). Mirroring the previous proof, we first characterize the regularizations Ω for which max Ω is associative.

Lemma 3. Let Ω : △ D → R be a regularization function, i. e., dom Ω = △ D . Assume that there exist ω convex lower-semi-continuous defined on [0,1]

such that Ω(q) = d i=1 ω(q i). If max Ω (max Ω (x), c) = max Ω (x, c) ∀x ∈ R D , c ∈ R, then Ω(q) = -γ d i=1 q i log(q i) for some γ ≥ 0.
Proof. We start by writing the associativity property for three elements. For all x 1 , x 2 , x 3 ∈ R,

max Ω (x 1 , x 2 , x 3) = max Ω max Ω (x 1 , x 2), x 3) = max q+q3=1 q,q3≥0 q max q1+q2=1 qi≥0 q1 x 1 + q2 x 2 -ω(q 1) -ω(q 2) + q 3 x 3 -ω(q 3) -ω(q)
= max q1+q2+q3=1 qi≥0

q 1 x 1 + q 2 x 2 + q 3 x 3 -Φ(q 1 , q 2 , q 3), where Φ(q 1 , q 2 , q 3) (q 1 + q 2) ω q 1 q 1 + q 2 + ω q 2 q 1 + q 2 + ω(q 1 + q 2) + ω(q 3).

We have performed a variable change q 1,2 = q q1,2 at the second line, and noticed q = q 1 + q 2 . Therefore max

Ω (x 1 , x 2 , x 3) = Φ ⋆ (x 1 , x 2 , x 3),
where Φ ⋆ is the convex conjugate of Φ restricted to]0, 1] 3 . By definition, we also have

max Ω (x 1 , x 2 , x 3) = Ω ⋆ (x 1 , x 2 , x 3), so that Ω ⋆ = Φ ⋆ on R 3 .
As Ω is convex and lower semi-continous, we can apply Moreau-Yoshida theorem and obtain Ω ⋆⋆ = Ω = Φ ⋆⋆ ≤ Φ.

Suppose that there exists q = (q 1 , q 2 , q 3) ∈ △ 3 such that Φ(q 1 , q 2 , q 3) < Ω(q 1 , q 2 , q 3). Given the forms of Φ and Ω, Φ(q 1 , q 2 , 0) < Ω(q 1 , q 2 , 0). We let

x = (x 1 , x 2 , -∞) ∈ R 3 such that max Ω (x 1 , x 2 , -∞) = max Ω (x 1 , x 2) = x 1 q 1 + x 2 q 2 -ω(q 1) -ω(q 2) = x, q -Ω(q) < x, q -Φ(q) ≤ max q∈△ 3 x, q -Φ(q) = max Ω max Ω (x 1 , x 2), -∞) ,
leading to a contradiction. Therefore Ω ≥ Φ over △ 3 , and finally Ω = Φ. We have used the fact that the operator ∇max Ω : R 2 → △ 2 is surjective, as △ 2 is a one-dimensional segment, ∇max Ω is continuous and reaches the extreme values ∇max Ω (0, -∞) = (1, 0) and ∇max Ω (-∞, 0) = (0, 1) -which allows to use the intermediate value theorem.

To conclude, for all q 1 , q 2 ∈]0, 1] such that q 1 + q 2 ≤ 1, we have

ω(q 1) + ω(q 2) = (q 1 + q 2) ω q 1 q 1 + q 2 + ω q 2 q 1 + q 2 + ω(q 1 + q 2) ω(xy) + ω((1 -x)y) -ω(y) = y(ω(x) + ω(1 -x)) ∀ 0 < y ≤ 1, 0 < x < 1, (8)
where we have set y = q 1 + q 2 and x = q1 q1+q2 . The functional equation (8) was first studied in the field of information theory. As first shown by Horibe (1988, Theorem 0), and further extended [START_REF] Gselmann | Entropy functions and functional equations[END_REF], all measurable solutions have the form

ω(x) = -γx log(x),
where γ ≥ 0 is a constant. The lemma follows.

Assuming that Ω is not equal to -γH for any γ ≥ 0, the previous lemma tells us that the associativity property is not met for a triplet (x 1 , x 2 , x 3) ∈ R 3 . In Figure 5, we construct a graph G such that

DP Ω (θ) = max Ω (max Ω (x 1 , x 2), x 3) = LP Ω (θ) = max Ω (x 1 , x 2 , x 3)
The proposition follows.

A.4. Computation of ∇LP Ω (θ) and interpretation as an expectation

We show that ∇LP Ω (θ) ∈ conv(Y), and characterize a path distribution of which ∇LP Ω (θ) is the expectation.

Convex hull of Y. We rewrite LP Ω (θ) = max Ω (u(θ)), where u(θ) (Y , θ) Y ∈Y . Using the chain rule, we have

∇LP Ω (θ) = J u (θ) ⊤ ∇max Ω (u(θ)), (9)
where J u is the Jacobian of u w.r.t. θ, a matrix of size |Y| × (N × N). The horizontal slices of J u are exactly all the paths Y of Y. Using ∇max Ω (u(θ)) ∈ △ |Y| , we conclude that ∇LP Ω (θ) ∈ conv(Y).

Induced distribution. From (9), we see that ∇LP Ω (θ) = Y ∈Y p θ,Ω (Y) Y , where we defined the distribution

p θ,Ω (Y) ∇max Ω (u(θ)) Y . Unfortunately, since u(θ) ∈ R |Y| , computing p θ,Ω (Y), let alone the expectation E θ,Ω [Y]
under that distribution, is intractable for general Ω.

A.5. Proof of Proposition 3 (computation of ∇DP Ω (θ))

Gradient computation. We first derive the recursion over E ∇DP Ω (θ) using sensitivity analysis, a.k.a backpropagation calculus. For any (i, j) ∈ E, since θ i,j influences only v i , a straighforward application of the chain rule gives

e i,j = ∂v N ∂θ i,j = ∂v N ∂v i ∂v i ∂θ i,j . (10)
Recall that v = (v 1 , . . . , v N) and q i ∇max Ω (θ i +v). With this vector defined, we can now easily derive the two terms on the r.h.s of (10). Differentiating (6) w.r.t. θ i,j straighforwardly gives the second term ∂vi ∂θi,j = q i,j . The first term must be computed recursively. Recall that C j denotes the children of node j. Since a node j influences only its children i ∈ C j , using the chain rule, we get

∂v N ∂v j = i∈Cj ∂v N ∂v i ∂v i ∂v j ēj . (11)
Differentiating (6) w.r.t. v j again gives ∂vi ∂vj = q i,j . By definition, we also have ∂v N ∂vi = ēi and e i,j = ēi q i,j . Hence, ēj = i∈Cj ēi q i,j = i∈Cj e i,j .

Combining the above, for any j ∈ [N -1], we obtain the following two-step recursion ∀ i ∈ C j , e i,j = ēi q i,j and ēj = i∈Cj e i,j .

The values (e i,j) (i,j)∈E can thus be computed in reverse topological order over the nodes of G, initializing ēN = ∂v N ∂v N = 1. The pseudo-code is summarized in Algorithm 1.

Associated random walk. It remains to show that E is also the expectation of Y ∈ Y support of the following random walk, defined informally in the main text. Formally, we define the random sequence (w t) t as

w 0 = N, ∀ t > 0, ∀ i ∈ [N], ∀ j ∈ P i , P[w t = j|w t-1 = i] = q i,j .
We set y i,j 1{∃ t > 0 s.t. w t-1 = i, w t = j} where 1 is the characteristic function of an event, thereby defining a random variable Y ∈ Y, with distribution D. We leave implicit the dependency of P in θ and Ω. As the depth of w t (number of edges to connect to the root Algorithm 1 Compute DP Ω (θ) and ∇DP Ω (θ)

Input: Edge weights θ ∈ R N ×N v 1 ← 0, ēN ← 1, Q, E ← 0 ∈ R N ×N for i ∈ [2, . . . , N] do ⊲ Topological order v i ← max Ω j∈Pi θ i,j + v j (q i,j) j∈Pi ← ∇max Ω j∈Pi θ i,j + v j for j ∈ [N -1, . . . , 1] do ⊲ Reverse topological order ∀ i ∈ C j , e i,j ← q i,j ēi , ēj ← i∈Cj e i,j
Return:

DP Ω (θ) = v N , ∇DP Ω (θ) = E ∈ R N ×N Intermediate computation for Algorithm 2 ē [ē] N i=1 ∈ R N , Q ∈ R N ×N
Algorithm 2 Compute ∇DP Ω (θ), Z and ∇ 2 DP Ω (θ)Z

Input: Edge weights and perturbation θ, Z ∈ R N ×N Call Algorithm 1 with input θ to get ē and Q

v1 ← 0; ė N ← 0, Q, Ė ← 0 ∈ R N ×N for i ∈ [2, . . . , N] do ⊲ Topological order vi ← j∈Pi q i,j (z i,j + vj) (A1) (qi,j) j∈Pi ← J Ω (q i,j) j∈Pi (z i,j + vj) j∈Pi (A2) for j ∈ [N -1, . . . , 1] do ⊲ Reverse topological order ∀ i ∈ C j , ėi,j ← qi,j ēi + q i,j ėi (A3) ėj ← i∈Cj ėi,j Return: ∇DP Ω (θ), Z = vN ∇ 2 DP Ω (θ)Z = Ė ∈ R N ×N
node) is stricly decreasing with t, (w t) t reaches node 1 in finite time with probability one and is constant after this event. We introduce the random variables (ȳ j) j , defined for all j ∈

[N] as ȳj 1{∃ t ≥ 0, w t = j} = i∈Cj y i,j if j = N , 0 otherwise.
By definition, using the fact that P[w t = j|w t-1 = i] is independent of t (Markov property), for all i ∈ C j and for all j ∈ [N -1], we have

P[y i,j = 1] = E[y i,j] = P[∃ t > 0, w t-1 = i]P[w t = j|w t-1 = i] = E[ȳ i]q i,j .
Linearity of the expectation then provides

E[ȳ j] = i∈Cj E[y i,j],
with initialization E[ȳ N] = 1. We recover the same two-step recursion as the one defining E and ē, with the same initialization. Hence the probabilistic interpretation of the gradient, where the expectation is taken with respect to the distribution D of Y :

E = E θ,Ω [Y] and ē = E θ,Ω [ȳ].
A.6. Computation of the directional derivative ∇DP Ω (θ), Z

The derivations of the following two sections allows to write Algorithm 2. Let vi ∇v i (θ), Z , where v i (θ) is defined in (6). Since v i only directly depends on v j + θ i,j for j ∈ P i , a straighforward differentiation of ∇v i (θ), Z gives vi = j∈Pi ∂v i ∂v j (vj + z i,j) .

Recall that ∂vi ∂vj = q i,j and has already been obtained when computing ∇DP Ω (θ). Hence equation (A1), reproduced here:

∀ i ∈ [2, . . . , N] : vi = j∈Pi q i,j (vj + z i,j). (12)
This recursion can be computed in topological order, starting from v1 = 0 to finish at vN = ∇DP Ω (θ), Z .

A.7. Computation of the Hessian-vector product ∇ 2 DP Ω (θ)Z

For convenience, let us define ∇ 2 DP Ω (θ)Z Ė. For (i, j) / ∈ E, we evidently have ėi,j = 0. For (i, j) ∈ E, since θ i,j influences only v i and vi , we obtain

ėi,j = ∂ vN ∂θ i,j = ∂ vN ∂v i ∂v i ∂θ i,j + ∂ vN ∂ vi ∂ vi ∂θ i,j .
We will now show how to derive each of the right-hand side terms in turn. We already know that ∂vi ∂θi,j = q i,j . We also have ∂ vN ∂ vi = u i . Indeed, observe that vj only directly influences vi for i ∈ C i . Therefore, we have

∂ vN ∂ vj = i∈Cj ∂ vN ∂ vi q i,j ∀j ∈ [N -1] (13)
and ∂ vN ∂ v1 = 1. Comparing (11) and (13), we see that (∂ vN ∂ vi) i follows the same recursion as

(∂v N ∂vi) i . Since ∂ vN ∂ vn = ∂v N
∂vn , both sequences are equal:

∂ vN ∂ vi = ∂v N ∂v i = e i .
Next, we derive ∂ vi ∂θi,j . Since, for j ∈ P i , vj + z i,j does not depend on θ i,j , differentiating (12) w.r.t. θ i,j , we obtain

∂ vi ∂θ i,j = k∈Pi ∂q i,j ∂θ i,j (vk + z i,k) = k∈Pi ∂ 2 v i ∂θ i,j ∂θ i,k (vk + z i,k) qi,j .
This can be conveniently rewritten in a vectorial form as

qi = ∇ 2 max Ω (θ i + v) (z i + v) = J Ω (q i) (z i + v),
where we have defined v (v1 , . . . , vN) and where we have used the function J Ω defined in §B.1, that conveniently computes the Hessian of max Ω from its gradient. The Hessian has this form for both negentropy and ℓ 2 2 regularizations. In a practical implementation, we only need to compute the coordinates (i, j) of Q, for j ∈ P i . Namely, as specified in (A2), (qi,j) j∈Pi ← J Ω (q i,j) j∈Pi (z i,j + vj) j∈Pi .

Finally, we derive ∂ vN ∂vi . Since v j influences only v i and vi for i ∈ C j , the chain rule gives

∂ vN ∂v i = j∈Ci ∂ vN ∂v j ∂v j ∂v i + ∂ vN ∂ vj ∂ vj ∂v i = j∈Cj ėi,j ėi .
Combining the above, for any j ∈ [N -1], we obtain the following two-step recursion (A3), reproduced here:

∀ i ∈ C j , ėi,j = qi,j e i + q i,j ėi and ėj = i∈Cj ėi,j .

Similarly to the computation of ∇DP Ω (θ), our algorithm computes this recursion in reverse topological order over the graph G, yielding ∇ 2 DP Ω (θ)Z = Ė.

B. Examples of algorithm instantiations

We provide the explicit forms of max Ω and its derivative for the negentropy and ℓ 2 2 regularizations. Then, we provide details and pseudo-code for the two instances of differentiable dynamic programming presented in §3.

B.1. Examples of max Ω

Negative entropy. When Ω(q) = γ D i=1 q i log q i , where γ > 0 (smaller is less regularized), we obtain

max Ω (x) = γ log D i=1 exp(x i /γ) ∇max Ω (x) = exp(x/γ) D i=1 exp(x i /γ) ∇ 2 max Ω (x) = J Ω (∇max Ω (x)),
where J Ω (q) (Diag(q)-qq ⊤)/γ. Note that ∇max Ω (x) recovers the usual "softmax" with temperature γ = 1. For a proof of the expression of max Ω , see, e.g., (Boyd & Vandenberghe, 2004, Example 3.25).

Squared ℓ 2 norm. When Ω(x) = γ 2 x 2 2 with γ > 0, we obtain the following expressions

max Ω (x) = q ⋆ , x - γ 2 q ⋆ 2 2 ∇max Ω (x) = argmin q∈△ D q -x/γ 2 2 = q ⋆ ∇ 2 max Ω (x) = J Ω (∇max Ω (x)),
where J Ω (q) (Diag(s)ss ⊤ / s 1)/γ and s ∈ {0, 1} D is a vector that indicates the support of q. Note that ∇max Ω (x) is precisely the Euclidean projection onto the simplex of x/γ and can be computed exactly in worst-case O(D log D) time using the algorithm of [START_REF] Michelot | A finite algorithm for finding the projection of a point onto the canonical simplex of R n[END_REF] or in expected O(D) time using the randomized pivot algorithm of [START_REF] Duchi | Efficient projections onto the ℓ 1 -ball for learning in high dimensions[END_REF]. It can be efficiently performed on Nvidia GPUs since recently. An important benefit of the squared ℓ 2 norm, compared to the negative entropy, is that ∇max Ω (x) tends to be sparse. This is useful, among other things, to define sparse attention mechanisms [START_REF] Martins | From softmax to sparsemax: A sparse model of attention and multi-label classification[END_REF][START_REF] Niculae | A regularized framework for sparse and structured neural attention[END_REF].

B.2. Sequence prediction with the smoothed Viterbi algorithm

Computational graph. As illustrated in §3, the DAG contains a start node, S nodes for each time step and end node. Therefore |V| = N = T S + 2. Only nodes from consecutive time steps are connected to each other. Taking into account the start and end nodes, the total number of edges is therefore |E| = (T -1)S 2 + 2S.

Representation. We follow the notation of §3, i.e. we represent Y and θ as T × S × S tensors (we can safely ignore the edges connected to the end node since their value is 0). We represent Y as a binary tensor such that y t,i,j = 1 if Y is in states i and j in time steps t and t -1, and y t,i,j = 0 otherwise. Likewise, we represent the potentials θ as a real tensor such that θ t,i,j contains the potential of transitioning from state j to state i on time t.

Algorithms. Applying recursion (6) to this specific DAG, we obtain a smoothed version of the Viterbi algorithm. Let v t,i be the score of being in state i up to time t. We can rewrite the smoothed Bellman recursion as The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD, as also noticed in [START_REF] Lample | Neural architectures for named entity recognition[END_REF] when using the classical negative log-likelihood as a loss.

v t,i (θ) max Ω j∈[S] v t-1,j (θ) + θ t,i,j = max Ω (v t-1 (θ) + θ t,i).
Visualization. The models using ℓ 2 2 regularization perform nearly on par with the ones using negentropy, as demonstrated in Table 1. On the other hand, ℓ 2 2 regularization leads to tag probability vectors that are sparse and hence easier to parse. They allow to detect ambiguities more easily. We display a few tagged English sequences in Figure 6. The model using ℓ 2 2 regularization correctly identifies an ambiguous entity (Union Bank of Switzerland) and can be used to propose two tag sequences: (B-ORG, I-ORG, I-ORG, E-ORG) or (B-ORG, E-ORG, O, S-LOC). Probabilities of every tag sequence can be computed using the matrix Q, as described in §2.3 -this remains tractable as long as the matrix Q is sparse enough, so that the number of non-zero probabilities sequence remains low. On the other hand, the model using negentropy regularization never assign a zero probability to any tag sequence -it is therefore not tractable to provide the user with a small set of interesting sequences. C.2. Supervised audio-to-score transcription (section §4.3) Audio sequences, sampled at 22.05 kHz, are split into frames of 512 samples. We extract the following features from these sequences: energy, spectral centroid, spectral bandwidth, and the 5 first MFCC features. All features are centered around the median and normalized. The ∇DTW Ω layer is written in Cython1 , and hence run on CPU. This technical choice was suggested by the fact that we have to write explicit loops to specify the topological and reverse topological pass over the DTW computation graph (see Algorithm 5). However, it is possible to use only contiguous vector operations and thus take advantage of GPU computations -this is left for future work. We use SciPy's2 LBFGS-B solver to perform end-to-end training and multinomial regression. We use a ℓ 2 2 regularization on the weight W ,: we selected it using a grid search over {10 -5 , 10 -4 , . . . , 1} and selected 10 -3 . Further vizualisation. In Figure 7, we display the alignment maps we obtained using our algorithm and using the baseline multinomial model followed by a hard-DTW alignment computation. These alignment maps correspond to the predicted onsets of keys. Our model (in orange) performs visibly better in predicting onsets.

C.3. Structured and sparse attention (section §5)

We use OpenNMT-py library 3 to fit our structured attention model. Model architecture and optimization details are as follow:

• We use a bidirectional LSTM encoder and decoder, with 500 units in each direction and a depth of 2 layers . • The decoder is fed with the input representation as in [START_REF] Luong | Effective approaches to attention-based neural machine translation[END_REF]. not affected much by this parameter, provided that it is not set too low in the ℓ 2 2 casewith a too small γ, Vit Ω reduces to unregularized MAP estimation and ∇Vit Ω has zero derivatives.

We use a 1-million sentence subject of WMT14 English-to-French corpus, available at http://nmt-benchmark.net/. We use Moses tokenizer and do not perform any postprocessing, before computing BLEU score on detokenized sentences (multi bleu.perl script).

Implementation. We implemeted a batch version of the ∇Vit Ω layer on GPU, using the PyTorch tensor API. Model with negentropy-regularized attention mechanism runs 1/2 as fast as the softmax attention mechanism (approximately 7500 tokens/s vs 15000 tokens/s on a single Nvidia Titan X Pascal). With ℓ 2 2 regularization, it is only 1/3 as fast: approximately 5000 tokens/s. Although this remains reasonable, it could certainly be optimized by rewriting kernels using lower-level languages (e.g., using ATen API from PyTorch.) Further results. Table 3 provides BLEU scores for both translation directions on the 1 million sentence subset of WMT14 we used. We observe that the introduction of structure and sparsity does not hinder the general performance of the model. We provide several examples of attention maps in Figure 8, that illustrate the sparsity patterns ℓ 2 2 regularization uncovers.

Figure 1 .

 1 Figure 1. DTWΩ(θ) is an instantiation of the proposed smoothed dynamic programming operator, DPΩ(θ), to the dynamic time warping (DTW) computational graph. In this picture, θ is the squared Euclidean distance matrix between the observations of two time-series. The gradient ∇DTWΩ(θ) is equal to the expected alignment under a certain random walk characterized in §2.3 and is a sound continuous relaxation to the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy regularization (left), ℓ 2 2 regularization leads to exactly sparse alignments (right). Our framework allows to backpropagate through both DTWΩ(θ) and ∇DTWΩ(θ), which makes it possible to learn the distance matrix θ end-to-end.

Lemma 1 .

 1 Properties of max Ω operators Let x = (x 1 , . . . , x D) ⊤ ∈ R D . 1. Boundedness: If Ω is lower-bounded by L Ω,D and upper-bounded by U Ω,D on the simplex △ D , then max(x) -U Ω,D ≤ max Ω (x) ≤ max(x) -L Ω,D .

Figure 2 .

 2 Figure 2. Computational graph of the Viterbi algorithm.

Figure 3 .

 3 Figure 3. Computational graph of the DTW algorithm.

 is the linear classifier associated with tag i and T ∈ R S×S is a transition matrix. We learn W , b and T along with the network producing X, and compare two losses: Surrogate convex loss: ℓ 0,Ω (Y true ; θ), Relaxed loss:∆(Y true , ∇DP Ω (θ)),where ∆(Y true , Y) is the squared ℓ 2 distance when Ω = • 2 2 and the Kullback-Leibler divergence when Ω = -H, applied row-wise to the marginalization of Y true and Y .

 L a the lower triangular matrix filled with 1. When Y ∈ Y is a true alignement matrix, ∆(Y true , Y) is the area between the path of Y true and Y , which corresponds to the mean absolute deviation in the audio literature. When Y ∈ conv(Y), it is a convex relaxation of the area. At test time, once θ is learned, we use the non-regularized DTW algorithm to output a hard alignment Y ⋆ (θ) ∈ Y.

Figure 4 .

 4 Figure 4. Attention maps obtained with structured attention. Although both regularizations led to the same translation (y-axis) in this example, attention is sparse and more interpretable with ℓ 2 2 .

Figure 5 .

 5 Figure 5. In general, v6(θ) = DPΩ(θ) = LPΩ(θ).

Figure 6 .

 6 Figure 6. Test predictions from the entropy and ℓ 2 2 regularized named entity recognition (NER) models. Red dots indicate ground truth. When using ℓ 2 2 regularization, model predictions are sparse (grey borders indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number of possible outputs.

Figure 7 .

 7 Figure7. Alignment maps between score onsets and audio frames on test data from the Bach10 dataset. Our end-to-end trained model qualitatively performs better than the baseline model.

Figure 8 .

 8 Figure 8. Attention on test samples from Newstest2014. Borders indicate non-zero cells. Translations (y-axis) are often qualitatively equivalent, while attentions maps are sparse in the ℓ 2 2 case.

Table 1 .

 1 F1 score comparison on CoNLL03 NER datasets.

	Ω		Loss	English Spanish German Dutch
	Negent.	Surrogate	90.80	86.68	77.35	87.56
			Relaxed	90.47	86.20	77.56	87.37
	ℓ 2 2		Surrogate	90.86	85.51	76.01	86.58
			Relaxed	89.49	84.07	76.91	85.90
	0	Struct. perceptron	86.52	81.48	68.81	80.49
	(Lample et al., 2016)	90.96	85.75	78.76	81.74

Table 2 .

 2 Mean absolute deviation of alignment using an end-toend trained multinomial classifier and a pre-trained one.

	Linear model	Train	Test
	End-to-end trained 0.17 ± 0.01 1.07 ± 0.61
	Pretrained	1.80 ± 0.14	3.69 ± 2.85
	Random θ	14.64 ± 2.63 14.64 ± 0.29

 • SGD training with s = 1 learning rate, decaying from epoch 8 to epoch 15 with rate 0.65, batch size of size 256. • Training sentence of lengths superior to 50 are ignored, and translated sentence are forced to a length inferior to 100. • The temperature parameter is set to γ = 2 for entropy, and γ = 10 for ℓ 2 2 . Performance is

Table 3 .

 3 Detokenized BLEU score on newstest2014 data using regularized and unregularized attention.

	Attention model	WMT14 1M fr→en WMT14 en→fr
	Softmax	27.96	28.08
	Entropy regularization	27.96	27.98
	ℓ 2 2 reg.	27.21	27.28

for all integers D ≥ 2, we get a better approximation of the max operator using squared ℓ 2 norm than using negative entropy, whenever D ≥ 2.

http://cython.org/

http://scipy.org/

http://opennmt.net/

Acknowledgements

MB thanks Vlad Niculae and Marco Cuturi for many fruitful discussions. AM thanks Julien Mairal, Inria Thoth and Inria Parietal for lending him the computational resources necessary to run the experiments. He thanks University Paris-Saclay for allowing him to do an internship at NTT, and Olivier Grisel for his insightful comments on natural language processing models.

Appendix A. Proofs and detailed derivations

This section contains the proofs of the propositions and lemmas presented in the main text. It also contains derivations of gradient, directional derivative and Hessian-product computations.

A.1. Proof of Lemma 1 (properties of max Ω) Property 1 (boundedness). Let q ⋆ and q ⋆ Ω be the solutions of max q∈△ D q ⊤ x and max q∈△ D q ⊤ x -Ω(q), respectively. Then, we have max Ω (x) = q ⋆ Ω , x -Ω(q ⋆ Ω) ≥ q ⋆ , x -Ω(q ⋆) = max(x) -Ω(q ⋆) and max(x) -Ω(q ⋆ Ω) ≥ q ⋆ Ω , x -Ω(q ⋆ Ω) = max Ω (x). Combining the two and using L Ω,D ≤ Ω(q) ≤ U Ω,D ∀q ∈ △ D , we obtain

When Ω(q) = i q i log q i , we have the tight inequality -log D ≤ Ω(q) ≤ 0 ∀q ∈ △ D and hence max(x) ≤ max Ω (x) ≤ max(x) + log D.

When Ω(q) = 1 2 q 2 , we have the tight inequality 1 2D ≤ Ω(q) ≤ 1 2 ∀q ∈ △ D and hence

Note that the difference U Ω,D -L Ω,D is equal to log D when Ω is the negative entropy and to

Algorithm 3 Compute Vit Ω (θ) and ∇Vit Ω (θ)

Intermediary computations for Alg. 4:

Algorithm 4 Compute ∇Vit Ω (θ), Z and ∇ 2 Vit Ω (θ)Z

The value Vit Ω (θ) max Ω (v T (θ)) can be computed in topological order, starting from v 0 (θ). The total computational cost is O(T S 2). Using the computations of §2.3 and §2.4 to this specific DAG, we can compute ∇Vit Ω (θ), ∇Vit Ω (θ), Z and ∇ 2 Vit Ω (θ)Z with the same complexity. The procedures are summarized in Algorithm 3 and Algorithm 4, respectively. From Proposition 2 property 1, Vit Ω (θ) is a convex function for any Ω.

B.3. Monotonic aligment prediction with the smoothed DTW

Computational graph. As illustrated in §3, the DAG contains a start node and N A N B nodes. Therefore, |V| = N = N A N B + 1. Due to the monotonic constraint, each node may only be connected with at most 3 other nodes. The cardinality of Y is the delannoy(N A -1, N B -1) number [START_REF] Sulanke | Objects counted by the central Delannoy numbers[END_REF][START_REF] Banderier | Why Delannoy numbers[END_REF]. That number grows exponentially with N A and N B .

Representation. We follow the notation of §3, i.e. we represent Y and θ as N A × N B matrices. We represent Y as a binary matrix such that y i,j = 1 if a i is aligned with b j , and y i,j = 0 otherwise. Likewise, we represent θ as a real matrix such that θ i,j is a measure of "discrepancy" between a i and b j .

Algorithms. Following the DTW literature [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF], we seek an alignment with minimal cost. For that reason, we introduce the smoothed min operator, its gradient and its Hessian as follows

Applying (6) to the DTW DAG gives rise to a smoothed version of the algorithm. Let v i,j (θ) be the alignment cost up to cell (i, j). Then the smoothed DTW recursion is

The value DTW Ω (θ)

v N A ,N B (θ) can be computed in O(N A N B) time. Applying the derivations of §2.3 and §2.4 to this specific DAG, we can compute ∇DTW Ω (θ), Algorithm 5 Compute DTWΩ(θ) and ∇DTWΩ(θ)

,1 e i,j+1 + q i+1,j+1,2 e i+1,j+1 + q i+1,j,3 e i+1,j

Return:

Intermediate computations for Algo. 6:

,1 e i,j+1 + q i,j+1,1 ėi,j+1 + qi+1,j+1,2 e i+1,j+1 +q i+1,j+1,2 ėi+1,j+1 + qi+1,j,3 e i+1,j + q i+1,j,3 ėi+1,j

∇DTW Ω (θ), Z and ∇ 2 DTW Ω (θ)Z with the same complexity. The procedures, with appropriate handling of the edge cases, are summarized in Algorithm 5 and 6, respectively.

Note that when Ω is the negative entropy, DTW Ω (θ) is known as soft-DTW [START_REF] Cuturi | Soft-DTW: a differentiable loss function for time-series[END_REF]. While the DP computation of DTW Ω (θ) and of its gradient were already known, the generalization to any strongly convex Ω and the computation of ∇ 2 DTW Ω (θ)Z are new. From Proposition 2 property 1, DTW Ω (θ) is a concave function of the discrepancy matrix θ for any Ω. With respect to time-series, DTW Ω is neither convex nor concave.

C. Experimental details and further results

We finally provide details on the architecture used in experiments, with additionnals figures.

C.1. Named entity recognition (section §4.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional character embedding. This character embedding corresponds to the concatenation of the last hidden unit of a bi-directional character LSTM, as in [START_REF] Lample | Neural architectures for named entity recognition[END_REF]. Character embedding size is set to 50. A word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-dimensional hidden units per direction.

The final features X used to build the potential tensor θ are thus 200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText [START_REF] Joulin | Compressing text classification models[END_REF], trained on Wikipedia corpus. • We do not pad letters prior to feeding the character LSTM as it is not principled.

• We do not train the unknown word embedding as we found it had no effect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit Ω model than if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed a small grid-search to select the step-size and batch-size used for optimization: s ∈ {0.005, 0.01, 0.02}, b ∈ {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set, and report the test score.