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Arthur Mensch 1 Mathieu Blondel 2

Abstract

Dynamic programming (DP) solves a variety of

structured combinatorial problems by iteratively

breaking them down into smaller subproblems.

In spite of their versatility, many DP algorithms

are non-differentiable, which hampers their use

as a layer in neural networks trained by back-

propagation. To address this issue, we propose

to smooth the max operator in the dynamic pro-

gramming recursion, using a strongly convex

regularizer. This allows to relax both the opti-

mal value and solution of the original combina-

torial problem, and turns a broad class of DP al-

gorithms into differentiable operators. Theoret-

ically, we provide a new probabilistic perspec-

tive on backpropagating through these DP oper-

ators, and relate them to inference in graphical

models. We derive two particular instantiations

of our framework, a smoothed Viterbi algorithm

for sequence prediction and a smoothed DTW

algorithm for time-series alignment. We show-

case these instantiations on structured prediction

(audio-to-score alignment, NER) and on struc-

tured and sparse attention for translation.

Modern neural networks are composed of multiple layers

of nested functions. Although layers usually consist of

of elementary linear algebraic operations and simple non-

linearities, there is a growing need for layers that output

the value or the solution of an optimization problem. This

can be used to design loss functions that capture relevant

regularities in the input (??) or to create layers that impose

prior structure on the output (????).

Among these works, several involve a convex optimiza-

tion problem (???); others solve certain combinatorial opti-
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mization problems by dynamic programming (???). How-

ever, because dynamic programs (?) are usually non-

differentiable, virtually all these works resort to the formal-

ism of conditional random fields (CRFs) (?), which can be

seen as changing the semiring used by the dynamic pro-

gram — replacing all values by their exponentials and all

(max,+) operations with (+,×) operations (?). While

this modification smoothes the dynamic program, it looses

the sparsity of solutions, since hard assignments become

soft ones. Moreover, a general understanding of how to re-

lax and differentiate dynamic programs is lacking. In this

work, we propose to do so by leveraging smoothing (??)

and backpropagation (?). We make the following contribu-

tions.

1) We present a unified framework for turning a broad class

of dynamic programs (DP) into differentiable operators.

Unlike existing works, we propose to change the semiring

to use (maxΩ,+) operations, where maxΩ is a max opera-

tor smoothed with a strongly convex regularizer Ω (§1).

2) We show that the resulting DP operators, that we call

DPΩ, are smoothed relaxations of the original DP algo-

rithm and satisfy several key properties, chief among them

convexity. In addition, we show that their gradient,∇DPΩ,

is equal to the expected trajectory of a certain random walk

and can be used as a sound relaxation to the original dy-

namic program’s solution. Using negative entropy for Ω
recovers existing CRF-based works from a different per-

spective — we provide new arguments as to why this Ω is

a good choice. On the other hand, using squared ℓ2 norm

for Ω leads to new algorithms whose expected solution is

sparse. We derive a clean and efficient method to back-

propagate gradients, both through DPΩ and ∇DPΩ. This

allows us to define differentiable DP layers that can be in-

corporated in neural networks trained end-to-end (§2).

3) We illustrate how to to derive two particular instantia-

tions of our framework, a smoothed Viterbi algorithm for

sequence prediction and a smoothed DTW algorithm for

supervised time-series alignment (§3). The latter is illus-

trated in Figure 1. Finally, we showcase these two instanti-

ations on structured prediction tasks (§4) and on structured

attention for neural machine translation (§5).
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DTW�H(θ) = �7.49 DTWk·k2(θ) = 9.61

Figure 1. DTWΩ(θ) is an instantiation of the proposed smoothed

dynamic programming operator, DPΩ(θ), to the dynamic time

warping (DTW) computational graph. In this picture, θ is the

squared Euclidean distance matrix between the observations of

two time-series. The gradient ∇DTWΩ(θ) is equal to the ex-

pected alignment under a certain random walk characterized in

§2.3 and is a sound continuous relaxation to the hard DTW align-

ment between the two time-series (here depicted with a yellow

path). Unlike negentropy regularization (left), ℓ22 regularization

leads to exactly sparse alignments (right). Our framework al-

lows to backpropagate through both DTWΩ(θ) and ∇DTWΩ(θ),
which makes it possible to learn the distance matrix θ end-to-end.

Notation. We denote scalars, vectors and matrices using

lower-case, bold lower-case and bold upper-case letters,

e.g., y, y and Y . We denote the elements of Y by yi,j and

its rows by yi. We denote the Frobenius inner product be-

tween A and B by 〈A,B〉 ,
∑

i,j ai,jbi,j . We denote the

(D− 1)-probability simplex by△D , {λ ∈ R
D
+ : ‖λ‖1 =

1}. We write conv(Y) , {
∑

Y ∈Y λY Y : λ ∈ △|Y|} the

convex hull of Y , [N ] the set {1, . . . , N} and supp(x) ,

{j ∈ [D] : xj 6= 0} the support of x ∈ R
D. We denote the

Shannon entropy by H(q) ,
∑

i qi log qi.

We have released an optimized and modular PyTorch im-

plementation for reproduction and reuse.

1. Smoothed max operators

In this section, we introduce smoothed max operators

(???), that will serve as a powerful and generic abstrac-

tion to define differentiable dynamic programs in §2. Let

Ω : RD → R be a strongly convex function on△D and let

x ∈ R
D. We define the max operator smoothed by Ω as:

maxΩ(x) , max
q∈△D

〈q,x〉 − Ω(q). (1)

In other words, maxΩ is the convex conjugate of Ω, re-

stricted to the simplex. From the duality between strong

convexity and smoothness, maxΩ is smooth: differentiable

everywhere and with Lipschitz continuous gradient. Since

the argument that achieves the maximum in (1) is unique,

from Danskin’s theorem (?), it is equal to the gradient:

∇maxΩ(x) = argmax
q∈△D

〈q,x〉 − Ω(q).

The gradient is differentiable almost everywhere for any

strongly-convex Ω (everywhere for negentropy). Next, we

state properties that will be useful throughout this paper.

Lemma 1. Properties of maxΩ operators

Let x = (x1, . . . , xD)⊤ ∈ R
D.

1. Boundedness: If Ω is lower-bounded by LΩ,D and

upper-bounded by UΩ,D on the simplex△D, then

max(x)− UΩ,D ≤ maxΩ(x) ≤ max(x)− LΩ,D.

2. Distributivity of + over maxΩ:

maxΩ(x+ c1) = maxΩ(x) + c ∀c ∈ R.

3. Commutativity: If Ω(Pq) = Ω(q), where P is a per-

mutation matrix, then maxΩ(Px) = maxΩ(x).

4. Non-decreasingness in each coordinate:

maxΩ(x) ≤ maxΩ(y) ∀x ≤ y

5. Insensitivity to −∞: xj = −∞⇒ ∇maxΩ(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds

whenever Ω(q) =
∑D

i=1 ω(qi), for some function ω. We

focus in this paper on two specific regularizers Ω: the ne-

gentropy −H and the squared ℓ2 norm. For these choices,

all properties above are satisfied and we can derive closed-

form expressions for maxΩ, its gradient and its Hessian —

see §B.1. When using negentropy, maxΩ becomes the log-

sum-exp and ∇maxΩ the softmax. The former satisfies as-

sociativity, which as we shall see, makes it natural to use in

dynamic programming. With the squared ℓ2 regularization,

as observed by ??, the gradient∇maxΩ is sparse. This will

prove useful to enforce sparsity in the models we study.

2. Differentiable DP layers

Dynamic programming (DP) is a generic way of solving

combinatorial optimization problems by recursively solv-

ing problems on smaller sets. We first introduce this cat-

egory of algorithms in a broad setting, then use smoothed

max operators to define differentiable DP layers.

2.1. Dynamic programming on a DAG

Every problem solved by dynamic programming reduces to

finding the highest-scoring path between a start node and an

end node, on a weighted directed acyclic graph (DAG). We

therefore introduce our formalism on this generic problem,

and give concrete examples in §3.

Formally, let G = (V, E) be a DAG, with nodes V and

edges E . We write N = |V| ≥ 2 the number of nodes.

Without loss of generality, we number the nodes in topo-

logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the

only node without children. Every directed edge (i, j) from

a parent node j to a child node i has a weight θi,j ∈ R. We

https://github.com/arthurmensch/didyprog
https://github.com/arthurmensch/didyprog
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gather the edge weights in a matrix θ ∈ Θ ⊆ R
N×N , set-

ting θi,j = −∞ if (i, j) /∈ E and θ1,1 = 1. We consider

the set Y of all paths in G from node 1 to node N . Any

path Y ∈ Y can be represented as a N × N binary ma-

trix, with yi,j = 1 if the path goes through the edge (i, j)
and yi,j = 0 otherwise. In the sequel, paths will have a

one-to-one correspondence with discrete structures such as

sequences or alignments. Using this representation, 〈Y ,θ〉
corresponds to the cumulated sum of edge weights, along

the path Y . The computation of the highest score among

all paths amounts to solving the combinatorial problem

LP(θ) , max
Y ∈Y

〈Y ,θ〉 ∈ R. (2)

Although the size of Y is in general exponential in N ,

LP(θ) can be computed in one topologically-ordered pass

over G using dynamic programming. We let Pi be the set

of parent nodes of node i in graph G and define recursively

v1(θ) , 0

∀ i ∈ [2, . . . , N ] : vi(θ) , max
j∈Pi

θi,j + vj(θ). (3)

This algorithm outputs DP(θ) , vN (θ). We now show

that this is precisely the highest score among all paths.

Proposition 1. Optimality of dynamic programming

∀θ ∈ Θ : DP(θ) = LP(θ)

The optimality of recursion (3) is well-known (?). We

prove it again with our formalism in §A.2, since it exhibits

the two key properties that the max operator must satisfy to

guarantee optimality: distributivity of + over it and asso-

ciativity. The cost of computing DP(θ) is O(|E|), which is

exponentially better than O(|Y|).

In many applications, we will often rather be interested in

the argument that achieves the maximum, i.e., one of the

highest-scoring paths

Y ⋆(θ) ∈ argmax
Y ∈Y

〈Y ,θ〉. (4)

This argument can be computed by backtracking, that we

now relate to computing subgradients of LP(θ).

Linear program, lack of differentiality. Unfortunately,

LP(θ) is not differentiable everywhere. To see why this is

the case, notice that (2) can be rewritten as a linear program

over the convex polytope conv(Y):

LP(θ) = max
Y ∈conv(Y)

〈Y ,θ〉.

From the generalized Danskin theorem (?),

Y ⋆(θ) ∈ ∂LP(θ) = argmax
Y ∈conv(Y)

〈Y ,θ〉,

where ∂ denotes the subdifferential of LP(θ), i.e., the set

of subgradients. When Y ⋆(θ) is unique, ∂LP(θ) is a sin-

gleton and Y ⋆ is equal to the gradient of LP(θ), that we

write∇LP(θ). Unfortunately, Y ⋆(θ) is not always unique,

meaning that LP(θ) is not differentiable everywhere. As

we will show in §4.2, this hinders optimization as we can

only train models involving LP(θ) with subgradient meth-

ods. Worse, Y ⋆(θ), a function from Θ to Y , is discon-

tinuous and has null or undefined derivatives. It is thus

impossible to use it in a model trained by gradient descent.

2.2. Smoothed max layers

To address the lack of differentiability of dynamic pro-

gramming, we introduce the operator maxΩ, presented

in §1, and consider two approaches.

Smoothing the linear program. Let us define the Ω-

smoothed maximum of a function f : Y → R over a finite

set Y using the following shorthand notation:

maxΩ
Y ∈Y

f(Y ) , maxΩ((f(Y ))Y ∈Y).

A natural way to circumvent the lack of differentiability of

LP(θ) is then to replace the global max operator by maxΩ:

LPΩ(θ) , maxΩ
Y ∈Y

〈Y ,θ〉 ∈ R. (5)

From §1, LPΩ(θ) is convex and, as long as Ω is strongly

convex, differentiable everywhere. In addition, ∇LPΩ(θ)
is Lipschitz continuous and thus differentiable almost ev-

erywhere. Unfortunately, solving (5) for general Ω is likely

intractable when Y has an exponential size.

Smoothing the dynamic program. As a tractable alter-

native, we propose an algorithmic smoothing. Namely,

we replace max by maxΩ locally within the DP recursion.

Omitting the dependence on Ω, this defines a smoothed re-

cursion over the new sequence (vi(θ))
N
i=1:

v1(θ) , 0

∀i ∈ [2, . . . , N ] : vi(θ) , maxΩ
j∈Pi

θi,j + vj(θ). (6)

The new algorithm outputs DPΩ(θ), vN (θ), the smoothed

highest score. Smoothing the max operator locally brings

the same benefit as before — DPΩ(θ) is smooth and

∇DPΩ(θ) is differentiable almost everywhere. However,

computing DPΩ(θ) is now always tractable, since it simply

requires to evaluate (vi(θ))
N
i=1 in topological order, as in

the original recursion (3). Although LPΩ(θ) and DPΩ(θ)
are generally different (in fact, LPΩ(θ) ≥ DPΩ(θ) for all

θ ∈ Θ), we now show that DPΩ(θ) is a sensible approxi-

mation of LP(θ) in several respects.
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Proposition 2. Properties of DPΩ

1. DPΩ(θ) is convex

2. LP(θ)−DPΩ(θ) is bounded above and below: it lies

in (N − 1)[LΩ,N , UΩ,N ], with Lemma 1 notations.

3. When Ω is separable, DPΩ(θ) = LPΩ(θ) if and only

if Ω = −γH , where γ ≥ 0.

Proofs are given in §A.3. The first claim can be sur-

prising due to the recursive definition of DPΩ(θ). The

second claim implies that DPγΩ(θ) converges to LP(θ)
when the regularization vanishes: DPγΩ(θ)→γ→0 LP(θ);
LPγΩ(θ) also satisfies this property. The “if” direction of

the third claim follows by showing that max−γH satisfies

associativity. This recovers known results in the framework

of message passing algorithms for probabilistic graphical

models (e.g., ?, Section 4.1.3), with a more algebraic point

of view. The key role that the distributive and associa-

tive properties play into breaking down large problems into

smaller ones has long been noted (??). However, the “and

only if” part of the claim is new to our knowledge. Its

proof shows that max−γH is the only maxΩ satisfying as-

sociativity, exhibiting a functional equation from informa-

tion theory (?). While this provides an argument in favor of

entropic regularization, ℓ22 regularization has different ben-

efits in terms of sparsity of the solutions.

2.3. Relaxed argmax layers

It is easy to check that ∇LPΩ(θ) belongs to conv(Y) and

can be interpreted as an expected path under some dis-

tribution induced by ∇maxΩ, over all possible Y ∈ Y
— see §A.4 for details. This makes ∇LPΩ(θ) inter-

pretable as a continuous relaxation of the highest-scoring

path Y ⋆(θ) defined in (4). However, like LPΩ(θ), comput-

ing ∇LPΩ(θ) is likely intractable in the general case. For-

tunately, ∇DPΩ(θ) is always easily computable by back-

propagation and enjoys similar properties, as we now show.

Computing ∇DPΩ(θ). Computing ∇DPΩ(θ) can be

broken down into two steps. First, we compute and record

the local gradients alongside the recursive step (6):

∀ i ∈ [N ] : qi(θ) , ∇maxΩ(θi + v(θ)) ∈ △N ,

where v(θ) , (v1(θ), . . . , vN (θ)). Since we assume that

θi,j = −∞ if (i, j) 6∈ E , we have supp(qi(θ)) = Pi. This

ensures that, similarly to vi(θ), qi(θ) exclusively depends

on (vj(θ))j∈Pi
. Let Cj be the children of node j ∈ [N ]. A

straighforward application of backpropagation (cf. §A.5)

yields a recursion run in reverse-topological order, starting

from node j = N − 1 down to j = 1:

∀ i ∈ Cj : ei,j ← ēiqi,j then ēj ←
∑

i∈Cj

ei,j ,

where ēN ← 1 and ei,j ← 0 for (i, j) /∈ E . The final output

is ∇DPΩ(θ) = E. Assuming maxΩ can be computed in

linear time, the total cost is O(|E|), the same as DP(θ).
Pseudo-code is summarized in §A.5.

Associated path distribution. The backpropagation we

derived has a probabilistic interpretation. Indeed, Q(θ) ∈
R

N×N can be interpreted as a transition matrix: it defines

a random walk on the graph G, i.e., a finite Markov chain

with states V and transition probabilities supported by E .

The random walk starts from node N and, when at node i,
hops to node j ∈ Pi with probability qi,j . It always ends

at node 1, which is absorbing. The walk follows the path

Y ∈ Y with a probability pθ,Ω(Y ), which is simply the

product of the qi,j of visited edges. Thus, Q(θ) defines

a path distribution pθ,Ω. Our next proposition shows that

∇DPΩ(Y ) ∈ conv(Y) and is equal to the expected path

Eθ,Ω[Y ] under that distribution.

Proposition 3. ∇DPΩ(θ) as an expected path

∀θ ∈ Θ : ∇DPΩ(θ) = Eθ,Ω[Y ] = E ∈ conv(Y).

Proof is provided in §A.5. Moreover, ∇DPΩ(θ) is a prin-

cipled relaxation of the highest-scoring path Y ⋆(θ), in the

sense that it converges to a subgradient of LP(θ) as the reg-

ularization vanishes: ∇DPγΩ(θ) −−−→
γ→0

Y ⋆(θ) ∈ ∂LP(θ).

When Ω = −γH , the distributions underpinning LPΩ(θ)
and DPΩ(θ) coincide and reduce to the Gibbs distribution

pθ,Ω(Y ) ∝ exp(〈θ,Y 〉/γ). The value LPΩ(θ) = DPΩ(θ)
is then equal to the log partition. When Ω = γ‖ · ‖2,

some transitions between nodes have zero probability and

hence some paths have zero probability under the distribu-

tion pθ,Ω. Thus, ∇DPΩ(θ) is typically sparse — this will

prove interesting to introspect the various models we con-

sider (typically, the smaller γ, the sparser ∇DPΩ(θ)).

2.4. Multiplication with the Hessian∇2DPΩ(θ)Z

Using ∇DPΩ(θ) as a layer involves backpropagating

through ∇DPΩ(θ). This requires to apply the Jacobian of

∇DPΩ operator (a linear map from R
N×N to R

N×N ), or

in other words to apply the Hessian of DPΩ, to an input

sensibility vector Z, computing

∇2DPΩ(θ)Z = ∇〈∇DPΩ(θ),Z〉 ∈ R
N×N ,

where derivatives are w.r.t. θ. The above vector may be

computed in two ways, that differ in the order in which

derivatives are computed. Using automatic differentia-

tion frameworks such as PyTorch (?), we may backprop-

agate over the computational graph a first time to com-

pute the gradient ∇DPΩ(θ), while recording operations.

We may then compute 〈∇DPΩ(θ),Z〉, and backpropagate

once again. However, due to the structure of the problem,
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it proves more efficient, adapting Pearlmutter’s approach

(?), to directly compute 〈∇DPΩ(θ),Z〉 ∈ R, namely, the

directional derivative at θ along Z. This is done by apply-

ing the chain rule in one topologically-ordered pass over

G. Similarly to the gradient computation, we record prod-

ucts with the local Hessians Hi(θ) , ∇
2maxΩ(θi+v(θ))

along the way. We then compute the gradient of the direc-

tional derivative using backpropagation. This yields a re-

cursion for computing∇2DPΩ(θ)Z in reverse topological-

order over G. The complete derivation and the pseudo-code

are given in §A.7. They allow to implement DPΩ as as

a custom twice-differentiable module in existing software.

For both approaches, the computational cost is O(|E|),
the same as for gradient computation. In our experiments

in §4.2, our custom Hessian-vector product computation

brings a 3×/12× speed-up during the backward pass on

GPU/CPU vs. automatic differentiation.

Related works. Smoothing LP formulations was also

used for MAP inference (?) or optimal transport (?) but

these works do not address how to differentiate through the

smoothed formulation. An alternative approach to create

structured prediction layers, fundamentally different both

in the forward and backward passes, is SparseMAP (?).

Summary. We have proposed DPΩ(θ), a smooth, convex

and tractable relaxation to the value of LP(θ). We have also

shown that ∇DPΩ(θ) belongs to conv(Y) and is therefore

a sound relaxation to solutions of LP(θ). To conclude this

section, we formally define our proposed two layers.

Definition 1. Differentiable dynamic programming layers

Value layer: DPΩ(θ) ∈ R

Gradient layer: ∇DPΩ(θ) ∈ conv(Y)

3. Examples of computational graphs

We now illustrate two instantiations of our framework for

specific computational graphs.

3.1. Sequence prediction

We demonstrate in this section how to instantiate DPΩ to

the computational graph of the Viterbi algorithm (??), one

of the most famous instances of DP algorithm. We call the

resulting operator VitΩ. We wish to tag a sequence X =
(x1, . . . ,xT ) of vectors in R

D (e.g., word representations)

with the most probable output sequence (e.g., entity tags)

y = (y1, . . . , yT ) ∈ [S]T . This problem can be cast as

finding the highest-scoring path on a treillis G. While y

can always be represented as a sparse N×N binary matrix,

it is convenient to represent it instead as a T ×S×S binary

tensor Y , such that yt,i,j = 1 if y transitions from node

j to node i on time t, and 0 otherwise — we set y0 = 1.

The potentials can similarly be organized as a T × S × S
real tensor, such that θt,i,j = φt(xt, i, j). Traditionally, the

potential functions φt were human-engineered (?, §2.5). In

recent works and in this paper, they are learned end-to-end

(???).

Using the above binary tensor representation, the inner

product 〈Y ,θ〉 is equal to
∑T

t=1 φt(xt, yt, yt−1), y’s cu-

mulated score. This is illustrated in Figure 2 on the task

of part-of-speech tagging. The bold arrows indicate one

possible output sequence y, i.e., one possible path in G.
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o
u
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d
e
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Figure 2. Computational graph of the Viterbi algorithm.

When Ω = −H , we recover linear-chain conditional ran-

dom fields (CRFs) (?) and the probability of y (Y in tensor

representation) given X is

pθ,−H(y|X)∝ exp(〈Y ,θ〉)= exp
(

T∑

t=1

φt(xt, yt, yt−1)
)
.

From Prop. 3, the gradient ∇Vit−H(θ) = E ∈ R
T×S×S

is such that et,i,j = pθ,−H(yt = i, yt−1 = j|X).
The marginal probability of state i at time t is simply

pθ,−H(yt = i|X) =
∑S

j=1 et,i,j . Using a different

Ω simply changes the distribution over state transitions.

When Ω = ‖ · ‖2, the marginal probabilities are typically

sparse. Pseudo-code for VitΩ(θ), as well as gradient and

Hessian-product computations, is provided in §B.2. The

case Ω = ‖ · ‖2 is new to our knowledge.

When Ω = −H , the marginal probabilities are tradition-

ally computed using the forward-backward algorithm (?).

In contrast, we compute ∇Vit−H(θ) using backpropaga-

tion while efficiently maintaining the marginalization. An

advantage of our approach is that all operations are nu-

merically stable. The relation between forward-backward

and backpropagation has been noted before (e.g., ?). How-

ever, the analysis is led using (+,×) operations, instead

of (maxΩ,+) as we do. Our Viterbi instantiation can be

generalized to graphical models with a tree structure, and

to approximate inference in general graphical models, since

unrolled loopy belief propagation (?) yields a dynamic pro-

gram. We note that continuous beam search (?) can also be

cleanly rewritten and extended using VitΩ operators.
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3.2. Time-series alignment

We now demonstrate how to instantiate DPΩ to the compu-

tational graph of dynamic time warping (DTW) (?), whose

goal is to seek the minimal cost alignment between two

time-series. We call the resulting operator DTWΩ. For-

mally, let NA and NB be the lengths of two time-series,

A and B. Let ai and bj be the ith and jth observations

of A and B, respectively. Since edge weights only de-

pend on child nodes, it is convenient to rearrange Y and

θ as NA × NB matrices. Namely, we represent an align-

ment Y as a NA × NB binary matrix, such that yi,j = 1
if ai is aligned with bj , and 0 otherwise. Likewise, we

represent θ as a NA × NB matrix. A classical example is

θi,j = d(ai, bj), for some differentiable discrepancy mea-

sure d. We write Y the set of all monotonic alignment ma-

trices, such that the path that connects the upper-left (1, 1)
matrix entry to the lower-right (NA, NB) one uses only

↓,→,ց moves. The DAG associated with Y is illustrated

in Figure 3 with NA = 4 and NB = 3 below.

start

1,1

θ1,1

2,1

1,2

3,1

1,3

2,2
θ2,2

2,3
θ2,3

3,2

1,4

2,4

3,3

θ3,3

3,4
θ3,4

end

〈Y ,θ〉 = θ1,1 + θ2,2 + θ2,3 + θ3,3 + θ3,4

Figure 3. Computational graph of the DTW algorithm.

Again, the bold arrows indicate one possible path Y ∈ Y
from start to end in the DAG, and correspond to one pos-

sible alignment. Using this representation, the cost of an

alignment (cumulated cost along the path) is conveniently

computed by 〈Y ,θ〉. The value DTWΩ(θ) can be used to

define a loss between alignments or between time-series.

Following Proposition 3, ∇DTWΩ(θ) = E ∈ R
NA×NB

can be understood as a soft alignment matrix. This matrix

is sparse when Ω = ‖ · ‖2, as illustrated in Figure 1 (right).

Pseudo-code to compute DTWΩ(θ) as well as its gradi-

ent and its Hessian products are provided in §B.3. When

Ω = −H , DTWΩ(θ) is a conditional random field known

as soft-DTW, and the probability pθ,Ω(Y |A,B) is a Gibbs

distribution similar to §3.1 (?). However, the case Ω = ‖·‖2

and the computation of ∇2DTWΩ(θ)Z are new and allow

new applications.

4. Differentiable structured prediction

We now apply the proposed layers, DPΩ(θ) and∇DPΩ(θ),
to structured prediction (?), whose goal is to predict a

structured output Y ∈ Y associated with a structured in-

put X ∈ X . We define old and new structured losses,

and demonstrate them on two structured prediction tasks:

named entity recognition and time-series alignment.

4.1. Structured loss functions

Throughout this section, we assume that the potentials

θ ∈ Θ have already been computed using a function from

X to Θ and let C : Y×Y → R+ be a cost function between

the ground-truth output Ytrue and the predicted output Y .

Convex losses. Because C is typically non-convex, the

cost-augmented structured hinge loss (?) is often used in-

stead for linear models

ℓC(Ytrue;θ) , max
Y ∈Y

C(Ytrue,Y )+〈Y ,θ〉−〈Ytrue,θ〉. (7)

This is a convex upper-bound on C(Ytrue,Y
⋆(θ)), where

Y ⋆(θ) is defined in (4). To make the cost-augmented de-

coding tractable, it is usually assumed that C(Ytrue,Y ) is

linear in Y , i. e., it can be written as 〈CYtrue
,Y 〉 for some

matrix CYtrue
. We can then rewrite (7) using our notation as

ℓC(Ytrue;θ) = LP(θ +CYtrue
)− 〈Ytrue,θ〉.

However, this loss function is non-differentiable. We there-

fore propose to relax LP by substituting it with DPΩ:

ℓC,Ω(Ytrue;θ) , DPΩ(θ +CYtrue
)− 〈Ytrue,θ〉.

Losses in this class are convex, smooth, tractable for any

Ω, and by Proposition 2 property 2 a sensible approxima-

tion of ℓC . In addition, they only require to backpropagate

through DPΩ(θ) at training time. It is easy to check that

we recover the structured perceptron loss with ℓ0,0 (?), the

structured hinge loss with ℓC,0 (?) and the CRF loss with

ℓ0,−H (?). The last one has been used on top of LSTMs in

several recent works (??). Minimizing ℓ0,−H(θ) is equiv-

alent to maximizing the likelihood pθ,−H(Ytrue). How-

ever, minimizing ℓ0,‖·‖2 is not equivalent to maximizing

pθ,‖·‖2(Ytrue). In fact, the former is convex while the latter

is not.

Non-convex losses. A direct approach that uses the

output distribution pθ,Ω consists in minimizing the risk
∑

y∈Y pθ,−H(Y )C(Ytrue,Y ). As shown by ?, this can

be achieved by backpropagating through the minimum risk

decoder. However, the risk is usually non-differentiable,

piecewise constant (?) and several smoothing heuristics are

necessary to make the method work (?).

Another principled approach is to consider a differentiable

approximation ∆: Y × conv(Y) → R+ of the cost C.

We can then relax C(Ytrue,Y
⋆(θ)) by ∆(Ytrue,∇DPΩ(θ)).
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Unlike minimum risk training, this approach is differen-

tiable everywhere when Ω = −H . Both approaches re-

quire to backpropagate through ∇DPΩ(θ), which is twice

as costly as backpropagating through DPΩ(θ) (see §2.4).

4.2. Named entity recognition

Let X = (x1, · · · ,xT ) be an input sentence, where each

word xt is represented by a vector in R
D, computed using

a neural recurrent architecture trained end-to-end. We wish

to tag each word with named entities, i.e., identify blocks

of words that correspond to names, locations, dates, etc.

We use the specialized operator VitΩ described in §3.1. We

construct the potential tensor θ(X) ∈ R
T×S×S as

∀ t > 1, θ(X)t,i,j , w⊤
i xt + bi + ti,j ,

and θ(X)1,i,j , w⊤
i xt + bi, where (wi, bi) ∈ R

D × R is

the linear classifier associated with tag i and T ∈ R
S×S is

a transition matrix. We learn W , b and T along with the

network producing X , and compare two losses:

Surrogate convex loss: ℓ0,Ω(Ytrue;θ),

Relaxed loss: ∆(Ytrue,∇DPΩ(θ)),

where ∆(Ytrue,Y ) is the squared ℓ2 distance when Ω =
‖ · ‖22 and the Kullback-Leibler divergence when Ω = −H ,

applied row-wise to the marginalization of Ytrue and Y .

Experiments. We measure the performance of the dif-

ferent losses and regularizations on the four languages of

the CoNLL 2003 dataset. Following ?, who use the ℓ0,−H

loss, we use a character LSTM and FastText (?) pretrained

embeddings computed using on Wikipedia. Those are fed

to a word bidirectional LSTM to obtain X . Architecture

details are provided in §C.1. Results are reported in Ta-

ble 1, along with reference results with different pretrained

embeddings. We first note that the non-regularized struc-

tured perceptron loss ℓ0,0, that involves working with sub-

gradients of DP(θ), perform significantly worse than reg-

ularized losses. With proper parameter selections, all reg-

ularized losses perform within 1% F1-score of each other,

although entropy-regularized losses perform slightly better

on 3/4 languages. However, the ℓ22-regularized losses yield

sparse predictions, whereas entropy regularization always

yields dense probability vectors. Qualitatively, this allows

to identify ambiguous predictions more easily, as illustrated

in §C.1. Sparse predictions also allows to enumerate all

non-zero probability entities, and to trade precision for re-

call at test time.

4.3. Supervised audio-to-score transcription

We use our framework to perform supervised audio-to-

score alignment on the Bach 10 dataset (?). The dataset

consists of 10 music pieces with audio tracks, MIDI tran-

scriptions, and annotated alignments between them. We

Table 1. F1 score comparison on CoNLL03 NER datasets.

Ω Loss English Spanish German Dutch

Negent. Surrogate 90.80 86.68 77.35 87.56
Relaxed 90.47 86.20 77.56 87.37

ℓ2
2

Surrogate 90.86 85.51 76.01 86.58
Relaxed 89.49 84.07 76.91 85.90

0 Struct. perceptron 86.52 81.48 68.81 80.49

(?) 90.96 85.75 78.76 81.74

Table 2. Mean absolute deviation of alignment using an end-to-

end trained multinomial classifier and a pre-trained one.

Linear model Train Test

End-to-end trained 0.17± 0.01 1.07± 0.61
Pretrained 1.80± 0.14 3.69± 2.85
Random θ 14.64± 2.63 14.64± 0.29

transform the audio tracks into a sequence of audio frames

using a feature extractor (see §C.2) to obtain a sequence

A ∈ R
NA×D, while the associated score sequence is rep-

resented by B ∈ R
NB×K (each row bj is a one-hot vector

corresponding to one key bj). Each pair (A,B) is asso-

ciated to an alignment Ytrue ∈ R
NA×NB . As described in

§3.2, we define a discrepancy matrix θ ∈ R
NA×NB be-

tween the elements of the two sequences. We set the cost

between an audio frame and a key to be the log-likelihood

of this key given a multinomial linear classifier:

∀ i ∈ [NA], li , − log(softmax(W⊤ai + c)) ∈ R
K

and ∀ j ∈ [NB ], θi,j , li,bj ,

where (W , c) ∈ R
D×K×RK are learned classifier param-

eters. We predict a soft alignment by Y = ∇DTW−H(θ).
Following (?), we define the relaxed loss

∆(Ytrue,Y ) , ‖L(Y − Ytrue)
⊤‖2F ,

where L a the lower triangular matrix filled with 1. When

Y ∈ Y is a true alignement matrix, ∆(Ytrue,Y ) is the

area between the path of Ytrue and Y , which corresponds to

the mean absolute deviation in the audio literature. When

Y ∈ conv(Y), it is a convex relaxation of the area. At test

time, once θ is learned, we use the non-regularized DTW

algorithm to output a hard alignment Y ⋆(θ) ∈ Y .

Results. We perform a leave-one-out cross-validation of

our model performance, learning the multinomial classifier

on 9 pieces and assessing the quality of the alignment on

the remaining piece. We report the mean absolute devia-

tion on both train and test sets. A solid baseline consists

in learning the multinomial classifier (W , c) beforehand,

i.e., without end-to-end training. We then use this model

to compute θ as in (4.3) and obtain Y ⋆(θ). As shown in
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Table 2, our end-to-end technique outperforms this base-

line by a large margin. We also demonstrate in §C.2 that

the alignments obtained by end-to-end training are visibly

closer to the ground truth. End-to-end training thus allows

to fine-tune the distance matrix θ for the task at hand.

5. Structured and sparse attention

We show in this section how to apply our framework to neu-

ral sequence-to-sequence models augmented with an atten-

tion mechanism (?). An encoder first produces a list of vec-

tors X = (x1, . . . ,xT ) representing the input sequence. A

decoder is then used to greedily produce the corresponding

output sequence. To simplify the notation, we focus on one

time step of the decoding procedure. Given the decoder’s

current hidden state z and X as inputs, the role of the atten-

tion mechanism is to produce a distribution w ∈ △T over

X , for the current time step. This distribution is then typ-

ically used to produce a context vector c , X⊤w, that is

in turn invoved in the computation of the output sequence’s

next element.

Structured attention layers. ? proposed a segmentation

attention layer, which is capable of taking into account the

transitions between elements of X . They use a linear-chain

CRF to model the probability pθ,−H(y|X) of a sequence

y = (y1, . . . , yT ), where each yt is either 1 (“pay atten-

tion”) or 0. They then propose to use normalized marginal

probabilities as attention weights: wt ∝ pθ,−H(yt =
1|X). They show how to backpropagate gradients through

the forward-backward algorithm, which they use to com-

pute the marginal probabilities.

Generalizing structured attention. Using the notation

from §3.1, any y can be represented as a tensor Y ∈
{0, 1}T×2×2 and the potentials as a tensor θ ∈ R

T×2×2.

Similarly to ?, we define

θt,1,j , xtMz + t1,j and θt,0,j , t0,j ,

where xMz is a learned bilinear form and T ∈ R
2×2 is

a learned transition matrix. Following §3.1, the gradient

∇VitΩ(θ) is equal to the expected matrix E ∈ R
T×2×2 and

the marginals are obtained by marginalizing that matrix.

Hence, we can set wt ∝ pθ,Ω(yt = 1|X) = et,1,0 + et,1,1.

Backpropagating through ∇VitΩ(θ) can be carried out us-

ing our approach outlined in §2.4. This approach is not only

more general, but also simpler and more robust to under-

flow problems than backpropagating through the forward-

backward algorithm as done by ?.

Experiments. We demonstrate structured attention lay-

ers with an LSTM encoder and decoder to perform French

to English translation using data from a 1 million sentence

subset of the WMT14 FR-EN challenge. We illustrate an

example of attenion map obtained with negentropy and ℓ22
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Figure 4. Attention maps obtained with structured attention. Al-

though both regularizations led to the same translation (y-axis) in

this example, attention is sparse and more interpretable with ℓ22.

regularizations in Figure 4. Non-zero elements are un-

derlined with borders: ℓ22-regularized attention maps are

sparse and more interpretable — this provides a struc-

tured alternative to sparsemax attention (?). Results were

all within 0.8 point of BLEU score on the newstest2014

dataset. For French to English, standard softmax attention

obtained 27.96, while entropy and ℓ22 regularized structured

attention obtained 27.96 and 27.19 — introducing structure

and sparsity therefore provides enhanced interpretability

with comparable peformance. We provide model details,

full results and further visualizations in §C.3.

6. Conclusion

We proposed a theoretical framework for turning a broad

class of dynamic programs into convex, differentiable

and tractable operators, using the novel point of view of

smoothed max operators. Our work sheds a new light on

how to transform dynamic programs that predict hard as-

signments (e.g., the maximum a-posteriori estimator in a

probabilistic graphical model or an alignment matrix be-

tween two time-series) into continuous and probabilistic

ones. We provided a new argument in favor of negentropy

regularization by showing that it is the only one to preserve

associativity of the smoothed max operator. We showed

that different regularizations induce different distributions

over outputs and that ℓ22 regularization has other benefits, in

terms of sparsity of the expected outputs. Generally speak-

ing, performing inference in a graphical model and back-

propagating through it reduces to computing the first and

second-order derivatives of a relaxed maximum-likelihood

estimation — leveraging this observation yields elegant and

efficient algorithms that are readily usable in deep learning

frameworks, with various promising applications.
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Appendix

A. Proofs and detailed derivations

This section contains the proofs of the propositions and lemmas presented in the main text. It

also contains derivations of gradient, directional derivative and Hessian-product computations.

A.1. Proof of Lemma 1 (properties of maxΩ)

Property 1 (boundedness). Let q⋆ and q⋆
Ω be the solutions of maxq∈△D q⊤x and

maxq∈△D q⊤x− Ω(q), respectively. Then, we have

maxΩ(x) = 〈q
⋆
Ω,x〉 − Ω(q⋆

Ω) ≥ 〈q
⋆,x〉 − Ω(q⋆) = max(x)− Ω(q⋆)

and

max(x)− Ω(q⋆
Ω) ≥ 〈q

⋆
Ω,x〉 − Ω(q⋆

Ω) = maxΩ(x).

Combining the two and using LΩ,D ≤ Ω(q) ≤ UΩ,D ∀q ∈ △
D, we obtain

max(x)−UΩ,D ≤ max(x)−Ω(q⋆) ≤ maxΩ(x) ≤ max(x)−Ω(q⋆
Ω) ≤ max(x)−LΩ,D.

When Ω(q) =
∑

i qi log qi, we have the tight inequality − logD ≤ Ω(q) ≤ 0 ∀q ∈ △D and

hence

max(x) ≤ maxΩ(x) ≤ max(x) + logD.

When Ω(q) = 1
2‖q‖

2, we have the tight inequality 1
2D ≤ Ω(q) ≤ 1

2 ∀q ∈ △
D and hence

max(x)−
1

2
≤ maxΩ(x) ≤ max(x)− 1

2D .

Note that the difference UΩ,D −LΩ,D is equal to logD when Ω is the negative entropy and to
D−1
2D ≤ 1

2 when Ω is the squared ℓ2 norm. Since logD > 1
2 for all integers D ≥ 2, we get a

better approximation of the max operator using squared ℓ2 norm than using negative entropy,

whenever D ≥ 2.

Property 2 (distributivity of + over maxΩ). This follows immediately from

maxΩ(x+ c1) = max
q∈△D

〈q,x+ c1〉 − Ω(q) = max
q∈△D

〈q,x〉 − Ω(q) + c = maxΩ(x) + c.

Using our shorthand notation, this simply becomes maxΩ
Y ∈Y

(f(Y )+ c) =

(

maxΩ
Y ∈Y

f(Y )

)

+ c.

Property 3 (commutativity). Assume Ω(Pq) = Ω(q) for all permutation matrices P . Let

P−1 be the inverse permutation matrix associated with P . Then we have

maxΩ(Px) = max
q∈△D

〈q,Px〉 − Ω(q) = max
q∈△D

〈P−1q,x〉 − Ω(q)

= max
q∈△D

〈q,x〉 − Ω(Pq) = max
q∈△D

〈q,x〉 − Ω(q).

Property 4 (non-decreasingness in each coordinate). If x ≤ y, then for all q ∈ △D,

〈x, q〉 − Ω(q) ≤ 〈y, q〉 − Ω(q), as all q coordinates are non-negative. Thus maxΩ(x) ≤
maxΩ(y).
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Property 5 (insensitivity to−∞). Since maxΩ(x) = maxq∈△D 〈q,x〉−Ω(q), if xj=−∞,

then qj = ∇maxΩ(x)j = 0 is the only feasible solution for the jth coordinate.

A.2. Proof of Proposition 1 (optimality of DP recursion)

Let vi(θ) be the highest-score path up to node i ∈ [N ]. Let Yi be the set of paths y =
(y1, . . . , yL) starting from node 1 and reaching node i, that is y1 = 1 and yL = i. Note that

L may depend on y but we do not make this dependency explicit. Because nodes are sorted in

topological order, we can compute vi(θ) by

vi(θ) = max
y∈Yi

L∑

t=2

θyt,yt−1
= max

y∈Yi

L−1∑

t=2

θyt,yt−1
+θyL,yL−1

= max
y∈Yi

L−1∑

t=2

θyt,yt−1
+θi,yL−1

.

Recall that Pi is the set of parent nodes of node i. From the associativity of the max operator,

vi(θ) = max
j∈Pi

max
y∈Yi

yL−1=j

(
L−1∑

t=2

θyt,yt−1
+ θi,yL−1

)

= max
j∈Pi

max
y∈Yi

yL−1=j

(
L−1∑

t=2

θyt,yt−1
+ θi,j

)

.

From the distributivity of + over max, we obtain

vi(θ) = max
j∈Pi



 max
y∈Yi

yL−1=j

L−1∑

t=2

θyt,yt−1



+ θi,j = max
j∈Pi

vj(θ) + θi,j ,

where we used the fact that the inner max operations are independent of yL = i. This con-

cludes the proof of the optimality of (3).

A.3. Proof of Proposition 2 (properties of DPΩ(θ))

We prove in this section the three main claims of Proposition 2. For the first two claims, we

rewrite (3) and (6) using the following notations:

v0i (θ) , max(u0
i (θ)) and vΩi (θ) , max(uΩ

i (θ)), where

u0
i (θ) , (θi,1 + v01(θ), . . . , θi,i−1 + v0i−1(θ),−∞,−∞, . . . ,−∞) ∈ R

N and

uΩ
i (θ) , (θi,1 + vΩ1 (θ), . . . , θi,i−1 + vΩi−1(θ),−∞︸︷︷︸

i

,−∞, . . . ,−∞) ∈ R
N .

These definitions are indeed valid as per Lemma 1, property 5.

Proof of DPΩ(θ) convexity. Since vΩ1 (θ) = 0, it is trivially convex. Assume that

vΩ2 (θ), . . . , v
Ω
i−1(θ) are convex. Then, vΩi (θ) is the composition of maxΩ and uΩ

i , a con-

vex function and a function which outputs a vector whose each coordinate is convex in θ. By

induction, since maxΩ is non-decreasing per coordinate (cf. Lemma 1 property 4), vΩi (θ) is

convex (e.g., ?, §3.2.4). Therefore vΩi (θ) is convex for all i ∈ [N ] and DPΩ(θ) = vΩN (θ) is

convex.

Proof of DPΩ(θ) bound. We clearly have vΩ1 (θ) ≥ v01(θ). Assume that vΩj (θ) ≥ v0j (θ) −

(j − 1)UΩ,N for all j ∈ {2, . . . , i − 1}. That is, uΩ
i (θ) ≥ u0

i (θ) − (i − 2)UΩ,N1, where

1 ∈ R
N is the unit vector. Then, by induction, we have

maxΩ(u
Ω
i (θ)) ≥ maxΩ(u

0
i (θ))− (i− 2)UΩ,N ≥ max(u0

i (θ))− (i− 1)UΩ,N ,

where we used Lemma 1, properties 1, 2 and 4. Therefore vΩi (θ) ≥ v0i (θ) − (i − 1)UΩ,N

for all i ∈ [N ] and hence, DPΩ(θ) ≥ LP(θ) − (N − 1)UΩ,N . Using a similar reasoning we
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obtain v0i (θ) − (i − 1)LΩ,N ≥ vΩi (θ) and therefore LP(θ) − (N − 1)LΩ,N ≥ DPΩ(θ). To

summarize, we obtain

LP(θ)− (N − 1)LΩ,N ≥ DPΩ(θ) ≥ LP(θ)− (N − 1)UΩ,N ,

which concludes the proof. Note that using property 1 of Lemma 1, this immediately implies

a bound involving LPΩ(θ) instead of LP(θ).

Proof that Ω = −γH ⇒ DPΩ(θ) = LPΩ(θ). We first show that maxΩ is associative.

Lemma 2. Associativity of maxΩ when Ω = −γH

We have maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R.

Proof. We simply use the closed form of maxΩ when Ω = −γH (cf. §B.1):

maxΩ(maxΩ(x), c) = γ log(exp(maxΩ(x)/γ) + exp(c/γ))

= γ log

(

exp

(

log
D∑

i=1

exp(xi/γ)

)

+ exp(c/γ)

)

= γ log

(
D∑

i=1

exp(xi/γ) + exp(c/γ)

)

= maxΩ(x, c),

and the lemma follows.

Using our shorthand notation, Lemma 2 can be used to write

maxΩ
(y1,...,yi,...,yL)

f(y) = maxΩ
v

maxΩ
(y1,...,v,...,yL)

f(y).

This is precisely the associative property that we used in the proof of Proposition 1. The

second property that we used, the distributivity of + over max, holds for any maxΩ, as per

Lemma 1 property 2. Thus, the same proof as Proposition 1 is also valid when we substitute

max with maxΩ, when Ω = −γH , which yields LPΩ(θ) = DPΩ(θ).

Proof that Ω = −γH ⇐ DPΩ(θ) = LPΩ(θ). Mirroring the previous proof, we first char-

acterize the regularizations Ω for which maxΩ is associative.

Lemma 3. Let Ω: △D → R be a regularization function, i. e., domΩ = △D. Assume that

there exist ω convex lower-semi-continuous defined on [0, 1] such that Ω(q) =
∑d

i=1 ω(qi). If

maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R,

then Ω(q) = −γ
∑d

i=1 qi log(qi) for some γ ≥ 0.

Proof. We start by writing the associativity property for three elements. For all x1, x2, x3 ∈ R,

maxΩ
(
(x1, x2, x3)

)
= maxΩ

(
maxΩ(x1, x2), x3)

)

= max
q+q3=1
q,q3≥0

q max
q̃1+q̃2=1

q̃i≥0

(
q̃1x1 + q̃2x2 − ω(q̃1)− ω(q̃2)

)
+ q3x3 − ω(q3)− ω(q)

= max
q1+q2+q3=1

qi≥0

q1x1 + q2x2 + q3x3 − Φ(q1, q2, q3), where

Φ(q1, q2, q3) , (q1 + q2)
(

ω
( q1
q1 + q2

)
+ ω

( q2
q1 + q2

))

+ ω(q1 + q2) + ω(q3).
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We have performed a variable change q1,2 = q q̃1,2 at the second line, and noticed q = q1+q2.

Therefore

maxΩ
(
(x1, x2, x3)

)
= Φ⋆(x1, x2, x3),

where Φ⋆ is the convex conjugate of Φ restricted to ]0, 1]3. By definition, we also have

maxΩ
(
(x1, x2, x3)

)
= Ω⋆(x1, x2, x3), so that Ω⋆ = Φ⋆ on R

3. As Ω is convex and lower

semi-continous, we can apply Moreau-Yoshida theorem and obtain Ω⋆⋆ = Ω = Φ⋆⋆ ≤ Φ.

Suppose that there exists q = (q1, q2, q3) ∈ △
3 such that Φ(q1, q2, q3) < Ω(q1, q2, q3). Given

the forms of Φ and Ω, Φ(q1, q2, 0) < Ω(q1, q2, 0). We let x = (x1, x2,−∞) ∈ R
3 such that

maxΩ(x1, x2,−∞) = maxΩ(x1, x2) = x1q1 + x2q2 − ω(q1)− ω(q2) = 〈x, q〉 − Ω(q)

< 〈x, q〉 − Φ(q) ≤ max
q∈△3

〈x, q〉 − Φ(q) = maxΩ
(
maxΩ(x1, x2),−∞)

)
,

leading to a contradiction. Therefore Ω ≥ Φ over △3, and finally Ω = Φ. We have used

the fact that the operator ∇maxΩ : R
2 → △2 is surjective, as △2 is a one-dimensional

segment,∇maxΩ is continuous and reaches the extreme values∇maxΩ(0,−∞) = (1, 0) and

∇maxΩ(−∞, 0) = (0, 1) — which allows to use the intermediate value theorem.

To conclude, for all q1, q2 ∈]0, 1] such that q1 + q2 ≤ 1, we have

ω(q1) + ω(q2) = (q1 + q2)
(

ω
( q1
q1 + q2

)
+ ω

( q2
q1 + q2

))

+ ω(q1 + q2)

ω(xy) + ω((1− x)y)− ω(y) = y(ω(x) + ω(1− x)) ∀ 0 < y ≤ 1, 0 < x < 1, (8)

where we have set y = q1 + q2 and x = q1
q1+q2

. The functional equation (8) was first studied

in the field of information theory. As first shown by ?, Theorem 0, and further extended (?),

all measurable solutions have the form

ω(x) = −γx log(x),

where γ ≥ 0 is a constant. The lemma follows.

Assuming that Ω is not equal to −γH for any γ ≥ 0, the previous lemma tells us that the

associativity property is not met for a triplet (x1, x2, x3) ∈ R
3. In Figure 5, we construct a

graph G such that

DPΩ(θ) = maxΩ(maxΩ(x1, x2), x3) 6= LPΩ(θ) = maxΩ(x1, x2, x3)

The proposition follows.

0 1
x1

2

x2

3

x3

4
0

0
5

0

6
0

0

Figure 5. In general, v6(θ) = DPΩ(θ) 6= LPΩ(θ).

A.4. Computation of ∇LPΩ(θ) and interpretation as an expectation

We show that ∇LPΩ(θ) ∈ conv(Y), and characterize a path distribution of which ∇LPΩ(θ)
is the expectation.
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Convex hull ofY . We rewrite LPΩ(θ) = maxΩ(u(θ)), where u(θ) , (〈Y ,θ〉)Y ∈Y . Using

the chain rule, we have

∇LPΩ(θ) = Ju(θ)
⊤∇maxΩ(u(θ)), (9)

where Ju is the Jacobian of u w.r.t. θ, a matrix of size |Y| × (N ×N). The horizontal slices

of Ju are exactly all the paths Y of Y . Using ∇maxΩ(u(θ)) ∈ △
|Y|, we conclude that

∇LPΩ(θ) ∈ conv(Y).

Induced distribution. From (9), we see that ∇LPΩ(θ) =
∑

Y ∈Y pθ,Ω(Y ) Y , where we

defined the distribution

pθ,Ω(Y ) ,
(

∇maxΩ(u(θ))
)

Y
.

Unfortunately, since u(θ) ∈ R
|Y|, computing pθ,Ω(Y ), let alone the expectation Eθ,Ω[Y ]

under that distribution, is intractable for general Ω.

A.5. Proof of Proposition 3 (computation of ∇DPΩ(θ))

Gradient computation. We first derive the recursion over E , ∇DPΩ(θ) using sensitivity

analysis, a.k.a backpropagation calculus. For any (i, j) ∈ E , since θi,j influences only vi, a

straighforward application of the chain rule gives

ei,j =
∂vN
∂θi,j

=
∂vN
∂vi

∂vi
∂θi,j

. (10)

Recall that v = (v1, . . . , vN ) and qi , ∇maxΩ(θi+v). With this vector defined, we can now

easily derive the two terms on the r.h.s of (10). Differentiating (6) w.r.t. θi,j straighforwardly

gives the second term ∂vi

∂θi,j
= qi,j .

The first term must be computed recursively. Recall that Cj denotes the children of node j.

Since a node j influences only its children i ∈ Cj , using the chain rule, we get

∂vN
∂vj

=
∑

i∈Cj

∂vN
∂vi

∂vi
∂vj

, ēj . (11)

Differentiating (6) w.r.t. vj again gives ∂vi

∂vj
= qi,j . By definition, we also have ∂vN

∂vi
= ēi and

ei,j = ēiqi,j . Hence,

ēj =
∑

i∈Cj

ēiqi,j =
∑

i∈Cj

ei,j .

Combining the above, for any j ∈ [N − 1], we obtain the following two-step recursion

∀ i ∈ Cj , ei,j = ēiqi,j and ēj =
∑

i∈Cj

ei,j .

The values (ei,j)(i,j)∈E can thus be computed in reverse topological order over the nodes of

G, initializing ēN = ∂vN

∂vN
= 1. The pseudo-code is summarized in Algorithm 1.

Associated random walk. It remains to show that E is also the expectation of Y ∈ Y
support of the following random walk, defined informally in the main text. Formally, we

define the random sequence (wt)t as

w0 = N, ∀ t > 0, ∀ i ∈ [N ], ∀ j ∈ Pi, P[wt = j|wt−1 = i] = qi,j .

We set yi,j , 1{∃ t > 0 s.t. wt−1 = i, wt = j} where 1 is the characteristic function of

an event, thereby defining a random variable Y ∈ Y , with distribution D. We leave implicit

the dependency of P in θ and Ω. As the depth of wt (number of edges to connect to the root
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Algorithm 1 Compute DPΩ(θ) and ∇DPΩ(θ)

Input: Edge weights θ ∈ R
N×N

v1 ← 0, ēN ← 1, Q,E ← 0 ∈ R
N×N

for i ∈ [2, . . . , N ] do ⊲ Topological order

vi ← maxΩ
j∈Pi

θi,j + vj

(qi,j)j∈Pi
← ∇maxΩ

j∈Pi

θi,j + vj

for j ∈ [N−1, . . . , 1] do ⊲ Reverse topological order

∀ i ∈ Cj , ei,j ← qi,j ēi, ēj ←
∑

i∈Cj
ei,j

Return: DPΩ(θ) = vN , ∇DPΩ(θ) = E ∈ R
N×N

Intermediate computation for Algorithm 2

ē , [ē]Ni=1 ∈ R
N , Q ∈ R

N×N

Algorithm 2 Compute 〈∇DPΩ(θ),Z〉 and ∇2DPΩ(θ)Z

Input: Edge weights and perturbation θ,Z ∈ R
N×N

Call Algorithm 1 with input θ to get ē and Q

v̇1 ← 0; ˙̄eN ← 0, Q̇, Ė ← 0 ∈ R
N×N

for i ∈ [2, . . . , N ] do ⊲ Topological order

v̇i ←
∑

j∈Pi
qi,j(zi,j + v̇j) (A1)

(q̇i,j)j∈Pi
← JΩ

(
(qi,j)j∈Pi

)
(zi,j + v̇j)j∈Pi

(A2)

for j ∈ [N−1, . . . , 1] do ⊲ Reverse topological order

∀ i ∈ Cj , ėi,j ← q̇i,j ēi + qi,j ˙̄ei (A3)
˙̄ej ←

∑

i∈Cj
ėi,j

Return: 〈∇DPΩ(θ),Z〉 = v̇N
∇2DPΩ(θ)Z = Ė ∈ R

N×N

node) is stricly decreasing with t, (wt)t reaches node 1 in finite time with probability one and

is constant after this event. We introduce the random variables (ȳj)j , defined for all j ∈ [N ]
as

ȳj , 1{∃ t ≥ 0, wt = j} =
∑

i∈Cj

yi,j if j 6= N , 0 otherwise.

By definition, using the fact that P[wt = j|wt−1 = i] is independent of t (Markov property),

for all i ∈ Cj and for all j ∈ [N − 1], we have

P[yi,j = 1] = E[yi,j ] = P[∃ t > 0, wt−1 = i]P[wt = j|wt−1 = i] = E[ȳi]qi,j .

Linearity of the expectation then provides

E[ȳj ] =
∑

i∈Cj

E[yi,j ],

with initialization E[ȳN ] = 1. We recover the same two-step recursion as the one defining

E and ē, with the same initialization. Hence the probabilistic interpretation of the gradient,

where the expectation is taken with respect to the distribution D of Y :

E = Eθ,Ω[Y ] and ē = Eθ,Ω[ȳ].

A.6. Computation of the directional derivative 〈∇DPΩ(θ),Z〉

The derivations of the following two sections allows to write Algorithm 2. Let v̇i ,

〈∇vi(θ),Z〉, where vi(θ) is defined in (6). Since vi only directly depends on vj + θi,j for

j ∈ Pi, a straighforward differentiation of 〈∇vi(θ),Z〉 gives

v̇i =
∑

j∈Pi

∂vi
∂vj

(v̇j + zi,j) .

Recall that ∂vi

∂vj
= qi,j and has already been obtained when computing ∇DPΩ(θ). Hence

equation (A1), reproduced here:

∀ i ∈ [2, . . . , N ] : v̇i =
∑

j∈Pi

qi,j(v̇j + zi,j). (12)

This recursion can be computed in topological order, starting from v̇1 = 0 to finish at v̇N =
〈∇DPΩ(θ),Z〉.
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A.7. Computation of the Hessian-vector product ∇2DPΩ(θ)Z

For convenience, let us define ∇2DPΩ(θ)Z , Ė. For (i, j) /∈ E , we evidently have ėi,j = 0.

For (i, j) ∈ E , since θi,j influences only vi and v̇i, we obtain

ėi,j =
∂v̇N
∂θi,j

=
∂v̇N
∂vi

∂vi
∂θi,j

+
∂v̇N
∂v̇i

∂v̇i
∂θi,j

.

We will now show how to derive each of the right-hand side terms in turn. We already know

that ∂vi
∂θi,j

= qi,j . We also have ∂v̇N
∂v̇i

= ui. Indeed, observe that v̇j only directly influences v̇i
for i ∈ Ci. Therefore, we have

∂v̇N
∂v̇j

=
∑

i∈Cj

∂v̇N
∂v̇i

qi,j ∀j ∈ [N − 1] (13)

and ∂v̇N

∂v̇1
= 1. Comparing (11) and (13), we see that (∂v̇N

∂v̇i
)
i

follows the same recursion as

(∂vN

∂vi
)
i
. Since ∂v̇N

∂v̇n
= ∂vN

∂vn
, both sequences are equal:

∂v̇N
∂v̇i

=
∂vN
∂vi

= ei.

Next, we derive ∂v̇i
∂θi,j

. Since, for j ∈ Pi, v̇j + zi,j does not depend on θi,j , differentiating (12)

w.r.t. θi,j , we obtain

∂v̇i
∂θi,j

=
∑

k∈Pi

∂qi,j
∂θi,j

(v̇k + zi,k)

=
∑

k∈Pi

∂2vi
∂θi,j∂θi,k

(v̇k + zi,k) , q̇i,j .

This can be conveniently rewritten in a vectorial form as

q̇i = ∇
2maxΩ(θi + v) (zi + v̇) = JΩ(qi) (zi + v̇),

where we have defined v̇ , (v̇1, . . . , v̇N ) and where we have used the function JΩ defined in

§B.1, that conveniently computes the Hessian of maxΩ from its gradient. The Hessian has this

form for both negentropy and ℓ22 regularizations. In a practical implementation, we only need

to compute the coordinates (i, j) of Q̇, for j ∈ Pi. Namely, as specified in (A2),

(q̇i,j)j∈Pi
← JΩ

(
(qi,j)j∈Pi

)
(zi,j + v̇j)j∈Pi

.

Finally, we derive ∂v̇N

∂vi
. Since vj influences only vi and v̇i for i ∈ Cj , the chain rule gives

∂v̇N
∂vi

=
∑

j∈Ci

∂v̇N
∂vj

∂vj
∂vi

+
∂v̇N
∂v̇j

∂v̇j
∂vi

=
∑

j∈Cj

ėi,j , ˙̄ei.

Combining the above, for any j ∈ [N − 1], we obtain the following two-step recursion (A3),

reproduced here:

∀ i ∈ Cj , ėi,j = q̇i,jei + qi,j ˙̄ei and ˙̄ej =
∑

i∈Cj

ėi,j .

Similarly to the computation of ∇DPΩ(θ), our algorithm computes this recursion in reverse

topological order over the graph G, yielding ∇2DPΩ(θ)Z = Ė.
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B. Examples of algorithm instantiations

We provide the explicit forms of maxΩ and its derivative for the negentropy and ℓ22 regular-

izations. Then, we provide details and pseudo-code for the two instances of differentiable

dynamic programming presented in §3.

B.1. Examples of maxΩ

Negative entropy. When Ω(q) = γ
∑D

i=1 qi log qi, where γ > 0 (smaller is less regularized),

we obtain

maxΩ(x) = γ log

(
D∑

i=1

exp(xi/γ)

)

∇maxΩ(x) = exp(x/γ)
/ D∑

i=1

exp(xi/γ)

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(q)−qq⊤)/γ. Note that∇maxΩ(x) recovers the usual “softmax” with

temperature γ = 1. For a proof of the expression of maxΩ, see, e.g., (?, Example 3.25).

Squared ℓ2 norm. When Ω(x) = γ
2 ‖x‖

2
2 with γ > 0, we obtain the following expressions

maxΩ(x) = 〈q
⋆,x〉 −

γ

2
‖q⋆‖22

∇maxΩ(x) = argmin
q∈△D

‖q − x/γ‖22 = q⋆

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(s) − ss⊤/‖s‖1)/γ and s ∈ {0, 1}D is a vector that indicates the

support of q. Note that ∇maxΩ(x) is precisely the Euclidean projection onto the simplex of

x/γ and can be computed exactly in worst-case O(D logD) time using the algorithm of (?)

or in expected O(D) time using the randomized pivot algorithm of (?). It can be efficiently

performed on Nvidia GPUs since recently. An important benefit of the squared ℓ2 norm,

compared to the negative entropy, is that∇maxΩ(x) tends to be sparse. This is useful, among

other things, to define sparse attention mechanisms (??).

B.2. Sequence prediction with the smoothed Viterbi algorithm

Computational graph. As illustrated in §3, the DAG contains a start node, S nodes for each

time step and end node. Therefore |V| = N = TS + 2. Only nodes from consecutive time

steps are connected to each other. Taking into account the start and end nodes, the total number

of edges is therefore |E| = (T − 1)S2 + 2S.

Representation. We follow the notation of §3, i.e. we represent Y and θ as T ×S×S tensors

(we can safely ignore the edges connected to the end node since their value is 0). We represent

Y as a binary tensor such that yt,i,j = 1 if Y is in states i and j in time steps t and t− 1, and

yt,i,j = 0 otherwise. Likewise, we represent the potentials θ as a real tensor such that θt,i,j
contains the potential of transitioning from state j to state i on time t.

Algorithms. Applying recursion (6) to this specific DAG, we obtain a smoothed version of

the Viterbi algorithm. Let vt,i be the score of being in state i up to time t. We can rewrite the

smoothed Bellman recursion as

vt,i(θ) , maxΩ
j∈[S]

vt−1,j(θ) + θt,i,j = maxΩ(vt−1(θ) + θt,i).
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Algorithm 3 Compute VitΩ(θ) and ∇VitΩ(θ)

Input: Potential scores θ ∈ R
T×S×S

⊲ Forward pass

v0 = 0S

for t ∈ [1, . . . , T ], i ∈ [S] do

vt,i = maxΩ(θt,i + vt−1)
qt,i = ∇maxΩ(θt,i + vt−1)

vT+1,1 = maxΩ(vT ); qT+1,1 = ∇maxΩ(vT )
⊲ Backward pass

uT+1 = (1, 0, . . . , 0) ∈ R
S

for t ∈ [T, . . . , 0], j ∈ [S] do

et,·,j = qt+1,·,j ◦ ut+1; ut,j = 〈et,·,j ,1S〉

Return: VitΩ(θ) = vT+1,1

∇VitΩ(θ) = (et−1,i,j)
T,S,S
t=1,i,j=1

Intermediary computations for Alg. 4:

Q , (q)T+1,S,S
t=1,i,j=1,U , (u)T+1,S

t=1,j=1

Algorithm 4 Compute 〈∇VitΩ(θ),Z〉 and ∇2VitΩ(θ)Z

Input: Z ∈ R
T×S×S ,θ ∈ R

T×S×S

Call Alg. 3 with input θ to get U , Q

⊲ Forward pass

v̇0 = 0S

for t ∈ [1, . . . , T ], i ∈ [S] do

v̇t,i = 〈qt,i, zt,i + v̇t−1〉
q̇t,i = JΩ(qt,i) (zt + v̇t−1)

v̇T+1,1 = 〈qT+1,1, v̇T 〉; q̇T+1,1 = JΩ(q̇T+1,1) v̇T

⊲ Backward pass

u̇T+1 = 0S ; Q̇T+1 = 0S×S

for t ∈ [T, . . . , 0], j ∈ [S] do

ėt,·,j = qt+1,·,j ◦ u̇t+1 + q̇t+1,·,j ◦ ut+1

u̇t,j = 〈ėt,·,j ,1S〉

Return: 〈VitΩ(θ),Z〉 = v̇T+1

∇2VitΩ(θ)Z = (ėt−1,i,j)
T,S,S
t=1,i,j=1

The value VitΩ(θ) , maxΩ(vT (θ)) can be computed in topological order, starting from

v0(θ). The total computational cost is O(TS2). Using the computations of §2.3 and §2.4 to

this specific DAG, we can compute∇VitΩ(θ), 〈∇VitΩ(θ),Z〉 and∇2VitΩ(θ)Z with the same

complexity. The procedures are summarized in Algorithm 3 and Algorithm 4, respectively.

From Proposition 2 property 1, VitΩ(θ) is a convex function for any Ω.

B.3. Monotonic aligment prediction with the smoothed DTW

Computational graph. As illustrated in §3, the DAG contains a start node and NANB nodes.

Therefore, |V| = N = NANB + 1. Due to the monotonic constraint, each node may only be

connected with at most 3 other nodes. The cardinality of Y is the delannoy(NA−1, NB−1)
number (??). That number grows exponentially with NA and NB .

Representation. We follow the notation of §3, i.e. we represent Y and θ as NA × NB

matrices. We represent Y as a binary matrix such that yi,j = 1 if ai is aligned with bj , and

yi,j = 0 otherwise. Likewise, we represent θ as a real matrix such that θi,j is a measure of

“discrepancy” between ai and bj .

Algorithms. Following the DTW literature (?), we seek an alignment with minimal cost. For

that reason, we introduce the smoothed min operator, its gradient and its Hessian as follows

minΩ(x) , −maxΩ(−x)

∇minΩ(x) = ∇maxΩ(−x)

∇2minΩ(x) = −∇
2maxΩ(−x)

= −JΩ(∇maxΩ(−x))

= −JΩ(∇minΩ(x)).

Applying (6) to the DTW DAG gives rise to a smoothed version of the algorithm. Let vi,j(θ)
be the alignment cost up to cell (i, j). Then the smoothed DTW recursion is

vi,j(θ) = θi,j +minΩ(vi,j−1(θ), vi−1,j−1(θ), vi−1,j(θ))

The value DTWΩ(θ) , vNA,NB
(θ) can be computed in O(NANB) time. Applying

the derivations of §2.3 and §2.4 to this specific DAG, we can compute ∇DTWΩ(θ),
〈∇DTWΩ(θ),Z〉 and ∇2DTWΩ(θ)Z with the same complexity. The procedures, with ap-

propriate handling of the edge cases, are summarized in Algorithm 5 and 6, respectively.
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Algorithm 5 Compute DTWΩ(θ) and ∇DTWΩ(θ)

Input: Distance matrix θ ∈ R
NA×NB

⊲ Forward pass

v0,0 = 0; vi,0 = v0,j =∞, i ∈ [NA], j ∈ [NB ]
for i ∈ [1, . . . , NA], j ∈ [1, . . . , NB ] do

vi,j = di,j +minΩ(vi,j−1, vi−1,j−1, vi−1,j)
qi,j = ∇minΩ(vi,j−1, vi−1,j−1, vi−1,j) ∈ R

3

⊲ Backward pass

qi,NB+1 = qNA+1,j = 03, i ∈ [NA], j ∈ [NB ]
ei,NB+1 = eNA+1,j = 0, i ∈ [NA], j ∈ [NB ]
qNA+1,NB+1 = (0, 1, 0); eNA+1,NB+1 = 1
for j ∈ [NB , . . . , 1], i ∈ [NA, . . . , 1] do

ei,j = qi,j+1,1 ei,j+1 + qi+1,j+1,2 ei+1,j+1+
qi+1,j,3 ei+1,j

Return: DTWΩ(θ) = vNA,NB

∇DTWΩ(θ) = (e)NA,NB

i,j=1

Intermediate computations for Algo. 6:

Q , (q)NA+1,NB+1,3
i,j,k=1 ; E , (e)NA+1,NB+1

i,j=1

Algorithm 6 Compute 〈∇DTWΩ(θ),Z〉, ∇2DTWΩ(θ) Z

Input: θ ∈ R
NA×NB ,Z ∈ R

NA×NB

Call Algo. 5 with input θ to retrieve Q and E

⊲ Forward pass

v̇i,0 = v̇0,j = 0, i ∈ [0, . . . , NA], j ∈ [NB ]
for i ∈ [1, . . . , NB ], j ∈ [1, . . . , NA] do

v̇i,j = zi,j + qi,j,1 v̇i,j−1 + qi,j,2 v̇i−1,j−1+
qi,j,3 v̇i−1,j

q̇i,j = −JΩ(qi,j) (v̇i,j−1, v̇i−1,j−1, v̇i−1,j) ∈ R
3

⊲ Backward pass

q̇i,NB+1 = q̇NA+1,j = 03, i ∈ [0, . . . , NA], j ∈ [NB ]
ėi,NB+1 = ėNA+1,j = 0, i ∈ [0, . . . , NA], j ∈ [NB ]
for j ∈ [NB , . . . , 1], i ∈ [NA, . . . , 1] do

ėi,j = q̇i,j+1,1 ei,j+1 + qi,j+1,1 ėi,j+1+
q̇i+1,j+1,2 ei+1,j+1+qi+1,j+1,2 ėi+1,j+1+
q̇i+1,j,3 ei+1,j + qi+1,j,3 ėi+1,j

Return: 〈∇DTWΩ(θ),Z〉 = v̇NA,NB

∇2DTWΩ(θ) Z = (ė)NA,NB

i,j=1

Note that when Ω is the negative entropy, DTWΩ(θ) is known as soft-DTW (?). While the

DP computation of DTWΩ(θ) and of its gradient were already known, the generalization to

any strongly convex Ω and the computation of ∇2DTWΩ(θ)Z are new. From Proposition

2 property 1, DTWΩ(θ) is a concave function of the discrepancy matrix θ for any Ω. With

respect to time-series, DTWΩ is neither convex nor concave.

C. Experimental details and further results

We finally provide details on the architecture used in experiments, with additionnals figures.

C.1. Named entity recognition (section §4.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with

a 50-dimensional character embedding. This character embedding corresponds to the concate-

nation of the last hidden unit of a bi-directional character LSTM, as in ?. Character embedding

size is set to 50. A word LSTM then produces sentence-aware features for each word. This

LSTM is bi-directional with 100-dimensional hidden units per direction. The final features X

used to build the potential tensor θ are thus 200-dimensional. Note that, in contrast with ?:

• The look-up table is initialized with 300-dimensional embeddings from FastText (?),

trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.

• We do not train the unknown word embedding as we found it had no effect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer VitΩ
model than if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower num-

ber of tags. We performed a small grid-search to select the step-size and batch-size used for

optimization: s ∈ {0.005, 0.01, 0.02}, b ∈ {8, 32, 128}. For each language and each loss, we

select the highest-scoring model on the validation set, and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log like-

lihood. We have to use a small batch size (b = 8) and vanilla SGD with large step size

(s = 0.01) to avoid this overfitting issue. For all losses, accelerated stochastic optimizers

have all lower generalization performance than SGD, as also noticed in (?) when using the
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Figure 6. Test predictions from the entropy and ℓ22 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using ℓ22 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number

of possible outputs.

classical negative log-likelihood as a loss.

Visualization. The models using ℓ22 regularization perform nearly on par with the ones using

negentropy, as demonstrated in Table 1. On the other hand, ℓ22 regularization leads to tag

probability vectors that are sparse and hence easier to parse. They allow to detect ambiguities

more easily. We display a few tagged English sequences in Figure 6. The model using ℓ22
regularization correctly identifies an ambiguous entity (Union Bank of Switzerland) and can be

used to propose two tag sequences: (B-ORG, I-ORG, I-ORG, E-ORG) or (B-ORG, E-ORG, O,

S-LOC). Probabilities of every tag sequence can be computed using the matrix Q, as described

in §2.3 — this remains tractable as long as the matrix Q is sparse enough, so that the number of

non-zero probabilities sequence remains low. On the other hand, the model using negentropy

regularization never assign a zero probability to any tag sequence — it is therefore not tractable

to provide the user with a small set of interesting sequences.

C.2. Supervised audio-to-score transcription (section §4.3)

Audio sequences, sampled at 22.05 kHz, are split into frames of 512 samples. We extract

the following features from these sequences: energy, spectral centroid, spectral bandwidth,

and the 5 first MFCC features. All features are centered around the median and normalized.
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Figure 7. Alignment maps between score onsets and audio frames on test data from the Bach10 dataset.

Our end-to-end trained model qualitatively performs better than the baseline model.

The ∇DTWΩ layer is written in Cython1, and hence run on CPU. This technical choice was

suggested by the fact that we have to write explicit loops to specify the topological and reverse

topological pass over the DTW computation graph (see Algorithm 5). However, it is possible

to use only contiguous vector operations and thus take advantage of GPU computations — this

is left for future work. We use SciPy’s2 LBFGS-B solver to perform end-to-end training and

multinomial regression. We use a ℓ22 regularization on the weight W ,: we selected it using a

grid search over {10−5, 10−4, . . . , 1} and selected 10−3.

Further vizualisation. In Figure 7, we display the alignment maps we obtained using our

algorithm and using the baseline multinomial model followed by a hard-DTW alignment com-

putation. These alignment maps correspond to the predicted onsets of keys. Our model (in

orange) performs visibly better in predicting onsets.

C.3. Structured and sparse attention (section §5)

We use OpenNMT-py library3 to fit our structured attention model. Model architecture and

optimization details are as follow:

• We use a bidirectional LSTM encoder and decoder, with 500 units in each direction and

a depth of 2 layers .

• The decoder is fed with the input representation as in ?.

• SGD training with s = 1 learning rate, decaying from epoch 8 to epoch 15 with rate 0.65,

batch size of size 256.

• Training sentence of lengths superior to 50 are ignored, and translated sentence are forced

to a length inferior to 100.

• The temperature parameter is set to γ = 2 for entropy, and γ = 10 for ℓ22. Performance is

not affected much by this parameter, provided that it is not set too low in the ℓ22 case —

with a too small γ, VitΩ reduces to unregularized MAP estimation and ∇VitΩ has zero

derivatives.

We use a 1-million sentence subject of WMT14 English-to-French corpus, available at

1http://cython.org/
2http://scipy.org/
3http://opennmt.net/

http://cython.org/
http://scipy.org/
http://opennmt.net/
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Table 3. Detokenized BLEU score on newstest2014 data using regularized and unregularized attention.

Attention model WMT14 1M fr→en WMT14 en→fr

Softmax 27.96 28.08
Entropy regularization 27.96 27.98

ℓ22 reg. 27.21 27.28

http://nmt-benchmark.net/. We use Moses tokenizer and do not perform any post-

processing, before computing BLEU score on detokenized sentences (multi bleu.perl script).

Implementation. We implemeted a batch version of the ∇VitΩ layer on GPU, using the

PyTorch tensor API. Model with negentropy-regularized attention mechanism runs 1/2 as fast

as the softmax attention mechanism (approximately 7500 tokens/s vs 15000 tokens/s on a

single Nvidia Titan X Pascal). With ℓ22 regularization, it is only 1/3 as fast: approximately

5000 tokens/s. Although this remains reasonable, it could certainly be optimized by rewriting

kernels using lower-level languages (e.g., using ATen API from PyTorch.)

Further results. Table 3 provides BLEU scores for both translation directions on the 1 mil-

lion sentence subset of WMT14 we used. We observe that the introduction of structure and

sparsity does not hinder the general performance of the model. We provide several examples

of attention maps in Figure 8, that illustrate the sparsity patterns ℓ22 regularization uncovers.

http://nmt-benchmark.net/
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é

av
ec

97
9

m
or
ts et 1

90
2

bl
es
sé
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Figure 8. Attention on test samples from Newstest2014. Borders indicate non-zero cells. Translations

(y-axis) are often qualitatively equivalent, while attentions maps are sparse in the ℓ22 case.


