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Abstract

Entropy gain is widely used for learning decision

trees. However, as we go deeper downward the

tree, the examples become rarer and the faith-

fulness of entropy decreases. Thus, misleading

choices and over-fitting may occur and the tree

has to be adjusted by using an early-stop crite-

rion or post pruning algorithms. However, these

methods still depends on the choices previously

made, which may be unsatisfactory. We propose

a new cumulative entropy function based on con-

fidence intervals on frequency estimates that to-

gether considers the entropy of the probability

distribution and the uncertainty around the es-

timation of its parameters. This function takes

advantage of the ability of a possibility distri-

bution to upper bound a family of probabilities

previously estimated from a limited set of exam-

ples and of the link between possibilistic speci-

ficity order and entropy. The proposed measure

has several advantages over the classical one. It

performs significant choices of split and provides

a statistically relevant stopping criterion that al-

lows the learning of trees whose size is well-

suited w.r.t. the available data. On the top of that,

it also provides a reasonable estimator of the per-

formances of a decision tree. Finally, we show

that it can be used for designing a simple and ef-

ficient online learning algorithm.

1. Introduction

Although decision tree methods have been one of the first

machine learning approaches, they remain popular because

of their simplicity and flexibility. Most algorithms for

building decision trees are based on the use of information

gain function for choosing the best attribute for splitting

the data at each step of the learning process. Thus, the

ID3 algorithm is based on logarithmic entropy (Quinlan,

1986), while CART (Breiman et al., 1984) is based on the

Gini impurity measure. Numerous alternatives have been

proposed for the gain function (Buntine & Niblett, 1992;

Lee, 2001; Nowozin, 2012). However, one drawback in

this kind of approach is that the gain function becomes less

and less significant when the number of examples in the

considered node decreases. In the particular case of log

entropy-based gain, which is still one of the most largely

used, splitting a node always decreases the weighted en-

tropy of the leaves obtained. It then leads to learn trees that

may overfit the data and then decreases the performance

of the algorithm. This can be avoided by using early-stop

criterion or post-pruning methods. However, these meth-

ods still depend on the initial choices based on the entropy

calculus, even if this evaluation may be not significant.

The main limitation of the log-based entropy (but this also

applies to some extent to its multiple refinements) is that

it does not take into account the amount of data used for

estimating the frequencies on the different classes.

The goal of this paper is to show how to extend the

classical entropy calculus in order to take into account

the amount of information available and then having a

single entropy measure that addresses the different issues

of the decision tree learning process in an elegant way.

We propose to use the upper bound of the frequency

estimates for defining a so-called possibilistic cumula-

tive entropy. The approach relies on the building of a

possibility distribution. Quantitative possibility measures

can be viewed as upper bounds of probabilities. Then, a

possibility distribution represents a family of probability

distributions (Dubois & Prade, 1992). In agreement with

this view, a probability-possibility transformation has



been proposed (Dubois et al., 1993). This transformation

associates a probability distribution with the maximally

specific (restrictive) possibility distribution which is such

that the possibility of any event is indeed an upper bound

of the corresponding probability. Possibility distributions

are then able to describe epistemic uncertainty and to

represent knowledge states such as total ignorance, partial

ignorance or complete knowledge. Starting from the link

between the specificity order over possibility distribution

and the entropy of a probability distribution, we propose a

log-based loss function for possibility distributions based

on (Serrurier & Prade, 2013). We derive the possibilistic

cumulative entropy function for a possibility distribution

associated to a frequency distribution. Then, we build a

possibility distribution that upper bounds the confidence

intervals of the frequency values (according to the number

of data available and a confidence degree) and we compute

its relative possibilistic entropy. This cumulative entropy

has nice properties. For instance, it respects the entropy

order for a fixed level of information and this entropy

increases for a fixed frequency distribution when the

amount of data decreases. It also provides a stopping

criterion when splitting nodes is no longer significant.

Thus, it allows to choose the most relevant nodes instead

of reasoning a posteriori about the significance of the

choices made on the basis of classic entropy, as done with

early stop criteria or post-prunning methods (see (Esposito

et al., 1997) for a review of pruning methods). Thanks to

this ability, we propose a direct extension of the classical

algorithm with possibilistic entropy and we show how to

easily extend it to obtain an incremental online algorithm.

Last, possibilistic cumulative entropy also provides a

global evaluation measure of a decision tree that is a

relevant estimation of its performances outside the training

set.

The paper is organized as follows. First we provide a

short background on possibility distributions and possibil-

ity measures and their use as upper bounds of families of

probability distributions. Second, we describe possibilis-

tic cumulative entropy with its properties. Section 4 is de-

voted to the presentation of the two algorithms and their

comparisons with state of the art approaches. As our goal

is to demonstrate the benefits of our measure with respect

to classical log entropy, we compare the performances of

these approaches on 16 benchmark databases in the last

section.

2. Possibility theory

Possibility theory, introduced in (Zadeh, 1978), was ini-

tially proposed in order to deal with imprecision and uncer-

tainty due to incomplete information, as the one provided

by linguistic statements. This kind of epistemic uncertainty

cannot be handled by a single probability distribution, es-

pecially when a priori knowledge about the nature of the

probability distribution is lacking. A possibility distribu-

tion π on a discrete universe Ω = {c1, . . . , cq} is a map-

ping from Ω to [0, 1]. We note Π the set of all possibility

distributions over Ω. The value π(c) is called the possibil-

ity degree of the value c in Ω. For any subset of Ω, the

possibility measure is defined as follows:

∀A ⊆ Ω,Π(A) = sup
c∈A

π(c).

If it exists at least a value c ∈ Ω for which we have

π(c) = 1, the distribution is normalized. One view of pos-

sibility theory is to consider a possibility distribution as a

family of probability distributions (see (Dubois, 2006) for

an overview). Thus, a possibility distribution π will repre-

sent the family of the probability distributions for which the

measure of each subset of Ω will be respectively lower and

upper bounded by its necessity and its possibility measures.

More formally, if P is the set of all probability distributions

defined on Ω, the family of probability distributions P(π)
associated with π is defined as follows:

P(π) = {p ∈ P, ∀A ∈ Ω, P (A) ≤ Π(A)}. (1)

where P is the probability measure associated with p. We

can distinguish two extreme cases of information situa-

tions: i) complete knowledge ∃c ∈ Ω such as π(c) = 1
and ∀c′ ∈ Ω, c′ 6= c, π(c) = 0 and ii) total ignorance

(i.e. ∀c ∈ Ω, π(c) = 1) that corresponds to the case where

all probability distributions are possible. This type of ig-

norance cannot be described by a single probability dis-

tribution. According to this probabilistic interpretation, a

method for transforming probability distributions into pos-

sibility distributions has been proposed in (Dubois et al.,

1993). The idea behind this is to choose the most informa-

tive possibility measure that upper bounds the considered

probability measure. We note Sq the set of permutations of

the set {1, . . . , q}. We introduce the notion of σ-specificity

which is a partial pre-order:

Definition 1 (σ-specificity) The distribution π is more σ-

specific than π′, denoted π �σ π′, if and only if :

π �σ π′ ⇔ ∃σ ∈ Sq, ∀i ∈ {1, . . . , q}, π(ci) ≤ π′(cσ(i))
(2)

Then, the possibility measure obtained by probability-

possibility transformation corresponds to the most σ spe-

cific possibility distribution which bounds the distribution.

We denote T ∗
p the possibility distribution obtained from p

by the probability-possibility transformation. This distri-

bution has the following property:

∀π, p ∈ P(π) ⇒ T ∗
p �σ π. (3)



For each permutation σ ∈ Sq we can build a possibility

distribution T σ
p which encodes p as follows:

∀j ∈ {1, . . . , q}, Tσ
p (cj) =

∑

k,σ(k)≤σ(j)

p(ck). (4)

Then, each T σ
p corresponds to a cumulative distribution of

p according to the order defined by σ. We have:

∀σ ∈ Sq, p ∈ P(T σ
p )

The probability-possibility transformation (Dubois et al.,

2004) (noted P -Π transformation) uses one of these partic-

ular possibility distributions.

Definition 2 (P -Π transformation (discrete case)) Given a

probability distribution p on Ω = {c1, . . . , cq} and a per-

mutation σ∗ ∈ Sq such as p(cσ∗(1)) ≤ . . . ≤ p(cσ∗(q)), the

P -Π transformation of p is noted T ∗
p and is defined as:

T ∗
p = T σ∗

p .

T ∗
p is the cumulative distribution of p built by considering

the increasing order of p. For this order, T ∗
p is the most

specific possibility distribution that encodes p. We have

then the following properties

∀σ ∈ Sq, T
∗
p �σ T σ

p . (5)

Example 1 For instance, we consider p on Ω =
{c1, c2, c3} with p(c1) = 0.5, p(c2) = 0.2 and p(c3) =
0.3. We obtain σ∗(1) = 3, σ∗(2) = 1, σ∗(3) = 2 and

then T ∗
p (c1) = 0.5 + 0.3 + 0.2 = 1, T ∗

p (c2) = 0.2 and

T ∗
p (c3) = 0.3 + 0.2 = 0.5.

The interest of comparing the entropy of probability dis-

tribution by considering the σ-specificity order of its P -

Π transformation has been emphasized in (Dubois &

Hüllermeier, 2007) with the following key property :

∀p, p′ ∈ P, T ∗
p �σ T ∗

p′ ⇒ H(p) ≤ H(p′) (6)

where H(p) is an entropy function.

3. Possibilistic cumulative entropy

We now explain how particular possibility distributions can

be used to take into account the amount of data used for es-

timating the frequencies in the computation of the entropy.

3.1. Probabilistic loss function and entropy

Probabilistic loss functions are used for evaluating the dif-

ferences between a probability distribution with respect

to data. In particular, we look for concave loss function

L(f,X) which is linear w.r.t. X = {x1, . . . , xn}, i.e.

L(f,X) =
∑

n
i=1

L(f,xi)

n
, and where f is a distribution

(probabilistic or possibilistic). Let α1, . . . , αq be the fre-

quency of the elements of X that belong respectively to

{c1, . . . , cq}. We note

1j(xi) =

{

1 if xi = cj
0 otherwise.

The logarithmic-based likelihood is defined as follows:

Llog(p|xi) = −

q
∑

j=1

1j(xi)log(pj). (7)

When we consider the whole set of data we obtain:

Llog(p|X) = −

q
∑

j=1

αj log(pj). (8)

When p is estimated with respect to frequencies, we obtain

the entropy of the distribution (which corresponds to the

minimum of the loss function).

H(p) = −

q
∑

j=1

pj log(pj). (9)

The higher the entropy, the lower the amount of informa-

tion (uniform distribution). The entropy is equal to 0 when

the probability is equal to 1 for one class. Entropy is the

basis of the majority of algorithms for learning decision

trees. The goal is to build a decision tree for which each

leaf describes a probability over class with the lowest pos-

sible entropy.

3.2. Possibilistic loss function and entropy

In this section we show how to use Llog in order to define

a loss function, and the related entropy, for possibility dis-

tributions that agrees with the interpretation of a possibility

distribution in terms of a family of probability distributions.

Proofs and detailed discussion about possibilistic loss func-

tion can be found in (Serrurier & Prade, 2013). We expect

four properties:

(a) The possibilistic loss function is minimal for the pos-

sibility distribution that results from the P -Π transfor-

mation of the frequencies.

(b) As for probability distribution, the possibilistic entropy

will be a linear function of possibilistic loss function

applied to a set of data Xp that supports a probability

distribution p.

(c) The possibilistic entropy applied to P -Π transforma-

tions respects the specificity order as in (6).



(d) The possibilistic entropy increases when uncertainty

around the considered probability distribution in-

creases.

Since a possibility distribution π can be viewed as an up-

per bound of a cumulative function, for all j, the pair

πj = (π(cσ(j)), 1 − π(cσ(j))) (σ is the permutation of

Sq such that π(cσ(1)) ≤ . . . ≤ π(cσ(q))) can be seen as

a Bernouilli probability distribution for the sets of events

BCj =
⋃j

i=1 cσ(i) and BCj . Then, the logarithmic loss

of a possibility distribution for an event will be the average

of the log loss of each binomial distribution πj re-scaled

in [0, 0.5] where the entropy function −x ∗ log(x) − (1 −
x) ∗ log(1 − x) is strictly increasing. This re-scaling is

necessary for having proposition 1 and 2 below.

Lπ-l(π|X)) =

−

q
∑

j=1

(
cdfj

2
∗ log(

πj

2
) + (1−

cdfj

2
) ∗ log(1−

πj

2
)).

(10)

where cdfj =
∑

k,σ(k)≤σ(j) αk. If we only consider one

piece of data x such that x ∈ cj we obtain :

Lπ-l(π|x) = −

q
∑

j=1

(log(1−
πj

2
))

−
1

2
∗

q
∑

i,σ(i)≥σ(j)

(log(
πσ(i)

2
)− log(1−

πσ(i)

2
)).

(11)

It can be checked that this loss function is indeed linear

w.r.t. X . The property (a) has been proven in (Serrurier

& Prade, 2013). We remark that cdfj corresponds to the

cumulative probability distribution of the frequencies with

respect to σ (Eq. 4). Then, we can derive a definition of the

entropy of a possibility distribution relative to a probability

distribution:

Hπ-l(p, π) =
Lπ-l(π|Xp)

q ∗ log(q)

=−

q
∑

j=1

T∗

p (cj)

2 ∗ log(
π(cj)

2 )+(1−
T∗

p (cj)

2 )∗log(1−
π(cj)

2 )

q ∗ log(q)
.

(12)

where Xp is a set of data that supports a probability distri-

bution p. q ∗ log(q) is a normalization factor. The expected

property (b) is obvious if we consider the probability dis-

tribution p such as p(ci) = αi. We can now establish some

properties of the possibilistic entropy.

Proposition 1 Given two probability distributions p and p′

on Ω = {c1, . . . , cq} we have:

T ∗
p � T ∗

p′ ⇒ Hπ-l(p, T
∗
p ) ≤ Hπ-l(p

′, T ∗
p′)

Figure 1. Possibilistic cumulative function of a binomial proba-

bility distribution on Ω = {c1, c2} with γ = 0.05 for different

values of n. The x-axis represents the value of p(c1) and the y-

axis the value H∗

π-l(p, n, 0.05).

Proof (sketch) We can assume without loss of generality

that the values of distributions p and p′ are in increasing or-

der. It can be easily shown that the re-scaled entropy of the

binomial counterpart of p restricted to the events BCj and

BCj is less than the entropy of the binomial counterpart of

p′ on the same events.

Proposition 2 Given a probability distribution p and two

possibility distributions π and π′ on Ω = {c1, . . . , cq} we

have:

T ∗
p � π � π′ ⇒ Hπ-l(p, T

∗
p ) ≤ Hπ-l(p, π) ≤ Hπ-l(p, π

′)

Proof This property is naturally obtained from the defini-

tions of Hπ-l and the previous.

These two last propositions validate the properties (c) and

(d) and show that the possibility cumulative entropy can

be used for measuring both the entropy and the epistemic

uncertainty and is fully compatible with the interpretation

of a possibility distribution as a family of probability dis-

tributions. We can also notice that possibilistic cumulative

entropy is equal to 0 for complete knowledge (as for classi-

cal entropy) and equal to 1 for total ignorance (and not for

uniform distributions, as for classical entropy).

3.3. Possibilistic cumulative entropy of a frequency

distribution

As said previously, the entropy calculus does not take into

account the amount of information used for estimating the

frequencies. The idea behind possibilistic cumulative en-

tropy is to consider the confidence intervals around the es-

timation of the frequencies to have an entropy measure that

increases when the size of the confidence interval increases.



Applying directly the entropy to the upper-bounds of the

frequency is not satisfactory since entropy only applies to

genuine probability distribution. We propose to build the

most specific possibility distribution that upper bounds the

confidence interval and compute its possibilistic entropy

relative to the frequency distribution.

We use the Agresti-Coull interval (see (Agresti & Coull,

1998) for a review of confidence intervals for binomial

distributions) for computing the upper bound value of the

probability of an event. Given p(c) the probability of the

event c estimated from n pieces of data, the upper bound

p∗γ,n of the (1−γ)% confidence interval of p is obtained as

follows:

p∗γ,n(c) = p̃+ z

√

1

ñ
p̃(1− p̃) (13)

where ñ = n + z2, p̃ = 1
ñ
(p(c) ∗ n + 1

2̃
z2), and z is the

1 − 1
2γ percentile of a standard normal distribution. The

most specific possibility distribution πγ
p,n that contains up-

per bounds of the (1 − γ)% confidence interval of p esti-

mated from n piece of data is computed as follows:

πγ
p,n(cj) = P ∗

γ,n(

j
⋃

i=1

{cσ(i)}) (14)

where σ ∈ Sq is the permutation such as p(cσ(1)) ≤ . . . ≤
p(cσ(q)). Thus, πγ

p,n is built in the same way as π∗
p ex-

cept that it also takes into account the uncertainty around

the estimation of p. Obviously, we have p ∈ P(πγ
p,n),

∀n > 0, π∗
p � πγ

p,n and lim
n→∞

πγ
p,n = π∗

p . Having πγ
p,n,

we can now define the possibilistic cumulative entropy of a

probability distribution:

H∗
π-l(p, n, γ) = Hπ-l(p, π

γ
p,n) (15)

Fig. 1 illustrates the different values of H∗
π-l for a binomial

distribution with different values of n. We can observe that

the value of H∗
π-l increases when n decreases for the same

distribution.

Proposition 3 Given a probability distribution p on Ω =
{c1, . . . , cq} and n′ ≤ n we have:

∀γ ∈]0, 1[,H∗
π-l(p, n, γ) ≤ H∗

π-l(p, n
′, γ)

Proof Use the property π∗
p � πγ

p,n � π
γ
p,n′ and proposi-

tion 2.

Proposition 4 Given two probability distributions p and p′

on Ω = {c1, . . . , cq} we have:

∀γ ∈]0, 1[, T ∗
p � T ∗

p′ ⇒ H∗
π-l(p, n, γ) ≤ H∗

π-l(p
′, n, γ)

Proof (sketch) use the same as proposition 1 and use the

property p(c) ≤ p′(c) ⇒ p∗γ,n(c) ≤ p
′∗
γ,n(c).

These two last propositions show that possibilistic cumula-

tive entropy has the expected properties and can take effec-

tively into account the uncertainty around the estimation of

the frequency distribution.

Example 2 We consider p on Ω = {c1, c2, c3} with

p(c1) = 0.5, p(c2) = 0.2 and p(c3) = 0.3. For n = 10
and γ = 0.05. π0.05

p,10(c1) = P ∗
0.05,10({c1, c2, c3}) =

1, π0.05
p,10(c2) = p∗0.05,10(c2) = 0.52 , π0.05

p,10(c3) =
P ∗
0.05,10({c2, c3}) = 0.76 and H∗

π-l(p, 10, 0.05) = 0.81.

4. Learning decision trees with possibilistic

cumulative entropy

In this section, we propose two different algorithms that are

based on the possibilistic cumulative entropy. The first one

is the classical decision tree learning algorithm for which

the gain function is now based on possibilistic cumulative

entropy. In the next subsection we show that the possibilis-

tic cumulative entropy can be used for revising a decision

tree and then we obtain an incremental decision tree algo-

rithm.

4.1. Possibilistic cumulative entropy for decision trees

The building of a decision tree is based on the recursive

induction of the nodes. For learning a node, the best at-

tribute according to the gain is chosen. Given a set Z of n

examples and an attribute A (real valued attributes are han-

dled by means of binary attributes associated with thresh-

olds) which has v1, . . . , vr possible values. We note pZ
the probability distribution of the classes for the examples

in Z, pvk the probability distribution of the classes for the

examples for which the value of A is vk and |vk| the size

of this set. The classical gain function is

G(Z,A) = H(pZ)−

r
∑

k=1

|vk|

n
H(pvk). (16)

As pointed into the introduction, this approach suffers some

major drawbacks. First, the gain is always positive and can

not be used as a stop criterion. The idea behind this is that

splitting the set of examples always decreases the entropy.

However, when going deeper and deeper in the tree, less

and less examples are used for computing the entropy and

the result may not be significant. Moreover, the gain tends

to favor the nominal attributes having a lot of possible val-

ues. In this paper we propose to use a new gain based on

possibilistic cumulative entropy. Since it takes into account

the uncertainty around the estimation of the probability dis-

tribution, the gain can be negative if the splitting has no

statistically significant advantage. The gain function we



propose is defined as follows:

Gπ
γ (Z,A) = H∗

π-l(pZ , n, γ) −
r

∑

k=1

|vk|

n
H∗

π-l(pvk, |vk|, DS(γ, r)).
(17)

where DS(γ, r) is the Dunn−Šidàk correction of γ for r

comparison. By using Gπ
γ , we have a faithful stop criterion

and we penalize the attributes having a lot of possible val-

ues. Gπ
γ also favors well-balanced trees where the number

of examples in the nodes is significant enough for entropy

computation. This approach directly produces trees that

limit overfitting. The possibilistic cumulative entropy can

also be used as a quality measure of a tree T with a set of

leaves L :

H∗
π-l(T, γ) =

∑

l∈L

H∗
π-l(pl, nl, γ) (18)

where pl is the frequency distribution of nl training exam-

ples that fall in leaf l. The only parameter of the algorithm

is γ. It represents the strength of the constraint for splitting

node. This parameter has been tuned by choosing the best

value of γ inside a set of 10 possible values by the mean of

a cross-validation on the training set.

4.2. Online decision trees

A remarkable property of the possibilistic cumulative en-

tropy and the associated gain function it that they can eas-

ily be used for revising a decision tree. We assume that the

tree saves the set of the related examples for each leaf. The

revision process for a new example x is the following:

1. browse recursively the tree to the corresponding leaf

2. add x to the set of examples

3. search the attribute with the best Gπ
γ

4. if the gain is positive, create a new node with the cor-

responding attribute, else do nothing.

Since Gπ
γ is positive if and only if we have enough data

for performing a split of the node which can increase the

learning power of the tree, the tree will grow up slowly.

We can reasonably suppose that it exists an upper bound

of the number of example Nmax before which a node is

always split since the size of the confidence interval de-

creases quickly when the number of example increases. In

this case, the complexity of the revision of the tree with one

example will be O(NBA ∗Nmaxlog(Nmax)) where NBA

is the number of attributes. The γ parameter is tuned as in

the previous algorithm. Although it is not completely sat-

isfactory in a genuine online procedure, it is not costly if

it is done at the beginning of the algorithm. We can also

imagine that the online procedure takes place on a repeated

context.

4.3. State of the art

Some other approaches (see e.g. (Bernard, 2005)) have

been proposed in order to consider the amount of data used

for the evaluation the parameters of a probability distribu-

tion into the entropy calculus. The first one is to consider

an apriori probability distribution (usually the uniform one)

and to revise it with the observation. However, we can ob-

serve that the approach depends on the choice of the initial

distribution and, since it is still an entropy computed on a

single probability distribution, it does not make the differ-

ence between a uniform distribution obtained with a large

number of estimations, and the initial distribution (if it is

uniform).

Possibility distributions have already been used in machine

learning for dealing with imprecise data (Jenhani et al.,

2008), or for generalizing Ockham’s razor principle when

learning lazy decision trees (Hüllermeier, 2002). Our ap-

proach shares some ideas with the upper entropy proposed

in (Abellàn & Moral, 2005). This works is based on the

building of a belief function that encodes the confidence

intervals around the estimation of a probability distribu-

tion. Then, the entropy computed is the maximal entropy of

the probability distributions that are bounded by the belief

function (with the optional addition of a term which corre-

sponds to a non-specificity measure). However, there are

some important differences with our work based on pos-

sibilistic cumulative entropy. First, due to the use of the

maximum, the upper entropy is not a linear function of

individual loss function (and then not a genuine entropy

function). The second problem is that finding the maxi-

mum of entropy requires to use linear optimization algo-

rithm which may be costly when the number of classes

increases. The last difference comes from the use of the

maximum. Indeed, when the number of the examples is

small, the uniform probability distribution may be often

in the confidence interval which prevents to make an in-

formed choice since the entropy is equal to 1. In (Abellàn

& Moral, 2005), the authors are led to restrict themselves

to small confidence intervals (rather than faithful ones, as

in our case) in order to avoid the previously mentioned pit-

fall.

ID3 and J4.8 use pessimistic error rate (based on confi-

dence interval) as a pre or post pruning criteria. However,

this is only a simple stopping or pruning criterion and it

cannot be used for choosing attributes when splitting nodes.

In (Nowozin, 2012), the author takes into consideration the

numbers of examples in the parent node by using a refined

version of the entropy (Grassberger, 1988). However, the

gain is still always positive and the approach is less general

than the one proposed in the current paper. Note that confi-

dence intervals are used in (Katz et al., 2012) in the predic-

tion of the class by taking into account the uncertainty on

the values of the attributes, or on the split thresholds. On-



Figure 2. Entropy of the tree with respect to the size of the tree on

the Yeast database. Classical entropy is on the top and H∗

π-l(T, γ)
is on the bottom. Curves computed with LOESS

line algorithms have already been proposed in (Schlimmer

& Fisher, 1986; Utgoff, 1989; Domingos & Geoff, 2000;

Gama et al., 2006), but they are based on the revision of

the whole tree with the new example and all (or a subset of)

the previous examples.

5. Experiments

As pointed out in the introduction, the goal of the paper is

to illustrate the interest of handling epistemic uncertainty

in log-entropy calculus and to show the improvement w.r.t.

the classical approach. We used 16 benchmarks from UCI1.

3 of these datasets have nominal attributes and 13 have nu-

merical attributes only. We note ΠTree the decision tree

learning algorithm based on the possibilistic cumulative en-

tropy, O-ΠTree is its online counterpart. We compare them

with the LogTree algorithm which is based on the same

implementation as ΠTree, but which uses the log entropy

(without post pruning). PrunTree is logTree with post prun-

ing based on pessimistic error rate (the parameter γ for the

confidence intervals has been tuned with the same method

1http://www.ics.uci.edu/ mlearn/MLRepository.html

Figure 3. Accuracy of the tree on test set with respect to the en-

tropy of the tree on the training set for the Yeast database. Classi-

cal entropy is on the top and H∗

π-l(T, γ) is on the bottom. Curves

computed with LOESS

used for ΠTree) and J4.8 is the baseline (we use the Weka

implementation with parameters tuned in a subset of data

as for our approach) which uses more advanced pruning

such as tree raising. Figures 2 and 3 illustrate the abil-

ity of H∗
π-l(T, γ) to provide meaningful trees on the Yeast

database. The figures are obtained as follows: we split the

database in a 90% (training)/10% (test) scheme, we gen-

erate 10 random trees of random sizes (i.e. attribute for a

node is chosen randomly and the threshold is chosen alter-

natively with classical entropy, and with possibilistic cu-

mulative entropy on the training set), we evaluate the en-

tropy of the tree on the training set and its accuracy on

the test set, we repeat this process 1000 times. Fig. 2

shows that the classical entropy of the tree always decreases

when its size increases. In the case of H∗
π-l(T, γ) , it shows

that H∗
π-l(T, γ) first decreases with size and then increases

when the tree becomes too complex w.r.t. the number of

examples. Fig. 3 illustrates that it exists a threshold below

which decreasing log entropy doesn’t increase the accuracy

(over fitting). On the contrary, decreasing H∗
π-l(T, γ) on the

training set tends to increase the accuracy of the tree on the

test set.



DATA SET LOG TREE PRUNED PTREE O-PTREE J48

SOYBEAN 89.4±5.0 89.4±5.0 94.0±2.8 89.0±3.8 91.7±3.1
LYMPH 72.9±11.8 72.9±11.8 78.3±7.9 78.3±8.2 75.8±11.0
ZOO2 97.0±4.8 97.0±4.8 97.0±4.8 96.0±5.1 92.6±7.3
ILPD 67.9±5.5 67.4±5.6 69.9±5.3 66.8±4.7 69.3±6.3
YEAST 52.0±4.1 57.0±3.3 57.1±3.4 56.7±3.6 57.8±5.5
WAVEFORM 75.2±1.5 75.3±1.5 77.4±1.5 72.6±1.8 75.9±1.4
DIABETES 68.7±5.7 70.4±4.7 74.3±4.4 70.4±3.4 74.2±5.1
BANKNOTE 98.3±1.1 98.3±1.1 98.3±1.0 97.4±2.1 98.5±1.0
ECOLI 78.9±7.7 80.4±7.4 82.4±7.9 83.6±7.2 83.3±8.5
VEHICLE 71.6±4.7 71.6±4.0 74.1±4.1 69.1±3.1 73.3±5.0
IONOSPHERE 90.3±4.7 90.3±4.7 91.1±3.6 87.7±4.0 91.4±3.7
SEGMENT 96.8±0.6 96.7±0.7 96.9±1.2 94.7±1.4 97.1±1.1
PENDIGITS 96.5±0.5 96.4±0.5 96.4±0.2 93.2±1.0 96.5±0.5
SPAMBASE 91.8±1.2 91.7±1.3 94.0±1.3 90.5±1.2 92.9±1.0
BREAST-WV2 92.9±2.4 92.9±2.4 93.9±3.1 94.7±1.6 94.1±3.5
WINE2 92.5±8.7 92.5±8.7 93.7±7.3 94.3±8.3 94.1±3.5

Table 1. Classification accuracy of LogTree, PrunTree, ΠTree and O-ΠTree, J4.8 on different databases

Figure 4. Number leaves of LogTree, PrunTree, ΠTree and O-

ΠTree, J4.8 comparison for different databases.

Table 1 reports the accuracy results for the different

databases. Highest values are in bold, underlined results

indicate that the algorithm is statistically better (paired

T-Test) than its two opponents (logTree, PrunTree vs O-

ΠTree, ΠTree, J4.8 is not taken into account). We use a

Wilcoxon signed ranked test (Demšar, 2006) for comparing

the algorithms. ΠTree significantly outperforms its classi-

cal competitors (there is no significant statistical difference

with J4.8). We do not observe significant difference be-

tween O-ΠTree and LogTree and PrunTree. This can be

considered as a good result for an online algorithm.

Fig. 4 compares the number of leaves for the trees induced

by the algorithms. As expected LogTree always produces

the most complex trees. ΠTree algorithm behaves simi-

larly to PrunTree et J4.8 w.r.t. the size of the trees. How-

ever, when the size is significantly different different, it can

be seen that the accuracy of ΠTree is better. O-ΠTree is

less stable and may in three cases induce the largest threes.

O-ΠTree is up to 10 times slower than ΠTree when consid-

ering all the examples. However, the average update time

of the decision tree is negligible (in the worst case it is 100

times faster that ΠTree). It confirms the applicability of

O-ΠTree for online learning.

6. Conclusion

In this paper we have proposed an extension of the log-

based information gain that takes into account the confi-

dence intervals of the estimates of the frequencies in case

of a limited amount of data, thanks to the use of possibility-

based representation of the family of probability distribu-

tion that agree with the data. This gain function leads us to

the learning of well-balanced decision trees, which size are

comparable to the ones obtained with a post pruning algo-

rithm. Note that post-pruning algorithm could also benefit

from the possibilistic cumulative entropy. It also allows us

to propose an incremental version of the algorithm. Ex-

periments show that possibilistic cumulative entropy is a

valuable quality measure for decision trees, and that our

main algorithm performs very well in comparison with the

classical approach. They also confirm the interest of the

online algorithm. In the future, we plan to incorporate

the treatment of uncertainty around numerical thresholds

(like (Katz et al., 2012)) into possibilistic cumulative en-

tropy in order to have a complete handling of uncertainty

in the entropy calculus. The approach could also be easily

extended to the learning of regression trees, especially for

online computation.
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