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Contact logics are logics for reasoning about the contact relations between regular subsets in a topological space. Admissible inference rules can be used to improve the performance of any algorithm that handles provability within the context of contact logics. The decision problem of unifiability can be seen as a special case of the decision problem of admissibility. In this paper, we examine the decidability of admissibility problems and unifiability problems in contact logics.

denoted by a and b are equal". The main semantics of contact logics are the contact algebras of the regular subsets in a topological space [START_REF] Dimov | Contact algebras and region-based theory of space: a proximity approach -I[END_REF][START_REF] Dimov | Contact algebras and region-based theory of space: proximity approach -II[END_REF][START_REF] Düntsch | A representation theorem for Boolean contact algebras[END_REF]. But contact logics have also received a relational semantics that allow to use methods from modal logic for studying them [START_REF] Balbiani | Boolean logics with relations[END_REF]. In this setting, one important issue is the mechanization of reasoning in contact logics. Since admissible inference rules can be used to improve the performance of any algorithm that handles provability, it becomes natural to consider admissibility and unifiability within the context of contact logics. In this paper, we will examine variants of contact logics. The central result in this paper is the proof that the admissibility problem and the unifiability problem are decidable in these variants. In Section 2, we present the syntax and the semantics of these variants. Section 3 is about their axiomatization/completeness and their decidability/complexity. In Sections 4-6, we define the admissibility problem and we study its decidability. Section 7 is about the unifiability problem and its decidability. See [START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF] for details about admissibility and unifiability and [START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF] for details about contact logics.

Syntax and semantics of contact logics

In this section, we present the syntax and the semantics of contact logics. We adopt the standard rules for omission of the parentheses.

Syntax

To start with syntax, let us first consider a countable set AT of atomic terms (with typical members denoted x, y, etc) and a countable set AF of atomic formulas (with typical members denoted X, Y , etc). The terms (denoted a, b, etc) are inductively defined as follows:

-a ::= x | 0 | -a | (a ⊔ b).
The other Boolean constructs for terms (1, ⊓, etc) are defined as usual. We will use the following notations:

a 0 for -a, -a 1 for a.

Reading terms as regions, the constructs 0,and ⊔ should be regarded as the empty region, the complement operation and the union operation. For all positive integers n and for all (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n , formulas of the form x ǫ1 1 ⊓ . . . ⊓ x ǫn n will be called monoms. In the sequel, we use a(x 1 , . . . , x n ) to denote a term a whose atomic terms form a subset of {x 1 , . . . , x n }. Considering a(x 1 , . . . , x n ) as a formula in classical propositional logic, let mon(a(x 1 , . . . , x n )) be the set of all monoms of the form x ǫ1 1 ⊓. . .⊓x ǫn n inconsistent with -a(x 1 , . . . , x n ), that is to say mon(a(x 1 , . . . , x n )) = {x ǫ1 1 ⊓ . . . ⊓ x ǫn n : (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n and a(x 1 , . . . , x n ) is a tautological consequence of x ǫ1 1 ⊓ . . . ⊓ x ǫn n }. The formulas (denoted φ, ψ, etc) are inductively defined as follows:

-

φ ::= X | ⊥ | ¬φ | (φ ∨ ψ) | C(a, b) | a ≡ b.
The other Boolean constructs for formulas (⊤, ∧, etc) are defined as usual. We will use the following notations:

-C(a, b) for ¬C(a, b), -a ≡ b for ¬a ≡ b, -a ≤ b for a ⊓ -b ≡ 0.

Reading formulas as properties about regions, the constructs C and ≡ should be regarded as the contact relation and the equality relation. Sets of formulas will be denoted Γ , ∆, etc. Formulas and sets of formulas are also called "expressions" (denoted α, β, etc). We shall say that an expression α is weak iff no atomic formula occurs in α. In the sequel, we use α(x 1 , . . . , x n ) to denote a weak expression α whose atomic terms form a subset of {x 1 , . . . , x n }. A substitution is a function s assigning to each atomic term x a term s(x) and to each atomic formula X a formula s(X). As usual, s induces a homomorphism s(•) assigning to each term a a term s(a) and to each expression α an expression s(α).

Semantics

Now, for the semantics. In [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF], the language of contact logics is interpreted either in relational structures, or in topological structures. In both cases, terms are interpreted by sets of points. The main difference between the two kinds of structures is the following: in relational structures, two regions are in contact when at least one point of the first region is related to at least one point of the second region whereas in topological structures, two regions are in contact when their topological closures have a nonempty intersection. The two semantics have been proved to be equivalent [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF]. In this paper, we only consider the relational semantics. A frame is a relational structure F = (W, R) where W is a non-empty set of points and R is a binary relation on W . A valuation based on F is a function V assigning to each atomic term x a subset V (x) of W . V induces a function (•) V assigning to each term a a subset (a) V of W such that

-(x) V = V (x), -(0) V = ∅, -(-a) V = W \ (a) V , -(a ⊔ b) V = (a) V ∪ (b) V . As a result, -(a 0 ) V = W \ (a) V , -(a 1 ) V = (a) V .
We shall say that V is balanced iff for all terms a, either (a) V = ∅, or (a) V = W , or (a) V is infinite and coinfinite. An interpretation is a subset I of AF . A model is a structure M = (W, R, V, I) where F = (W, R) is a frame, V is a valuation based on F and I is an interpretation. The satisfiability of a formula φ in M, in symbols M |= φ, is defined as follows:

-M |= X iff X ∈ I, -M |= ⊥, -M |= ¬φ iff M |= φ, -M |= φ ∨ ψ iff either M |= φ, or M |= ψ, -M |= C(a, b) iff ((a) V × (b) V ) ∩ R = ∅, -M |= a ≡ b iff (a) V = (b) V . As a result, -M |= C(a, b) iff ((a) V × (b) V ) ∩ R = ∅, -M |= a ≡ b iff (a) V = (b) V , -M |= a ≤ b iff (a) V ⊆ (b) V . Let F be a frame. A formula φ is valid in F, in symbols F |= φ, iff for all models M based on F, M |= φ. A set Γ of formulas is valid in F, in symbols F |= Γ , iff for all formulas φ ∈ Γ , F |= φ.
Let CF be a class of frames. A formula φ is valid in CF , in symbols CF |= φ, iff for all frames F in CF , F |= φ. Let CF 0 be the class of all frames. Obviously, Proposition 1. The following formulas are valid in CF 0 :

-C(x, y) → x ≡ 0, -C(x, y) → y ≡ 0, -C(x, y) ∧ x ≤ z → C(z, y), -C(x, y) ∧ y ≤ z → C(x, z), -C(x ⊔ y, z) → C(x, z) ∨ C(y, z), -C(x, y ⊔ z) → C(x, y) ∨ C(x, z).
In this paper, we will consider the following classes of frames:

the class CF r of all reflexive frames, -the class CF s of all symmetrical frames.

Obviously, Proposition 2. The following formula is valid in CF r :

-x ≡ 0 → C(x, x).
The following formula is valid in CF s :

-C(x, y) → C(y, x).

Axiomatization and decidability of contact logics

In this section, we present the axiomatization and the decidability of contact logics. From now on, formulas will also be called "axioms" and pairs of the form (Γ, φ) where Γ is a finite set of formulas and φ is a formula will also be called "inference rules". When an axiom or an inference rule contains no occurrence of atomic formulas, it is qualified as "weak". An axiomatic system consists of a collection of axioms and a collection of inference rules. Let λ 0 be the axiomatic system consisting of -a complete set of axioms for Classical Propositional Calculus (i.e. X → (Y → X), (X → (Y → Z)) → ((X → Y ) → (X → Z)), etc), -a complete set of axioms for non-degenerate Boolean algebras (i.e. x⊔(y⊔z) ≡ (x ⊔ y) ⊔ z, x ⊔ y ≡ y ⊔ x, etc), -the following axioms:

• C(x, y) → x ≡ 0, • C(x, y) → y ≡ 0, • C(x, y) ∧ x ≤ z → C(z, y), • C(x, y) ∧ y ≤ z → C(x, z), • C(x ⊔ y, z) → C(x, z) ∨ C(y, z), • C(x, y ⊔ z) → C(x, y) ∨ C(x, z), -the inference rule of modus ponens (i.e. ({X, X → Y }, Y )).
We will consider extensions of λ 0 -denoted λ, µ, etc -by either adding new axioms, or adding new inference rules. The extension of λ 0 with a set A of axioms will be denoted λ 0 (A). The extension of λ 0 with a single axiom φ will be denoted λ 0 (φ). In this paper, we will consider the following extensions of λ 0 :

-λ r = λ 0 (x ≡ 0 → C(x, x)), -λ s = λ 0 (C(x, y) → C(y, x)).
The extension of λ 0 with a single inference rule (Γ, φ) will be denoted λ 0 +(Γ, φ). A formula φ is said to be derivable in an extension λ of λ 0 from a finite set Γ of formulas, in symbols Γ ⊢ λ φ, iff there exists a finite sequence φ 0 , . . . , φ m of formulas such that φ m = φ and for all nonnegative integers i, if i ≤ m, then at least one of the following conditions holds:

φ i ∈ Γ , -there exists an axiom ψ in λ and there exists a substitution s such that φ i = s(ψ), -there exists an inference rule (∆, ψ) in λ and there exists a substitution s such that φ i = s(ψ) and {φ 0 , . . . , φ i-1 } ⊇ s(∆).

The finite sequence φ 0 , . . . , φ m is called "derivation of φ in λ from Γ ". The propositions below contain facts which can be found in most elementary logic texts.

Proposition 3. Let Γ be a finite set of formulas and φ be a formula. If Γ ⊢ λ φ, then for all substitutions s, s(Γ ) ⊢ λ s(φ).

Proposition 4. Let Γ be a finite set of formulas and φ, ψ be formulas. The following conditions are equivalent:

-Γ ∪ {φ} ⊢ λ ψ, -Γ ⊢ λ φ → ψ.
A formula φ is said to be provable in λ, in symbols ⊢ λ φ, iff ∅ ⊢ λ φ. In this case, every derivation of φ in λ from ∅ is called "proof of φ in λ". The provable formulas of λ will be called "theorems of λ". We will denote by T h(λ) the set of all theorems of λ. We shall say that λ is consistent iff ⊥ ∈ T h(λ). We will denote by CF (λ) the class of all frames F such that F |= T h(λ) and we will denote by CF f in (λ) the class of all finite frames F such that F |= T h(λ). We shall say that λ is balanced iff for all formulas φ, the following conditions are equivalent:

φ ∈ T h(λ), -there exists a countable frame F ∈ CF (λ), there exists a balanced valuation V on F and there exists an interpretation I such that (F, V, I) |= φ.

λ 0 itself is balanced, but also most extensions of λ 0 considered in [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF] like λ r and λ s are balanced. In [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF], one can also find the facts contained in the following Proposition 5. Let φ be a formula. The following conditions are equivalent:

-φ ∈ T h(λ 0 ), -CF 0 |= φ.
Proposition 6. Let φ be a formula. The following conditions are equivalent:

-φ ∈ T h(λ r ), -CF r |= φ.
The following conditions are equivalent:

-φ ∈ T h(λ s ), -CF s |= φ.
More generally, Proposition 7. Let φ be a formula. If there exists a finite set A of axioms such that λ = λ 0 (A), then the following conditions are equivalent:

-φ ∈ T h(λ), -CF (λ) |= φ, -CF f in (λ) |= φ.
A consequence of Proposition 7 is the following Proposition 8. If there exists a finite set A of axioms such that λ = λ 0 (A), then T h(λ) is decidable.

Later on, we will use Propositions 3-8 without explicit reference.

Admissibility: definitions

Let λ be an extension of λ 0 . An inference rule (Γ, φ) is said to be admissible in λ iff for all substitutions s, if s(Γ ) ⊆ T h(λ), then s(φ) ∈ T h(λ). The next proposition indicates that inference rules admissible in λ do not increase T h(λ) when added to λ.

Proposition 9. Let (Γ, φ) be an inference rule. If (Γ, φ) is admissible in λ, then T h(λ + (Γ, φ)) = T h(λ). Proof. Suppose (Γ, φ) is admissible in λ. If T h(λ + (Γ, φ)) = T h(λ)
, then obviously, there exists a formula ψ such that ψ ∈ T h(λ + (Γ, φ)) and ψ ∈ T h(λ).

Hence, there exists a proof ψ 0 , . . . , ψ m of ψ in λ+(Γ, φ). Since (Γ, φ) is admissible in λ, each use of (Γ, φ) in ψ 0 , . . . , ψ m can be replaced by a corresponding proof in λ. Thus, there exists a proof of ψ in λ. Therefore, ψ ∈ T h(λ): a contradiction.

Inference rules that are admissible in λ can be used to improve the performance of any algorithm that handles λ-provability. In this respect, the following decision problem, called "admissibility problem in λ", in symbols ADM (λ), is of the utmost importance:

input: an inference rule (Γ, φ), -output: determine whether (Γ, φ) is admissible in λ.

Applicability of inference rules that are admissible in λ to ameliorate algorithms for λ-provability incites us to study the decidability of ADM (λ). To start this study, let us first define the notion of derivability in λ. We shall say that an inference rule (Γ, φ) is derivable in λ iff Γ ⊢ λ φ. It happens that derivability is a special case of admissibility.

Proposition 10. Let (Γ, φ) be an inference rule. If (Γ, φ) is derivable in λ, then (Γ, φ) is admissible in λ.
Proof. Suppose (Γ, φ) is derivable in λ. If (Γ, φ) is not admissible in λ, then there exists a substitution s such that s(Γ ) ⊆ T h(λ) and s(φ) ∈ T h(λ). Since (Γ, φ) is derivable in λ, Γ ⊢ λ φ. Hence, s(Γ ) ⊢ λ s(φ). Thus, there exists a derivation φ 0 , . . . , φ m of s(φ) in λ from s(Γ ). Since s(Γ ) ⊆ T h(λ), each use of s(Γ ) in φ 0 , . . . , φ m can be replaced by a corresponding proof in λ. Therefore, there exists a proof of s(φ) in λ. Consequently, s(φ) ∈ T h(λ): a contradiction.

Nevertheless, in the general case, it may happen that derivability and admissibility in such-or-such contact logic do not coincide. It suffices, for instance, to consider the inference rule ({C(x, y)}, C(y, x)). Since for all substitutions s, s(C(x, y)) ∈ T h(λ 0 ), ({C(x, y)}, C(y, x)) is admissible in λ 0 . Since C(x, y) → C(y, x) ∈ T h(λ 0 ), ({C(x, y)}, C(y, x)) is not derivable in λ 0 . As a result, the following decision problem, called "derivability problem in λ", in symbols DER(λ), has its importance:

input: an inference rule (Γ, φ), -output: determine whether (Γ, φ) is derivable in λ.

Obviously, Proposition 11. If there exists a finite set A of axioms such that λ = λ 0 (A), then DER(λ) is decidable.

We shall say that λ is structurally complete iff for all inference rules (Γ, φ), if (Γ, φ) is admissible in λ, (Γ, φ) is derivable in λ. By Propositions 10 and 11, Proposition 12. If λ is structurally complete and there exists a finite set A of axioms such that λ = λ 0 (A), then ADM (λ) is decidable. Now, we intend to extend Proposition 12 to structurally incomplete extensions of λ 0 . However, in this paper, we will only be able to study the decidability of the following decision problem, called "weak admissibility problem in λ", in symbols wADM (λ):

input: a weak inference rule (Γ, φ), -output: determine whether (Γ, φ) is admissible in λ.

We end this section with the following Proposition 13. Let (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) be a weak inference rule.

The following conditions are equivalent:

-(Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) is not admissible in λ, -there exists terms a 1 , . . . , a n such that Γ (a 1 , . . . , a n ) ⊆ T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ). Proof. (⇒) Suppose (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) is not admissible in λ.
Hence, there exists a substitution s such that s(Γ (x 1 , . . . , x n )) ⊆ T h(λ) and s(φ(x 1 , . . . , x n )) ∈ T h(λ). Let a 1 , . . . , a n be terms such that for all positive integers i,

if i ≤ n, then a i = s(x i ). Since s(Γ (x 1 , . . . , x n )) ⊆ T h(λ) and s(φ(x 1 , . . . , x n )) ∈ T h(λ), Γ (a 1 , . . . , a n ) ⊆ T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ).
(⇐) Suppose there exists terms a 1 , . . . , a n such that Γ (a 1 , . . . , a n ) ⊆ T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ). Let s be a substitution such that for all positive integers i, if i ≤ n, then s(x i ) = a i . Since Γ (a 1 , . . . , a n ) ⊆ T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ), s(Γ (x 1 , . . . , x n )) ⊆ T h(λ) and s(φ(x 1 , . . . , x n )) ∈ T h(λ).

Hence, (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) is not admissible in λ.

Admissibility: useful lemmas

Let λ be an extension of λ 0 . The decidability of wADM (λ) is difficult to establish and we defer proving it till next section. In the meantime, we present useful lemmas. Let n be a nonnegative integer. Let Φ n be the set of all weak formulas with atomic terms in x 1 , . . . , x n . We define on Φ n the equivalence relation ≡ n λ as follows:

-

φ(x 1 , . . . , x n ) ≡ n λ ψ(x 1 , . . . , x n ) iff φ(x 1 , . . . , x n ) ↔ ψ(x 1 , . . . , x n ) ∈ T h(λ).
Obviously, considered as formulas in classical propositional logic, the terms a(x 1 , . . . , x n ) and b(x 1 , . . . , x n ) are equivalent iff mon(a(x 1 , . . . , x n )) = mon(b(x 1 , . . . , x n )). Hence, there exists exactly 2 2 n pairwise non-equivalent terms in x 1 , . . . , x n . Since each weak formula φ(x 1 , . . . , x n ) in Φ n is a Boolean combination of elementary formulas of the form C(a(x 1 , . . . , x n ), b(x 1 , . . . , x n )) or of the form a(x 1 , . . . , x n ) ≡ b(x 1 , . . . , x n ), Lemma 1. ≡ n λ has finitely many equivalence classes on Φ n .

Let A n be the set of all n-tuples of terms. Note that n-tuples of terms in A n may contain occurrences of atomic terms distinct from x 1 , . . ., x n . Given (a 1 , . . . , a n ) ∈ A n , a frame F ∈ CF (λ) and a valuation V on F, let -Φ F ,V (a1,...,an) be the set of all C-free weak formulas φ(x 1 , . . . , x n ) such that (F, V ) |= φ(a 1 , . . . , a n ). Consider a complete list φ 1 (x 1 , . . . , x n ), . . . , φ k (x 1 , . . . , x n ) in Φ F ,V (a1,...,an) of representatives for each equivalence class on Φ F ,V (a1,...,an) modulo ≡ n λ and define

-φ F ,V (a1,...,an) (x 1 , . . . , x n ) = φ 1 (x 1 , . . . , x n ) ∧ . . . ∧ φ k (x 1 , . . . , x n ).
Obviously,

Lemma 2. (F, V ) |= φ F ,V (a1, 
...,an) (a 1 , . . . , a n ).

Hence, φ F ,V (a1,...,an) (x 1 , . . . , x n ) is in Φ F ,V (a1,...,an) . Let -Φ a1,...,an = {φ F ,V (a1,...,an) (x 1 , . . . , x n ): F ∈ CF (λ) and V is a valuation on F}.

Consider a complete list ψ 1 (x 1 , . . . , x n ), . . . , ψ l (x 1 , . . . , x n ) in Φ (a1,...,an) of representatives for each equivalence class on Φ (a1,...,an) modulo ≡ n λ and define ψ (a1,...,an) (x 1 , . . . , x n ) = ψ 1 (x 1 , . . . , x n ) ∨ . . . ∨ ψ l (x 1 , . . . , x n ).

We have the Lemma 3. ψ (a1,...,an) (a 1 , . . . , a n ) ∈ T h(λ).

Proof. Suppose ψ (a1,...,an) (a 1 , . . . , a n ) ∈ T h(λ). Thus, there exists a frame F ∈ CF (λ) and there exists a valuation V on F such that (F, V ) |= ψ (a1,...,an) (a 1 , . . . , a n ). Let i be a positive integer such that 1 ≤ i ≤ l and φ F ,V (a1,...,an) (x 1 , . . . , x n ) is equivalent to ψ i (x 1 , . . . , x n ) modulo ≡ n λ . Since F |= T h(λ) and, by Lemma 2, (F, V ) |= φ F ,V (a1,...,an) (a 1 , . . . , a n ), (F, V ) |= ψ i (a 1 , . . . , a n ). Therefore, (F, V ) |= ψ (a1,...,an) (a 1 , . . . , a n ): a contradiction. Moreover, Lemma 4. For all C-free weak formulas φ(x 1 , . . . , x n ), the following conditions are equivalent:

-φ(a 1 , . . . , a n ) ∈ T h(λ), -ψ (a1,...,an) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ) ∈ T h(λ).
Proof. (⇒) Suppose φ(a 1 , . . . , a n ) ∈ T h(λ). If ψ (a1,...,an) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ) ∈ T h(λ), then there exists a frame F ∈ CF (λ) and there exists a valuation V on F such that (F, V ) |= ψ (a1,...,an) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ). Hence, (F, V ) |= ψ (a1,...,an) (x 1 , . . . , x n ) and (F, V ) |= φ(x 1 , . . . , x n ). Thus, there exists a positive integer i such that i ≤ l and (F, V ) |= ψ i (x 1 , . . . , x n ). Let F ′ ∈ CF (λ) be a frame and V ′ be a valuation on F ′ such that φ F ′ ,V ′ (a1,...,an) (x 1 , . . . , x n ) is equivalent to

ψ i (x 1 , . . . , x n ) modulo ≡ n λ . Since (F, V ) |= T h(λ) and (F, V ) |= ψ i (x 1 , . . . , x n ), (F, V ) |= φ F ′ ,V ′
(a1,...,an) (x 1 , . . . , x n ). Therefore, for all C-free weak formulas θ(x 1 , . . . ,

x n ), if (F ′ , V ′ ) |= θ(a 1 , . . . , a n ), then (F, V ) |= θ(x 1 , . . . , x n ). Since F ′ |= T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ), (F ′ , V ′ ) |= φ(a 1 , . . . , a n ). Since for all C-free weak formulas θ(x 1 , . . . , x n ), if (F ′ , V ′ ) |= θ(a 1 , . . . , a n ), then (F, V ) |= θ(x 1 , . . . , x n ), (F, V ) |= φ(x 1 , . . . , x n ): a contradiction. (⇐) Suppose ψ (a1,...,an) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ) ∈ T h(λ).
Consequently, ψ (a1,...,an) (a 1 , . . . , a n ) → φ(a 1 , . . . , a n ) ∈ T h(λ). By Lemma 3, ψ (a1,...,an) (a 1 , . . . , a n ) ∈ T h(λ). Since ψ (a1,...,an) (a 1 , . . . , a n ) → φ(a 1 , . . . , a n ) ∈ T h(λ), φ(a 1 , . . . , a n ) ∈ T h(λ).

We define on A n the equivalence relation ∼ = n λ as follows:

-(a 1 , . . . , a n ) ∼ = n λ (b 1 , . . . , b n ) iff for all weak formulas φ(x 1 , . . . , x n ) in Φ n , φ(a 1 , . . . , a n ) ∈ T h(λ) iff φ(b 1 , . . . , b n ) ∈ T h(λ).
By Lemma 1, Lemma 5. ∼ = n λ has finitely many equivalence classes on A n . It is of interest to consider the equivalence relation ∼ = n λ , seeing that, according to our definitions, Lemma 6. If (a 1 , . . . , a n ) ∼ = n λ (b 1 , . . . , b n ), then for all weak inference rules (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )), the following conditions are equivalent:

-Γ (a 1 , . . . , a n ) ⊆ T h(λ) and φ(a 1 , . . . , a n ) ∈ T h(λ), -Γ (b 1 , . . . , b n ) ⊆ T h(λ) and φ(b 1 , . . . , b n ) ∈ T h(λ).
Now, we define on A n the equivalence relation ≃ n λ as follows:

-(a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ) iff for all C-free weak formulas φ(x 1 , . . . , x n ) in Φ n , φ(a 1 , . . . , a n ) ∈ T h(λ) iff φ(b 1 , . . . , b n ) ∈ T h(λ).
Obviously,

Lemma 7. If (a 1 , . . . , a n ) ∼ = n λ (b 1 , . . . , b n ), then (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ). Moreover, by Lemma 1, Lemma 8. ≃ n
λ has finitely many equivalence classes on A n . The key things to note about the equivalence relations ∼ = n λ and ≃ n λ are contained in the following lemmas. Lemma 9. The following conditions are equivalent:

-(a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ), -ψ (a1,...,an) (x 1 , . . . , x n ) ↔ ψ (b1,...,bn) (x 1 , . . . , x n ) ∈ T h(λ). Proof. (⇒) Suppose (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ). If ψ (a1,.
..,an) (x 1 , . . . , x n ) ↔ ψ (b1,...,bn) (x 1 , . . . , x n ) ∈ T h(λ), then either ψ (a1,...,an) (x 1 , . . . , x n ) → ψ (b1,...,bn) (x 1 , . . . , x n ) ∈ T h(λ), or ψ (b1,...,bn) (x 1 , . . . , x n ) → ψ (a1,...,an) (x 1 , . . . , x n ) ∈ T h(λ). Without loss of generality, let us assume that ψ (a1,...,an) (x 1 , . . . ,

x n ) → ψ (b1,...,bn) (x 1 , . . . , x n ) ∈ T h(λ). By Lemma 4, ψ (b1,...,bn) (a 1 , . . . , a n ) ∈ T h(λ). Since (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ), ψ (b1,...,bn) (b 1 , . . . , b n ) ∈ T h(λ). By Lemma 3, ψ (b1,...,bn) (b 1 , . . . , b n ) ∈ T h(λ): a contradiction. (⇐) Suppose ψ (a1,...,an) (x 1 , . . . , x n ) ↔ ψ (b1,...,bn) (x 1 , . . . , x n ) ∈ T h(λ). Hence, for all C-free weak formulas φ(x 1 , . . . , x n ), ψ (a1,...,an) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ) ∈ T h(λ) iff ψ (b1,...,bn) (x 1 , . . . , x n ) → φ(x 1 , . . . , x n ) ∈ T h(λ). By Lemma 4, for all C-free weak formulas φ(x 1 , . . . , x n ), φ(a 1 , . . . , a n ) ∈ T h(λ) iff φ(b 1 , . . . , b n ) ∈ T h(λ). Thus, (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ). Lemma 10. If λ is balanced and (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ), then (a 1 , . . . , a n ) ∼ = n λ (b 1 , . . . , b n ). Proof. Suppose λ is balanced and (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ). If (a 1 , . . . , a n ) ∼ = n λ (b 1 , . . . , b n ), then there exists a weak formula φ(x 1 , . . . , x n ) in Φ n such that φ(a 1 , . . . , a n ) ∈ T h(λ) not-iff φ(b 1 , . . . , b n ) ∈ T h(λ). Without loss of generality, let us assume that φ(a 1 , . . . , a n ) ∈ T h(λ) and φ(b 1 , . . . , b n ) ∈ T h(λ).
Since λ is balanced, there exists a countable frame F ∈ CF (λ) and there exists a balanced valuation

V on F such that (F, V ) |= φ(b 1 , . . . , b n ). By Lemma 2, (F, V ) |= φ F ,V (b1,...,bn) (b 1 , . . . , b n ). Since F |= T h(λ), ¬φ F ,V (b1,...,bn) (b 1 , . . . , b n ) ∈ T h(λ). Since (a 1 , . . . , a n ) ≃ n λ (b 1 , . . . , b n ), ¬φ F ,V ( 
b1,...,bn) (a 1 , . . . , a n ) ∈ T h(λ). Since λ is balanced, there exists a countable frame F ′ ∈ CF (λ) and there exists a balanced valuation V ′ on F ′ such that (F ′ , V ′ ) |= φ F ,V (b1,...,bn) (a 1 , . . . , a n ). Suppose F = (W, R) and

F ′ = (W ′ , R ′ ). Now, consider (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n . If (b ǫ1 1 ⊓ . . . ⊓ b ǫn n ) V = ∅, then (F, V ) |= b ǫ1 1 ⊓ . . . ⊓ b ǫn n ≡ 0. Hence, φ F ,V (b1,...,bn) (x 1 , . . . , x n ) → x ǫ1 1 ⊓ . . . ⊓ x ǫn n ≡ 0 ∈ T h(λ). Since F ′ |= T h(λ) and (F ′ , V ′ ) |= φ F ,V (b1,...,bn) (a 1 , . . . , a n ), (F ′ , V ′ ) |= a ǫ1 1 ⊓ . . . ⊓ a ǫn n ≡ 0. Thus, (a ǫ1 1 ⊓ . . . ⊓ a ǫn n ) V ′ = ∅. Similarly, the reader may easily verify that if (b ǫ1 1 ⊓ . . . ⊓ b ǫn n ) V = W , then (a ǫ1 1 ⊓ . . . ⊓ a ǫn n ) V ′ = W ′ and if (b ǫ1 1 ⊓ . . . ⊓ b ǫn n )
V is infinite and coinfinite, then (a ǫ1 1 ⊓ . . . ⊓ a ǫn n ) V ′ is infinite and coinfinite. In all cases, there exists a bijection f (ǫ1,...,ǫn) from (b

ǫ1 1 ⊓ . . . ⊓ b ǫn n ) V to (a ǫ1 1 ⊓ . . . ⊓ a ǫn n ) V ′ .
Let f be the union of all f (ǫ1,...,ǫn) when (ǫ 1 , . . . , ǫ n ) describes {0, 1} n . The reader may easily verify that f is a bijection from W to W ′ such that for all u ∈ W and for all (ǫ 1 , . .

. , ǫ n ) ∈ {0, 1} n , u ∈ (b ǫ1 1 ⊓ . . . ⊓ b ǫn n ) V iff f (u) ∈ (a ǫ1 1 ⊓ . . . ⊓ a ǫn n ) V ′ . Let R ′ f be the binary relation on W ′ defined by u ′ R ′ f v ′ iff f -1 (u ′ )Rf -1 (v ′ ). We define F ′ f = (W ′ , R ′ f ). Obviously, f is an isomorphism from F to F ′ f . Since F |= T h(λ), F ′ f |= T h(λ). Since φ(a 1 , . . . , a n ) ∈ T h(λ), (F ′ f , V ′ ) |= φ(a 1 , . . . , a n ). Therefore, (F, V ) |= φ(b 1 , . . . , b n ): a contradiction. φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )) ∈ T h(λ): a contradiction. Case φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )) ∈ T h(λ) and φ(b 1 (x 1 , . . . , x n ), . . . , b n (x 1 , . . . , x n )) ∈ T h(λ). Similar to the case φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )) ∈ T h(λ) and φ(b 1 (x 1 , . . . , x n ), . . . , b n (x 1 , . . . , x n )) ∈ T h(λ).
By means of the lemmas presented above, let us prove the following Proposition 14. A complete set of representatives for each class on A n modulo ≃ n λ can be computed.

Proof. By Lemma 13, the set of all n-tuples of terms on {x 1 , . . . , x n } constitutes a complete set of representatives for each class on A n modulo ≃ n λ . Since there exists exactly 2 2 n pairwise non-equivalent terms of the form b(x 1 , . . . , x n ), a complete set of representatives for each class on A n modulo ≃ n λ can be computed.

As a result, Proposition 15. If λ is balanced and there exists a finite set A of axioms such that λ = λ 0 (A), then wADM (λ) is decidable.

Proof. Suppose λ is balanced and there exists a finite set A of axioms such that λ = λ 0 (A). We define an algorithm taking as input a weak inference rule (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) and returning the value true iff (Γ (x 1 , . . . , x n ), φ(x 1 , . . . , x n )) is admissible in λ as follows:

compute a complete set {(a 1 1 , . . . , a 1 n ), . . . , (a N 1 , . . . , a N n )} of representatives for each class on A n modulo ≃ n λ ; -if there exists a positive integer k such that k ≤ N , Γ (a k 1 , . . . , a k n ) ⊆ T h(λ) and φ(a k 1 , . . . , a k n ) ∈ T h(λ) then return f alse else return true.

By Propositions 13 and 14 and Lemmas 5-8 and 10, this algorithm is sound and complete with respect to wADM (λ) and can be executed.

However, the exact complexity of wADM (λ) is not known.

Unifiability

Let λ be an extension of λ 0 . A formula φ is said to be unifiable in λ iff there exists a substitution s such that s(φ) ∈ T h(λ). It happens that if λ is consistent, then unifiability is a special case of admissibility.

Proposition 16. Let φ be a formula. If λ is consistent, then the following conditions are equivalent:

-φ is unifiable in λ, -({φ}, ⊥) is not admissible in λ.
Proof. Suppose λ is consistent. (⇒) Suppose φ is unifiable in λ. If ({φ}, ⊥) is admissible in λ, then for all substitutions s, if s(φ) ∈ T h(λ), then ⊥ ∈ T h(λ). Since λ is consistent, ⊥ ∈ T h(λ). Since for all substitutions s, if s(φ) ∈ T h(λ), then ⊥ ∈ T h(λ), for all substitutions s, s(φ) ∈ T h(λ). Hence, φ is not unifiable in λ: a contradiction. (⇐) Suppose ({φ}, ⊥) is not admissible in λ. Hence, there exists a substitution s such that s(φ) ∈ T h(λ). Thus, φ is unifiable in λ.

Now, let us consider the following decision problem, called "weak unifiability problem in λ", in symbols wU N I(λ):

input: a weak formula φ, -output: determine whether φ is unifiable in λ.

Lemma 14. For all weak formulas φ(x 1 , . . . , x n ), the following conditions are equivalent:

φ is unifiable in λ, -there exists (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n such that φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ).

Proof. (⇒) Suppose φ(x 1 , . . . , x n ) is unifiable in λ. Hence, there exists a substitution s such that s(φ(x 1 , . . . , x n )) ∈ T h(λ). Let t be a ground substitution. Since s(φ(x 1 , . . . , x n )) ∈ T h(λ), t(s(φ(x 1 , . . . , x n ))) ∈ T h(λ). Let (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n be obtained from (t(s(x 1 )), . . . , t(s(x n ))) by applying ordinary reasoning in nondegenerate Boolean algebras. Since t(s(φ(x 1 , . . . ,

x n ))) ∈ T h(λ), φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ). (⇐) Suppose there exists (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n such that φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ).
Let s be a substitution such that for all positive integers i, if i ≤ n, then s(x i ) = ǫ i . Since φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ), s(φ(x 1 , . . . , x n )) ∈ T h(λ). Thus, φ is unifiable in λ.

Hence, it is easy to check that when T h(λ) is decidable, wU N I(λ) is decidable. Now, remark that for all weak formulas φ(x 1 , . . . , x n ) and for all (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n , φ(ǫ 1 , . . . , ǫ n ) is equivalent modulo ≡ n λ to one of the following elementary formulas: ⊥, ⊤, C(1, 1), C(1, 1). Moreover, even when T h(λ) is undecidable, the elementary formula in {⊥, ⊤, C(1, 1), C(1, 1)} that is equivalent modulo ≡ n λ to φ(ǫ 1 , . . . , ǫ n ) in λ can be computed. As a result, in all cases, i.e. whatever is the decidability status of T h(λ), Proposition 17. wU N I(λ) is decidable.

Remark that the elementary formula in {⊥, ⊤, C(1, 1), C(1, 1)} that is equivalent modulo ≡ n λ to φ(ǫ 1 , . . . , ǫ n ) in λ can be computed in linear time. As a result, Proposition 18. wU N I(λ) is in N P .

It happens that if λ is consistent, then the satisfiability problem in Boolean Logic is reducible to wU N I(λ).

Proposition 19. Let a(x 1 , . . . , x n ) be a term. If λ is consistent, then the following conditions are equivalent:

-a(x 1 , . . . , x n ) is satisfiable in Boolean Logic, -a(x 1 , . . . , x n ) ≡ 1 is unifiable in λ.
Proof. Suppose λ is consistent. (⇒) Suppose a(x 1 , . . . , x n ) is satisfiable in Boolean Logic. Hence, there exists (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n such that a(ǫ 1 , . . . , ǫ n ) is equivalent to 1 in Boolean Logic. Thus, a(ǫ 1 , . . . , ǫ n ) ≡ 1 ∈ T h(λ). Let s be a substitution such that for all positive integers i, if i ≤ n, then s(

x i ) = ǫ i . Since a(ǫ 1 , . . . , ǫ n ) ≡ 1 ∈ T h(λ), s(a(x 1 , . . . , x n ) ≡ 1) ∈ T h(λ). Therefore, a(x 1 , . . . , x n ) ≡ 1 is unifiable in λ. (⇐) Suppose a(x 1 , . . . , x n ) ≡ 1 is unifiable in λ.
Hence, there exists a substitution s such that s(a(x 1 , . . . , x n ) ≡ 1) ∈ T h(λ). Let t be a ground substitution. Since s(a(x 1 , . . . , x n ) ≡ 1) ∈ T h(λ), t(s(a(x 1 , . . . , x n ) ≡ 1)) ∈ T h(λ). Let (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n be obtained from (t(s(x 1 )), . . . , t(s(x n ))) by applying ordinary reasoning in Boolean Logic. If a(x 1 , . . . , x n ) is not satisfiable in Boolean Logic, then a(ǫ 1 , . . . , ǫ n ) is equivalent to 0 in Boolean Logic. Since λ is consistent, ⊥ ∈ T h(λ). Thus, there exists a frame F ∈ CF (λ). Let V be a valuation on F such that for all positive integers i, if i ≤ n, then

-if t(s(x i )) is equivalent to 0 in Boolean Logic, then V (x i ) = ∅, -if t(s(x i )) is equivalent to 1 in Boolean Logic, then V (x i ) = W . Therefore, for all positive integers i, if i ≤ n, then V (x i ) = (t(s(x i ))) V . Since a(ǫ 1 , . . . , ǫ n ) is equivalent to 0 in Boolean Logic, (F, V ) |= t(s(a(x 1 , . . . , x n ) ≡ 1)). Since F ∈ CF (λ), t(s(a(x 1 , . . . , x n ) ≡ 1)) ∈ T h(λ) a contradiction.
As a result, Proposition 20. If λ is consistent, then wU N I(λ) is N P -hard. Now, we give a syntactic result for unifiability and non-unifiability of a weak formula in λ.

Proposition 21. Let φ(x 1 , . . . , x n ) be a weak formula. If λ is consistent and C(1, 1) ∈ T h(λ), then the following conditions are equivalent:

-φ(x 1 , . . . , x n ) is not unifiable in λ, -φ(x 1 , . . . , x n ) → {x i ≡ 0 ∧ x i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). Proof. Suppose λ is consistent and C(1, 1) ∈ T h(λ). (⇒) Suppose φ(x 1 , . . . , x n ) is not unifiable in λ. If φ(x 1 , . . . , x n ) → {x i ≡ 0 ∧ x i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ), then there exists a frame F ∈ CF (λ) and there exists a valuation V on F such that (F, V ) |= φ(x 1 , . . . , x n ) → {x i ≡ 0∧x i ≡ 1: 1 ≤ i ≤ n}. Hence, (F, V ) |= φ(x 1 , . . . , x n ) and (F, V ) |= {x i ≡ 0 ∧ x i ≡ 1:
1 ≤ i ≤ n}. Suppose F = (W, R). Thus, for all positive integers i, if i ≤ n, then either V (x i ) = ∅, or V (x i ) = W . Let s be a substitution such that for all positive integers i, if i ≤ n, then

-if V (x i ) = ∅, then s(x i ) = 0, -if V (x i ) = W , then s(x i ) = 1.
Therefore, for all positive integers i, if i ≤ n, then V (x i ) = (s(x i )) V Since (F, V ) |= φ(x 1 , . . . , x n ), (F, V ) |= φ(s(x 1 ), . . . , s(x n )). Since for all positive integers i, if i ≤ n, then s(x i ) is either equal to 0, or equal to 1, φ(s(x 1 ), . . . , s(x n )) is equivalent modulo ≡ n λ to an elementary formula in {⊥, ⊤, C(1, 1), C(1, 1)}. Since F |= T h(λ), C(1, 1) ∈ T h(λ) and (F, V ) |= φ(s(x 1 ), . . . , s(x n )), φ(s(x 1 ), . . . , s(x n )) is equivalent modulo ≡ n λ to ⊤. Consequently, φ(x 1 , . . . , x n ) is unifiable in λ: a contradiction. (⇐) Suppose φ(x 1 , . . . , x n ) → {x i ≡ 0 ∧ x i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). If φ(x 1 , . . . , x n ) is unifiable in λ, then by Lemma 14, there exists (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n such that φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ). Let s be a substitution such that for all positive integers i, if i ≤ n, then s(x i ) = ǫ i . Since φ(x 1 , . . . , x n ) → {x i ≡ 0 ∧ x i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ), s(φ(x 1 , . . . , x n )) → {s(x i ) ≡ 0 ∧ s(x i ) ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). Since for all positive integers i, if i ≤ n, then s(x i ) = ǫ i , φ(ǫ 1 , . . . , ǫ n ) → {ǫ i ≡ 0 ∧ ǫ i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). Since φ(ǫ 1 , . . . , ǫ n ) ∈ T h(λ), {ǫ i ≡ 0 ∧ ǫ i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). Since (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n , {ǫ i ≡ 0 ∨ ǫ i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ). Since {ǫ i ≡ 0 ∧ ǫ i ≡ 1: 1 ≤ i ≤ n} ∈ T h(λ), λ is not consistent: a contradiction.

Conclusion

Admissibility problems and unifiability problems are decidable in many modal logics [1-3, 13, 14], but modal logics for which they become undecidable are known [START_REF] Wolter | Undecidability of the unification and admissibility problems for modal and description logics[END_REF]. Nevertheless, very little is known about these problems in some of the most important modal logics considered in Computer Science and Artificial Intelligence. For example, the decidability and the complexity of the unification problem for the following modal logics remains open: modal logic K, multi-modal variants of K, sub-Boolean modal logics. In this paper, we have examined variants of contact logics. The central result in this paper is the proof that the weak admissibility problem and the weak unifiability problem are decidable in these variants. Much remains to be done. For example, λ being a consistent extension of λ 0 , Propositions 16 and 20 imply that wADM (λ) is coN P -hard, but the exact complexity of wADM (λ) is not known. One may also consider the admissibility problem ADM (λ) defined in Section 4 and the following unifiability problem: given a formula φ, determine whether φ is unifiable in λ. Finally, there is also the related question of the unification type of λ. Our conjecture is that the unification type of most extensions of λ 0 considered in [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF] is finitary.
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Admissibility: decidability

Let λ be an extension of λ 0 . By Proposition 13 and Lemmas 5-8 and 10, wADM (λ) would be decidable if λ is balanced, T h(λ) is decidable and a complete set of representatives for each class on A n modulo ≃ n λ could be computed. Let k be a nonnegative integer. Given (a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )) ∈ A n , we define on {0, 1} k the equivalence relation ∼ k (a1,...,an) as follows:

Lemma 11. ∼ k (a1,...,an) has at most 2 n equivalence classes on {0, 1} k . Hence, there exists a one-to-one function f assigning to each equivalence class

) ∈ {0, 1} n . By means of the one-to-one function f , for all positive integers i, if i ≤ n, then we define the term b i (x 1 , . . . , x n ) as follows:

Given a nonempty set W , the reader may easily verify the following

for all valuations V on W , there exists a valuation V ′ on W such that for all positive integers i,

for all valuations V on W , there exists a valuation V ′ on W such that for all positive integers i,

The key thing to note about the terms b i (x 1 , . . . , x n ), . . . , b i (x 1 , . . . , x n ) is contained in the following

. Thus, we have to consider the following two cases. Case φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )) ∈ T h(λ) and φ(b 1 (x 1 , . . . , x n ), . . . , b n (x 1 , . . . , x n )) ∈ T h(λ). Hence, there exists a frame F ∈ CF (λ) and there exists a valuation V on F such that (F, V ) |= φ(b 1 (x 1 , . . . , x n ), . . . , b n (x 1 , . . . , x n )). By Lemma 12, there exists a valuation V ′ on F such that for all positive integers i, if i ≤ n, then (b i (x 1 , . . . , x n )) V = (a i (z 1 , . . . , z k )) V ′ . Since (F, V ) |= φ(b 1 (x 1 , . . . , x n ), . . . , b n (x 1 , . . . , x n )), (F, V ′ ) |= φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )). Thus, F |= φ(a 1 (z 1 , . . . , z k ), . . . , a n (z 1 , . . . , z k )). Since F ∈ CF (λ),