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Abstract—This paper analyses the effect of inherent bipolar 
transistor parasitic elements over the computing nodes 
performance used in BJT analog decoders. It is shown that 
these undesirable effects significantly degrade, up to 85%, the 
conversion of Log-Likelihood Ratios into probabilities. This can 
lead to a wrong decoding outcome when complex computing 
nodes are designed. Simulation results are shown for a 0.25-µm 
BiCMOS process from NXP. 

I. INTRODUCTION 
Several works have been published over the last 15 years 

on analog decoding. Most of them are dealing with Turbo and 
LDPC codes [1-5] and few with exotic codes such as Cortex 
codes [6]. All these codes however can be decoded using two 
mathematical operators which are the addition and the 
multiplication. The operands are probabilities which are 
simply extracted from an additive white gaussian noise 
(AWGN) channel using the exponential I-V characteristic of 
a forward-biased BJT or a subthreshold-biased MOS 
transistor. The latter is preferred for power issues and the 
former for speed issues. Hence, it exists two ways of 
implementing the computing nodes. The majority of the 
papers published on the design of analog decoders refers to 
MOS designs such as [2-4] and few deal with BJT designs 
[1][5]. 

When comparing simulated and actual decoding 
performance in terms of Bit-Error Rate (BER) most works 
show discrepancies [2-5] between the two, except in [1] for 
which there is a good agreement. The performance 
degradation ranges from few hundredths of dBs [2][3][5] up 
to few dBs [4]. The reason for this is that the behavioral 
models used describe the decoding algorithm, not the 
functioning of the decoders. However, very few of these 
papers attempt to explain the origin of the discrepancies. [2] 
showed, using behavioral modeling, that the origin of the loss 
was due to mismatches in MOS current mirrors. An 
interesting point is that the BJT decoder designed in [1] 
performs as well as its model while the more complex 
decoder designed in [5] is 0.3dB away from its ideal 
performance. This suggests a link between complexity and 
performance degradation. The decoder in [1] decodes a 

simple binary code and uses simple Gilbert multipliers while 
in [5] the double-binary code to decode requires m-ary 
multipliers [7] (having more than two differential inputs). 

Hence, this paper addresses the effect of parasitic emitter 
resistors over the computing cell used in BJT-based analog 
decoders. The paper presents results for multipliers used to 
decode simple binary and double-binary codes. It is shown 
that while for the former the parasitic elements modify the 
probabilities they do not change their ranking order. For the 
latter, they can actually invert that ranking therefore 
potentially introducing additional decoding errors. 

The paper is organized as follows. Section II presents the 
basic multiplier cell. Section III deals with the effect of the 
BJT’s parasitic emitter resistor over the LLR-to-probability 
conversion and how it affects simple Gilbert multipliers. The 
result is extended to m-ary multipliers with a case study in 
section IV. Section V concludes the paper. 

II. BASIC COMPUTING CELL 

A. Converting LLRs into probabilities 
A convolutional circular binary code can be decoded with 

the Maximum A Posteriori (MAP) algorithm [8]. It uses only 
two mathematical operators (addition and multiplication) and 
two functions (logarithm and exponential). The last two are 
necessary for converting log-likelihood ratios (LLR) to 
probabilities and vice-versa. If X is a binary random variable 
and x its outcome, the LLR of X, L(X), is defined as: 
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The exponential and the natural logarithm functions are 

readily available from a forward active region BJT. Using 
the well known Ebers-Moll model, the collector current IC 
depends on the base-emitter voltage VBE: 
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where IS is the saturation current and VT is the thermal 
voltage. When diode connected, the BJT produces a voltage 
V which depends on the current I flowing through it: 
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Associating a current with a probability and a voltage with 
an LLR, it is thus possible by using transistors and diodes to 
convert LLRs to probabilities, equation (2), and probabilities 
to LLRs, equation (3), respectively. This is a clear advantage 
of analog decoders over digital decoders since currents, 
representing the probabilities, can be easily added and 
multiplied. Thus, the MAP algorithm can be implemented 
using a BJT-based analog network [1]. 

B. Multiplying and adding probabilities 
The Gilbert multiplier shown in Fig 1 is use to perform 

both the LLR-to-probability conversion and the probability 
multiplication. If one considers that both input voltages are 
proportional to LLRs, then the collector currents IC1 and IC2 
are proportional to PX(x=1) and PX(x=0) respectively. The 
proportionality constant is the bias current IBIAS. Since the 
upper pairs are biased with a current proportional to a 
probability, IC1 and IC2, then the collector currents of Q3-Q6 
are each proportional to a product of probabilities: 
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Adding product of probabilities is then simply a matter of 

connecting wires together as shown in Fig.1. 

III. BJT’S NON-IDELATIES 

A. Parasitic emitter resistor 
The Gilbert multiplier functioning described above 

assumes ideal BJTs, i.e. it supposes that they are fully 
described by the Ebers-Moll model defined by equation (2). 
However, a parasitic element, which is usually 
underestimated, may significantly alter the conversion of 
LLRs into probabilities. When the parasitic emitter resistor 
RE is taken into account the collector current is more 
accurately defined as: 
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The value of RE is inversely proportional to the area of the 
emitter. One may consider that designing with large BJTs 
will make RE negligible. Unfortunately, to compete with the  
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Figure 1: BJT Gilbert multiplier, two input voltages and four output 
currents. 
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Figure 2: Probability ratio transfer function of a minimal size emitter-
coupled bipolar pair Q1-Q2 compared with ideal probability ratio 
transfer function and with corrected-RE probability transfer function. 
NXP’s QUBIC4 0.25-µm BiCMOS process, smallest BJT and IBIAS 
=250µA. 

 
ever-shrinking digital decoders, it is preferable to design 
with the smallest BJT available in the process. For instance, 
in NXP’s QUBIC4 0.25-µm BiCMOS process, the parasitic 
RE is around 220Ω for the smallest available BJT. 

The problem becomes even more acute when the biasing 
current is a few hundreds of µA. This is chosen to correctly 
bias the cell and to increase the decoding speed. Fig. 2 
represents the output probability ratio, i.e. the ratio of the 
two simulated collector currents IC1 and IC2, versus the input 
probability ratio, i.e. exp(VX/VT). Ideally, the obtained curve 
should be a straight line with a slope of 1. As one can see the 
result is far from the ideal case and the conversion error is as 
high as 85% for an input LLR of 100. Hence the usual 
assumption of having an ideal exponential relationship 
between the collector current and the base-emitter voltage is  
absolutely incorrect. It is interesting to see the actual 
contribution of RE to this error. This can be done by adding  
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Figure 3: Degradation of output probability of the Gilbert multiplier due to 
parasitic effects (transistor level simulation). The curve is plotted versus the 
lower differential-pair input voltage VX when VY=0. NXP’s QUBIC4 0.25-
µm BiCMOS process, smallest BJT and IBIAS =250µA. 
 

 
an ideal resistor REC such as REC = -RE at each transistor 
emitter in the Gilbert cell. Hence, each parasitic RE is fully 
compensated and the output probability ratio should get 
closer to the ideal one. As seen from Fig. 2, RE is the main 
source of conversion error as it would be reduced down to 
20% by compensating the parasitic resistors. The simulation 
also shows that other effects impair the conversion but that 
they are less important. 

B. Probability ranking 
A question arises from the above discussion, is this really a 
problem for the decoder? It is known that in digital decoders, 
the value of the probability is voluntarily truncated to speed 
up the turbo-decoding process without degrading the overall 
performance. The degradation observed in Fig. 3 can be 
interpreted as such. The output probability IC6/IBIAS is plotted 
versus the lower input voltage VX (VY = 0, IBIAS = 250µA). 
The probability is reduced for positive values of VX 
(probability of having a “1”) and increased for negative ones 
(probability of having a “0”). The degradation is more 
important around zero; that is to say for cases harder to solve 
for the decoder. Simulations show, however, that the ranking 
of the four output probabilities, equation (4), is not modified 
compared to the ideal case. It simply means that on a single 
stage, no error is introduced. This most likely explains in [1] 
the performance matching between of the ideal behavioral 
model and of the actual decoder. 

IV. M-ARY CASE 

A. Extended multiplier 
The above section described the implications when 

dealing with simple multipliers. How does this problem 
affect m-ary computing cells? M-ary computing cells are 
described in [9]. 

Figure 4: Extended Gilbert cell for m-ary code, nx + ny inputs, nx x ny 
currents. 

The Gilbert cell shown in Fig. 1 can be extended to a larger 
field of probability multipliers as illustrated in Fig. 4. The 
lower stage is an emitter-coupled set of bipolar transistors 
whose bases are connected to nX voltages VX which are 
proportional to the log-likelihood ratio of the data x. The 
upper stage is made up of nX identical emitter-coupled 
bipolar sets, each of them being connected to a different 
collector on the lower level. Thus, the outputs are nX × nY 
currents Iout

k given by: 
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Unlike in the binary case previously studied, it may happen 
that not all the output currents are necessary to implement the 
decoding algorithm. This type of cases happens in fact quite 
often when designing double-binary decoders. For instance, 
this happens in the module computing the four probabilities 
(one per double-binary symbol) on which the hard decision is 
taken [5]. For the sake of simplicity, the double-binary 
symbols d are noted as follows: “00” →0, “01” →1, “10” →2 
and “11”→3. A multiplier having eight inputs, PX(xi) and 
PY(yi) for i ∈ [0, 3], and requiring only four outputs, Pr(d=i) 
for i ∈ [0, 3], out of the sixteen available is simulated. The 
fact that not all the output currents are used implies 
renormalization. So the symbol probability is given by: 
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A case, shown in Fig. 5, is taken as an example to better 
explain what can happen. Fixing some to an input probability 
of 0 reduces the number of inputs: 
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Figure 5: 4:4:4 multiplier. 
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Figure 6: Inversion in the ranking of output probability in a 4:4:4 
multiplier. PX(xi) and PY(yi) equal 0 when i = 3 or 4. NXP’s QUBIC4 0.25-
µm BiCMOS process. 
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hence: 
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Rearranging equations (7), (8) and (9) yields: 
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B. Probability ranking 
From equation (10), fixing the symbol probability makes 
PY(y1) only a function of PX(x1). For instance, by fixing 
Pr(d=1) to 55% and varying PX(x1), one can plot the 
simulated output probabilities Pr*(d=1) and Pr*(d=0) taking 
equation (5) into account. If the multiplier were ideal, then 
Pr*(d=1) and Pr*(d=0) would remain at 55% and 45%, 

respectively. However, as shown in Fig. 6, it is not the case 
and even worse, the outcome can be inverted. The most likely 
symbol can become “00” (d=1) instead of “01” (d=0). Hence, 
unlike in the binary case, the multiplier may well introduce 
additional errors, thus degrading the decoder’s performance 
in terms of BER. 

V. CONCLUSION 
This paper showed how the bipolar transistor’s parasitic 

elements introduce a significant degradation when converting 
data from the channel, LLRs, into probabilities. It is shown 
that the most degrading element is the parasitic emitter 
resistor. This work shows that this is more a problem when 
decoding m-ary codes than binary codes. Indeed, for double-
binary codes, there is a possibility to invert the probability 
ranking. As the decoding algorithm to output the decoded bits 
uses probabilities, errors can be introduced. This suggests that 
complex decoders require additional circuits to counteract the 
effect of parasitic elements. 
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