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ABSTRACT

The paper presents a new logic for reasoning about the for-
mation of beliefs through perception or through inference
in non-omniscient resource-bounded agents. The logic dis-
tinguishes the concept of explicit belief from the concept of
background knowledge. This distinction is reflected in its
formal semantics and axiomatics: (i) we use a non- stan-
dard semantics putting together a neighbourhood semantics
for explicit beliefs and relational semantics for background
knowledge, and (ii) we have specific axioms in the logic high-
lighting the relationship between the two concepts. Mental
operations of perceptive type and inferential type, having
effects on epistemic states of agents, are primitives in the
object language of the logic. At the semantic level, they are
modelled as special kinds of model-update operations, in the
style of dynamic epistemic logic (DEL). Results about ax-
iomatization, decidability and complexity for the logic are
given in the paper.
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1. INTRODUCTION
Most of existing logical theories of epistemic attitudes de-

veloped in the area of epistemic logic assume that agents
are omniscient, in the sense that: (i) their beliefs are closed
under conjuction or under known implication, i.e., if ϕ is
believed and ψ is believed then ϕ ∧ ψ is believed and if ϕ is
believed and ϕ→ ψ is believed then ψ is believed; (ii) their
explicit beliefs are closed under logical consequence (alias

valid implication), i.e., if ϕ is believed and ϕ logically im-
plies ψ, i.e., ϕ → ψ is valid, then ψ is believed as well; (iii)
they believe valid sentences or tautologies; (iv) they have
introspection over their beliefs, i.e., if ϕ is believed then it
is believed that ϕ is believed.
As pointed out by [13, 16], relaxing the assumption of log-

ical omniscience allows for a resource-bounded agent who
might fail to draw any connection between ϕ and its logical
consequence ψ and, consequently, to believe any valid sen-
tence and who might need time to infer and form new beliefs
from her existing knowledge and beliefs.

The aim of this paper is to propose a new logic which helps
in clarifying how a non-omniscient resource-bounded agent
can form new beliefs either through perception or through
inference from her existing knowledge and beliefs. More pre-
cisely, the aim of the paper is to introduce a dynamic logic,
called DLEK (Dynamic Logic of Explicit Beliefs and Knowl-
edge) in which programs are mental operations, either of
perceptive type or of inferential type, having effects on epis-
temic states of resourced-bounded agents.

This is not the first attempt to build a logic of epistemic
attitudes for non-omniscient agents. Logics of awareness
have been studied in the recent years (see, e.g., [19, 12, 10,
1]) starting from the seminal work of Fagin & Halpern [7].
These logics distinguish between explicit beliefs that are un-
der the focus of attention and implicit beliefs, namely, poten-
tial beliefs that are derivable from what an agent explictly
believes. However, the crucial difference between DLEK and
existing logics of awareness is that the former provides a con-
structive theory of explicit beliefs, as it accounts for the per-
ceptive and inferential steps leading from an agent’s knowl-
edge and beliefs to new beliefs. A notable exception is [21],
although our conceptual framework is different (see Section
2) and, unlike the present paper, the author does not pro-
vide any axiomatization or decidability result for his logic of
reasoning steps, as he only provides a semantics. Moreover,
[21] does not distinguish the concept of explicit belief and
the concept of background knowledge, which is the funda-
mental distinction of our logic DLEK.

DLEK is the first logical theory of the relationship be-
tween explicit beliefs and background knowledge, both from
a static and from a dynamic perspective. This is reflected
in its formal semantics and axiomatics: (i) we use a non-
standard semantics putting together a neighbourhood se-
mantics for explicit beliefs and relational semantics for back-
ground knowledge, and (ii) we have specific axioms in the
logic highlighting the relationship between the two concepts.

Our constructive approach to explicit beliefs also distin-



guishes DLEK from existing logics of time-bounded reason-
ing which represent reasoning as a process that requires time
(see, e.g., [2, 9]). Specifically, existing logics of time-bounded
reasoning account for the formation of new beliefs due to the
time-consuming application of inference rules to the beliefs
that are under the focus of attention. However, differently
from DLEK, they do not include mental operations of per-
ceptive type and inferential type as primitives in the object
language of the logic. As we will show in the paper, the ad-
vantage of having mental operations in the object language
of DLEK is that we can use it to reason about the conse-
quences of a sequence of perceptive and inferential steps on
the epistemic states of agents.

The paper is organized as follows. In Section 2 we present
the conceptual foundation of our logic DLEK, namely the
general view about dynamics of beliefs in resource-bounded
agents which underlies our formal theory. The general idea
is that new beliefs can be formed either by perception or
by inferring them from existing beliefs in working memory
and by retrieving information from background knowledge
in long-term memory. Section 3 presents the syntax and the
semantics of DLEK. We will show that in DLEK perceptive
and inferential steps are modelled as special kinds of model-
update operations, in the style of dynamic epistemic logic
(DEL) [20]. In Section 4 we present an example illustrating
the expressive power of the logic. Section 5 is devoted to
present an axiomatics. Finally, Section 6 presents complex-
ity results for the satisfiability problem of the static fragment
of DLEK, called LEK as well as a decidability result for the
satisfiability problem of DLEK.

2. CONCEPTUAL FRAMEWORK
The cognitive architecture underlying the logic DLEK (Dy-

namic Logic of Explicit Beliefs and Knowledge) is repre-
sented in Figure 1. It clarifies the processing of information
in human agents and human-like artificial agents.

Long-term memory

Background knowledge

retrieval

perception

forgetting

storage

Working memory

Explicit beliefs

inference

Figure 1: Cognitive view of the relationship between

background knowledge and explicit beliefs

In accordance with existing psychological theories and com-
putational models of memory and attention [3, 6, 22, 17],
we assume that an agent has two kinds of information in
her mind, those available in long-term memory (LTM) and
those directly accessible in working memory (WM).

The information available in long-term memory, gener-
ally called background knowledge, includes both knowledge
of specific events in the past and conceptual or causal knowl-
edge representing the agent’s unproblematic interpretation

of reality.1 For example, an agent may have background
conceptual knowledge about how restaurants are organized
or background causal knowledge about the relation between
smoke and fire. In particular, she may know that restaurants
have waiters, chairs and tables or that if smoke comes out
from a window of a certain house, then there is fire inside
the house.

Working memory retains information in an accessible state
suitable for carrying out any kind of reasoning or decision
task. In particular, following [14], we assume that the in-
formation available in an agent’s working memory includes
all explicit beliefs of the agent that occupy her conscious-
ness and draw on her limited capacity of attention.2 Some
explicit beliefs are formed via perception. Formation of ex-
plicit beliefs via perception just consists of adding a new
belief to the set of beliefs that are under the focus of the
agent’s attention. For example, an agent may look outside
the window, see that it is raining outside, and thereby start
believing that it is raining outside.

An agent can also use her explicit beliefs as premises of
an inference which leads to the formation of a new belief.
In some cases, formation of explicit beliefs via inference re-
quires the retrieval of information from long-term memory.
For example, suppose that an agent sees that smoke comes
out from the window of a certain house and, as a result, she
starts to explicitly believe this. The agent retrieves from
her background knowledge stored in her long-term memory
the information that if smoke comes out from a window of
a certain house, then it means that there is fire inside the
house. The agent can use this information together with
the belief that smoke comes out from the window available
in her working memory, to infer that there is fire inside the
house and to form the corresponding belief.

Information can also be lost from working memory through
forgetting : an agent may explicitly believe something but
not believe it anymore at a later point. Information can also
be removed from working memory and stored in long-term
memory to make it available for a later moment. Storage of
information in long-term memory might be necessary, given
the limited capabilities of working memory.

In the next section we present the syntax and the seman-
tics of the logic DLEK which makes precise all concepts in-
formally discussed in this section.

3. LOGICAL FRAMEWORK
DLEK is a logic which consists of a static component and

a dynamic one. The static component, called LEK, is a logic
of explicit beliefs and background knowledge. The dynamic
component extends the static one with dynamic operators
capturing the consequences of the agents’ mental operations
on their explicit beliefs.

3.1 Syntax
Assume a countable set of atomic propositions Atm =

1In the Soar architecture [15] these two kinds of background
are called, respectively, episodic memory and semantic mem-
ory.
2 Some psychologists (e.g., [6]) distinguish focus of atten-
tion from working memory, as they assume that there might
be information activated in working memory which is not
under the focus of the agent’s attention. For simplicity, we
here assume that focus of attention and working memory
are coextensive.



{p, q, . . .} and a finite set of agents Agt = {1, . . . , n}. The
set of groups (or coalitions) is defined to be 2Agt∗ = 2Agt\{∅}.
Elements of 2Agt∗ are denoted by J, J ′, . . . We denote with
Prop the set of all Boolean formulas built out of the set of
atomic propositions Atm.

The language of DLEK, denoted by LDLEK, is defined by
the following grammar in Backus-Naur Form:

α ::= ⊢(ϕ,ψ) | ∩(ϕ,ψ) | +ϕ | −ϕ
ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Biϕ | Kiϕ | [α]ϕ

where p ranges over Atm and i ranges over Agt .
The other Boolean constructions ⊤, ⊥, ∨, → and ↔ are

defined from p, ¬ and ∧ in the standard way.
The language of LEK, the fragment of DLEK without dy-

namic operators, is denoted by LLEK and defined by the fol-
lowing grammar in Backus-Naur Form:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Biϕ | Kiϕ

where p ranges over Atm and i ranges over Agt . The other
Boolean constructions ⊤, ⊥, ∨, → and ↔ are defined from
p, ¬ and ∧ in the standard way. In what follows, we explain
the meaning of the operators of our logic.

The formula Biϕ is read “the agent i explicitly believes
that ϕ is true” or, more shortly, “the agent i believes that
ϕ is true”. As explained in Section 2, explicit beliefs are
accessible in working memory and are the basic elements of
the agents’ reasoning process.

The modal operator Ki captures the notion of background
knowledge discussed in Section 2. It represents the infor-
mation that agent i can use and that is available in long
term memory to infer new explicit beliefs. Some pieces of
background knowledge are either conceptual or causal and
represent the agent’s unproblematic interpretation of reality.

Differently from explicit beliefs, background knowledge is
assumed to satisfy ‘omniscience’ principles like closure un-
der conjuction and known implication, closure under logical
consequence and introspection. Specifically, as we will show
below, Ki is nothing but the well-known S5 operator for
knowledge widely used in computer science [8]. The fact
that the operator Ki satisfies ‘omniscience’ principles is jus-
tified by the assumption that the information that an agent
possesses in background defines a deductively closed knowl-
edge base.

The formula [α]ψ has to be read “ψ holds, after the men-
tal operation (or mental action) α is publicly performed by
all agents”. We distinguish four types of mental operations
α which allow us to capture some of the dynamic proper-
ties of explicit beliefs and background knowledge informally
described in Section 2 above: +ϕ, −ϕ, ⊢(ϕ,ψ) and ∩(ϕ,ψ).

+ϕ and −ϕ correspond, respectively, to the mental oper-
ations of forming an explicit belief via perception and for-
getting an explicit belief represented in Figure 1.

⊢(ϕ,ψ) and ∩(ϕ,ψ) characterize two basic operations of
forming explicit beliefs via inference. Specifically, ⊢(ϕ,ψ) is
the mental operation which consists in inferring ψ from ϕ in
case ϕ is believed and, according to an agent’s background
knowledge, ψ is a logical consequence of ϕ. In other words,
by performing this mental operation, an agent tries to re-
trieve from her background knowledge in long-term memory
the information that ϕ implies ψ and, if she succeeds, she
starts to believe ψ. ∩(ϕ,ψ) is the mental operation which
consists in closing the explicit belief that ϕ and the explicit
belief that ψ under conjunction. In other words, ∩(ϕ,ψ)

characterizes the mental operation of deducing ϕ ∧ ψ from
the explicit belief that ϕ and the explicit belief that ψ.
In this paper we assume that, differently from explicit

beliefs, background knowledge is irrevocable in the sense
of being stable over time [5]. In the conclusion, we will
offer some insights on how to make background knowledge
dynamic by including in our logic the operation of storing
information in long-term memory, represented in Figure 1.

3.2 Semantics
The main notion in semantics is given by the following def-

inition of LEK model which provides the basic components
for the interpretation of the static logic LEK:

Definition 1 (LEK model). A LEK model is a tuple
M = (W,N,R1, . . . , Rn, V ) where:

• W is a set of worlds or situations;

• for every i ∈ Agt, Ri ⊆ W × W is an equivalence
relation on W ;

• N : Agt×W −→ 22
W

is a neighbourhood function such
that for all i ∈ Agt, w, v ∈W and X ⊆W :

(C1) if X ∈ N(i, w) then X ⊆ Ri(w),

(C2) if wRiv then N(i, w) = N(i, v);

• V :W −→ 2Atm is a valuation function.

For every i ∈ Agt and w ∈ W , Ri(w) = {v ∈ W : wRiv}
identifies the set of situations that agent i considers possible
at world w. In cognitive terms, Ri(w) can be conceived as
the set of all situations that agent i can retrieve from her
long-term memory and reason about them. More generally,
Ri(w) is called agent i’s epistemic state at w. The reason
why Ri is an equivalence relation is that it is used to model
a form of omniscient background knowledge instead of om-
niscient background belief. The latter could be modelled by
replacing the equivalence relations Ri by serial, transitive
and Euclidean relations commonly used in doxastic logic to
model a notion of belief.

For every i ∈ Agt and every w ∈ W , N(i, w) defines the
set of all facts that agent i explicitly believes at world w, a
fact being identified with a set of worlds. More precisely, if
A ∈ N(i, w) then, at world w, agent i has the fact A under
the focus of her attention and believes it. N(i, w) is called
agent i’s explicit belief set at world w.

Constraint (C1) just means that an agent can have ex-
plicit in her mind only facts which are compatible with her
current epistemic state. According to Constraint (C2), if
world v is compatible with agent i’s epistemic state at world
w, then agent i should have the same explicit beliefs at w
and v.

Truth conditions of DLEK formulas are inductively defined
as follows.

Definition 2 (Truth conditions). Let
M = (W,N,R1, . . . , Rn, V ) be a LEK model. Then:

M,w |= p ⇐⇒ p ∈ V (w)

M,w |= ¬ϕ ⇐⇒ M,w 6|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ

M,w |= Biϕ ⇐⇒ ||ϕ||Mi,w ∈ N(i, w)

M,w |= Kiϕ ⇐⇒ M, v |= ϕ for all v ∈ Ri(w)

M,w |= [α]ϕ ⇐⇒ Mα, w |= ϕ



where

||ϕ||Mi,w = {v ∈W :M, v |= ϕ} ∩Ri(w)

and Mα = (W,Nα, R1, . . . , Rn, V ) such that, for all i ∈ Agt
and w ∈W :

N+ψ(i, w) = N(i, w) ∪ {||ψ||Mi,w}

N−ψ(i, w) = N(i, w) \ {||ψ||Mi,w}

N⊢(ψ,χ)(i, w) =





N(i, w) ∪ {||χ||Mi,w} if M,w |= Biψ∧

Ki(ψ → χ)

N(i, w) otherwise

N∩(ψ,χ)(i, w) =





N(i, w) ∪ {||ψ ∧ χ||Mi,w} if M,w |= Biψ∧

Biχ

N(i, w) otherwise

Note that in the mono-agent case, thanks to Constraint
(C1), we can assume, in a given model M = (W,N,R1, V ),
that R1 is the universal relation on W .

According to the previous truth conditions, an agent i ex-
plicitly believes ϕ at world w if and only if, at world w, agent
i has the fact corresponding to the formula ϕ (i.e., ||ϕ||Mi,w)
included in her explicit belief set. Moreover, an agent has
background knowledge that ϕ is true if and only if ϕ is true
in all situations that are included in the agent’s epistemic
state. Mental operations of the form α are formalized as
model update operations that expand or contract the agents’
explicit belief sets. In particular, the mental operation +ψ
consists in perceiving ψ and adding it to the explicit belief
set, while the mental operation −ψ consists in forgetting ψ
and removing it from the explicit belief set. The mental
operation ⊢(ψ,χ) consists in adding the explicit belief χ to
an agent’s explicit belief set if the agent believes ψ and has
background knowledge that ψ implies χ. The mental oper-
ation ∩(ψ,χ) consists in adding the explicit belief ψ ∧ χ to
an agent’s explicit belief set if the agent explicitly believes
both ψ and χ.

We write |=DLEK ϕ to denote that ϕ is valid, i.e., ϕ is true
at every world w of every LEK-modelM . In the next section
we show some interesting validities of the logic DLEK.

3.3 Some validities
The following four validities capture the basic properties

of the four mental operations ⊢(ϕ,ψ), ∩(ϕ,ψ), +ϕ and −ϕ
semantically defined above. Let ϕ,ψ ∈ Prop. Then:

|=DLEK (Ki(ϕ→ ψ) ∧ Biϕ) → [⊢(ϕ,ψ)]Biψ (1)

|=DLEK (Biϕ ∧ Biψ) → [∩(ϕ,ψ)]Bi(ϕ ∧ ψ) (2)

|=DLEK [+ϕ]Biϕ (3)

|=DLEK [−ϕ]¬Biϕ (4)

For instance, according to the first validity, if ϕ and ψ are
propositional formulas, agent i explicitly believes ϕ and has
background knowledge that ϕ implies ψ then, as a conse-
quence of the mental operation ⊢ (ϕ,ψ), she will start to
believe ψ. According to the third validity, if ϕ is a proposi-
tional formula then, as a consequence of perceiving that ϕ
is true, agent i starts to explicitly believe that ϕ is true.

The reason why we need to impose that ϕ and ψ are propo-
sitional formulas is that there are DLEK-formulas such as the
Moore-like formula p∧¬Bip for which the previous four prin-
ciples do not hold. For instance, the following formula is not
valid:

[+(p ∧ ¬Bip)]Bi(p ∧ ¬Bip)

It is worth noting that in the logic DLEK we can ‘simulate’
in a dynamic way the rule of necessitation. Indeed:

|=DLEKϕ implies |=DLEK [+⊤]Biϕ (5)

We can also dynamically ‘simulate’ Axiom K for the explicit
belief operator, in the case of propositional formulas. Let
ϕ,ψ ∈ Prop. Then, we have the following validity:

|=DLEK(Biϕ ∧ Bi(ϕ→ ψ)) →

[∩(ϕ,ϕ→ ψ)][⊢(ϕ ∧ ψ,ψ)]Biψ (6)

4. EXAMPLE
In this section we are going to illustrate our logic DLEK

with the help of a concrete example. We are interested in
describing the dynamics of explicit beliefs in a multi-agent
scenario.

The scenario goes as follows. There are two robotic assis-
tants, say robot A (Anne) and robot B (Bob), who have to
take care of a person. The two robots are resource-bounded
in the sense that they have background knowledge and (non-
omniscient) explicit beliefs and form new explicit beliefs by
means of the mental operations highlighted in Figure 1 in
Section 2. The person communicates with the robots via a
coloured electric light which can be either red or green. The
communication code is the following one: (i) if the electric
light is red (atom r) then it means that the person needs
help (atom h), and (ii) if the electric is green (atom g) then
it means that the person is having a rest and wants not to
be bothered (atom b). We assume that:

H1. robot A has full knowledge about the communication
code as she knows that r implies h and that g implies
b,

H2. robot B has only partial knowledge about the commu-
nication code as he knows that r implies h but he does
not know that g implies b, and

H3. robot A and robot B have common knowledge that
they share a part of the communication code, namely
that each of them knows that r implies h.

Thus, let us suppose that Agt = {A,B} and Atm =
{r, g, h, b}. We represent the initial situation by the min-
imal LEK model satisfying the previous hypothesis H1, H2
and H3 and which only excludes the impossible situations in
which the electric light is both red and green and the person
needs help and takes a rest at the same time. This model
is the tuple MR = (W,N,RA, RB , V ) (where MR stands for
‘model of the robots’) such that:

• W = {w1, w2, w3, w4, w5, w6, w7, w8, w9};

• N(i, w) = ∅ for all i ∈ Agt and for all w ∈W ;

• the quotient set of W by RA is
{{w1, w2, w3, w4, w5}, {w6, w7}, {w8, w9}};



• the quotient set of W by RB is
{{w1, w2, w3, w4, w5, w6, w7}, {w8, w9}};

•
V (w1) = {r, h} V (w2) = {h} V (w3) = {g, b}
V (w4) = {b} V (w5) = ∅ V (w6) = {g}
V (w7) = {g, h} V (w8) = {r} V (w9) = {r, b}.

The fact that N(i, w) = ∅ for all i ∈ Agt and for all w ∈ W
just means that in the initial situation the robots do not
have any explicit belief in their short-term memories.
Let us assume that w1 is the actual situation in which the

electric light is red and the person needs help.
The first thing to observe is that in the actual situation

the hypothesis H1 and H2 are both satisfied. Indeed, as for
H1, we have:

MR, w1 |= KA(r → h) ∧ KA(g → b).

As for H2, we have:

MR, w1 |= KB(r → h) ∧ ¬KB(g → b).

In order to specify hypothesis H3, let EKJϕ be an ab-
breviation of

∧
i∈J Kiϕ, standing for “every agent in J has

background knowledge that ϕ”. Then, let us define EK
k
Jϕ

by induction for every natural number k ∈ N:

EK
0
Jϕ

def

= ϕ

and for all k ≥ 1:

EK
k
Jϕ

def

= EKJ(EK
k−1
J ϕ).

For every natural number n ∈ N, let MK
n
Jϕ be an abbre-

viation of
∧

1≤k≤n EK
k
Jϕ. MK

n
Jϕ expresses J ’s background

mutual knowledge that ϕ up to n iterations, i.e., everyone
in J has background knowledge that ϕ, everyone in J has
background knowledge that everyone in J has background
knowledge that ϕ, and so on until level n. We omit the full
definitions of the universal explicit belief operator EBJ (with
EBJϕ standing for “every agent in J explicitly believes that
ϕ”) and of the mutual explicit belief operator MB

n
J (with

MB
n
Jϕ standing for “the agents in J have mutual explicit

belief that ϕ up to n iterations”) since they can be defined
exactly in the same way as the universal knowledge and
mutual knowledge operators, starting from the individual
explicit knowledge operators.
The previous hypothesis H3 holds in the initial situation

since, for every n ∈ N, we have:

MR, w1 |= MK
n
{A,B}EK{A,B}(r → h).

Let us suppose that the person switches on the red light in
order to signal to the two robots that she needs help. This
event is represented by the mental operation +r which leads
from model MR to the updated model MR+r = (W,N+r, RA, RB , V )
such that:

N+r(A,w1) = {{w1}}, N+r(A,w2) = {{w1}},
N+r(A,w3) = {{w1}}, N+r(A,w4) = {{w1}},
N+r(A,w5) = {{w1}}, N+r(A,w6) = ∅,
N+r(A,w7) = ∅, N+r(A,w8) = {{w8, w9}},
N+r(A,w9) = {{w8, w9}}, N+r(B,w1) = {{w1}},
N+r(B,w2) = {{w1}}, N+r(B,w3) = {{w1}},
N+r(B,w4) = {{w1}}, N+r(B,w5) = {{w1}},
N+r(B,w6) = {{w1}}, N+r(B,w7) = {{w1}},
N+r(B,w8) = {{w8, w9}}, N+r(B,w9) = {{w8, w9}}.

It is easy to check that in the new situation, after the
mental operation +r has been executed, the two robots ex-
plicitly believe that the light is red. That is:

MR
+r, w1 |= EB{A,B}r.

However, the mental operation is not sufficient to guarantee
that the robots believe that the person needs helps. Indeed,
we have:

MR
+r, w1 |= ¬BAh ∧ ¬BBh.

It is by trying to infer that the person needs help from the
fact that she switched on the red light, represented by ⊢(r,h),
that the robots can form this explicit belief. The mental op-
eration ⊢(r,h) leads from model MR+r to the updated model

(MR+r)⊢(r,h) = (W, (N+r)⊢(r,h), RA, RB , V ) such that:

(N+r)⊢(r,h)(A,w1) = {{w1}, {w1, w2}},
(N+r)⊢(r,h)(A,w2) = {{w1}, {w1, w2}},
(N+r)⊢(r,h)(A,w3) = {{w1}, {w1, w2}},
(N+r)⊢(r,h)(A,w4) = {{w1}, {w1, w2}},
(N+r)⊢(r,h)(A,w5) = {{w1}, {w1, w2}},
(N+r)⊢(r,h)(A,w6) = {∅},
(N+r)⊢(r,h)(A,w7) = {∅},
(N+r)⊢(r,h)(A,w8) = {{w8, w9}},
(N+r)⊢(r,h)(A,w9) = {{w8, w9}},
(N+r)⊢(r,h)(B,w1) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w2) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w3) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w4) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w5) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w6) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w7) = {{w1}, {w1, w2, w7}},
(N+r)⊢(r,h)(B,w8) = {{w8, w9}},
(N+r)⊢(r,h)(B,w9) = {{w8, w9}}.

It is easy to check that in the new situation, after the
mental operation ⊢ (r,h) has been executed, the two robots
explicitly believe that the person needs help. That is:

(MR+r)⊢(r,h), w1 |= EB{A,B}h.

To sum up, we have the following which holds:

MR, w1 |= [+r]EB{A,B}r ∧ [+r](¬BAh ∧ ¬BBh)∧

[+r][⊢(r,h)]EB{A,B}h.

It is worth noting that the sequence of the two mental
operations +r and ⊢(r,h) is not sufficient for the robots to
acquire the explicit common belief that the person needs
help. Indeed, it is to check that the following holds:

(MR+r)⊢(r,h), w1 |= ¬BABBh ∧ ¬BBBAh.

In order to obtain such explicit common belief, the two
robots need to perform the two additional mental opera-
tions ⊢(h,BAh) and ⊢(h,BBh) (i.e., trying to infer that robot
A/robot B explicitly believes that h from the fact that h
holds), no matter the order in which they are executed. In-
deed, for every n ∈ N, we have:

MR, w1 |= [+r][⊢(r,h)][⊢(r,BAh)][⊢(r,BBh)]MB
n
{A,B}h,

MR, w1 |= [+r][⊢(r,h)][⊢(r,BBh)][⊢(r,BAh)]MB
n
{A,B}h.

It is just routine to check that the mental operations +g
and ⊢(g,b) are also sufficient for robot A to start to believe b
explicitly after performing them, but they are not sufficient



for robot B since he does not have background knowledge
that g implies b. In formal terms, we have:

MR, w1 |= [+g][⊢(g,b)]BAb,

MR, w1 |= [+g][⊢(g,b)]¬BBb.

5. AXIOMATIZATION
Let us now present sound and complete axiomatizations

for the logic LEK and its dynamic extension DLEK.

Definition 3. We define LEK to be the extension of clas-
sical propositional logic given by the following rules and ax-
ioms:

(Kiϕ ∧ Ki(ϕ→ ψ)) → Kiψ (KKi
)

Kiϕ→ ϕ (TKi
)

Kiϕ→ KiKiϕ (4Ki
)

¬Kiϕ→ Ki¬Kiϕ (5Ki
)

(Biϕ ∧ Ki(ϕ↔ ψ)) → Biψ (Mix1Ki,Bi
)

Biϕ→ KiBiϕ (Mix2Ki,Bi
)

ϕ

Kiϕ
(NecKi

)

The axiomatics of the logic DLEK includes all principles
of the logic LEK plus a set of reduction axioms and the rule
of replacement of equivalents.

Definition 4. We define DLEK to be the extension of
LEK generated by the following axioms:

[α]p↔p (Redp)

[α]¬ϕ↔¬[α]ϕ (Red¬)

[α](ϕ ∧ ψ) ↔([α]ϕ ∧ [α]ψ) (Red∧)

[α]Kiϕ↔Ki[α]ϕ (RedKi
)

[+ϕ]Biψ ↔(Bi[+ϕ]ψ ∨ Ki([+ϕ]ψ ↔ ϕ)) (RedBi,+)

[−ϕ]Biψ ↔(Bi[−ϕ]ψ ∨ ¬Ki([−ϕ]ψ ↔ ϕ)) (RedBi,−)

[⊢(ϕ,ψ)]Biχ↔
(
Bi[⊢(ϕ,ψ)]χ∨

(
(Biϕ ∧ Ki(ϕ→ ψ))∧

Ki([⊢(ϕ,ψ)]χ↔ ψ)
))

(RedBi,⊢)

[∩(ϕ,ψ)]Biχ↔
(
Bi[∩(ϕ,ψ)]χ∨

(
(Biϕ ∧ Biψ)∧

Ki([∩(ϕ,ψ)]χ↔ (ϕ ∧ ψ))
))

(RedBi,∩)

and the following rule of inference:

ψ1 ↔ ψ2

ϕ↔ ϕ[ψ1/ψ2]
(RRE)

We write DLEK ⊢ ϕ to denote the fact that ϕ is a theorem
of DLEK.

It is straightforward to check that all axioms are valid and
all rules preserve validity in the class of DLEK-models, from
which the following is an immediate consequence:

Lemma 1. The logics LEK and DLEK are sound for the
class of LEK-models.

Our goal now is to prove that LEK is strongly complete for
its intended semantics. We will achieve this by a fairly stan-
dard canonical-model argument, although the neighborhood
structure will require some care.

Definition 5 (canonical LEK model). We define the
canonical LEK model

Mc = (Wc, Nc, Rc1 . . . , Rcn, Vc)

where:

• Wc is the set of all maximal consistent subsets of LLEK.

• wRciv if and only if, for all formulas ϕ and all agents
i, Kiϕ ∈ w if and only if Kiϕ ∈ v.

• In order to define Nc, for w ∈ W and ϕ ∈ LLEK, first
define

Aϕ(i, w) = {v ∈ Ri(w) : ϕ ∈ v}.

Then, define Nc by letting

Nc(i, w) = {Aϕ(i, w) : Biϕ ∈ w}.

• Finally, we define the valuation Vc by w ∈ Vc(p) if and
only if p ∈ w.

The following is standard and we omit the proof:

Lemma 2. The structureMc defined above is a LLEK-model.
Moreover, if w ∈Wc and ϕ ∈ LLEK, then

1. Kiϕ ∈ w if and only if, for every v such that wRciv,
ϕ ∈ v, and

2. if wRciv and Biϕ ∈ w, then Biϕ ∈ v.

We also need to prove that Mc has a somewhat less famil-
iar property. This will be used later in the truth lemma, for
the case of Bi.

Lemma 3. For every w ∈ Wc and Biϕ,Biψ ∈ LLEK, if
Biϕ ∈ w but Biψ 6∈ w, it follows that there is v ∈ Rci(w)
such that either ϕ ∈ v but ¬ψ ∈ v, or ¬ϕ ∈ v but ψ ∈ v.

Proof. Let w ∈ Wc and ϕ,ψ be such that Biϕ ∈ w,
Biψ 6∈ w. Towards a contradiction, assume that for every
v ∈ Rci(w), either ϕ,ψ ∈ v or ¬ϕ,¬ψ ∈ v; then, it follows
from Lemma 2 that Ki(ϕ ↔ ψ) ∈ w, so that by Axiom
(Mix1Ki,Bi

), Biψ ∈ w, contrary to our assumption.

With this, we may state and prove our version of the Truth
Lemma:

Lemma 4. For every ϕ ∈ LLEK and every w ∈Wc, ϕ ∈ w
if and only if Mc, w |= ϕ.

Proof. The proof proceeds by a standard induction on
the construction of ϕ. All cases are routine except ϕ = Biψ.
First assume that Biψ ∈ w. Then, Aψ(i, w) ∈ Nc(i, w).

But,

Aψ(i, w) = {v ∈ Ri(w) : ψ ∈ v}
IH
= ‖ψ‖ ∩Ri(w).

Thus, Mc, w |= Biψ.
Now, suppose Biψ 6∈ w, so that ¬Biψ ∈ w. We must

check that ‖ψ‖ ∩Rci(w) 6∈ N(i, w). Choose an arbitrary set
A ∈ N(i, w); by definition, A = Aθ(i, w) for some θ with



Biθ ∈ w. By Lemma 3, there is some v ∈ Ri(w) such that
ψ,¬θ ∈ v or ¬ψ, θ ∈ v; in the first case, this shows using
the induction hypothesis that v ∈ (‖ψ‖ ∩Ri(w)) \ Aθ(i, w),
while in the second we obtain v ∈ Aθ(i, w)\(‖ψ‖∩Ri(w)). In
either case we obtain Aθ(i, w) 6= ‖ψ‖∩Ri(w), and since A =
Aθ(i, w) was an arbitrary element of N(i, w), we conclude
that ‖ψ‖ ∩Ri(w) 6∈ N(i, w) and thus Mc, w 6|= Biψ.

We are now ready to prove that the static LEK is strongly
complete.

Theorem 1. LEK is strongly complete for the class of
LEK models.

Proof. Any consistent set of formulas Φ may be ex-
tended to a maximal consistent set of formulas w∗ ∈ Wc,
and Mc, w∗ |= Φ by Lemma 4.

The strong completeness of DLEK follows from this result,
in view of the fact that the reduction axioms may be used
to find, for any DLEK formula, a provably equivalent LEK

formula.

Lemma 5. If ϕ is any formula of LDLEK, there is a for-
mula ϕ̃ in LLEK such that DLEK ⊢ ϕ↔ ϕ̃.

Proof. This follows by a routine induction on ϕ using
the reduction axioms and the rule of replacement of equiv-
alents (RRE) from Definition 4.

As a corollary, we get the following:

Theorem 2. DLEK is strongly complete for the class of
LEK models.

Proof. If Γ is a consistent set of LDLEK formulas, then

Γ̃ = {ϕ̃ : ϕ ∈ Γ} is a consistent set of LLEK formulas (since
DLEK is an extension of LEK), and hence by Theorem 1,

there is a modelM with a world w such thatM,w |= Γ̃. But,
since DLEK is sound and for each ϕ ∈ Γ, DLEK ⊢ ϕ↔ ϕ̃, it
follows that M,w |= Γ.

Thus our logics are strongly complete, but the construc-
tion we have given will in general produce infinite models.
In the next section, we are going move from axiomatics to
complexity of the satisfiability problem.

6. COMPLEXITY
In this section we will study the computability of the sat-

isfiability problem of LEK: given a formula ϕ, determine
whether ϕ is satisfiable. We will also provide a decidability
result of the satisfiability problem of DLEK. We first con-
sider the single-agent case and move then to the multi-agent
case. Below, card(A) denotes the cardinality of the set A.

6.1 Mono-agent case
Firstly, assume card(Agt) = 1. Let ϕ be a satisfiable

formula. Let M = (W,N, V ) be a model and w ∈ W be
such that M,w |= ϕ. Let Kψ1, . . . ,Kψm and Bχ1, . . . ,Bχn
be lists of the set of all subformulas of ϕ of the form Kψ
and Bχ. Let K̂ = {i : 1 ≤ i ≤ m & M,w 6|= Kψi},

B̂
+

= {j : 1 ≤ j ≤ n & M,w |= Bχj} and B̂
−

= {k :

1 ≤ k ≤ n & M,w 6|= Bχk}. For all i ∈ K̂, let vi ∈ W be
such that M, vi 6|= ψi. Such vi exists because M,w 6|= Kψi.

For all j ∈ B̂
+
, let Aj ∈ N be such that Aj = {v ∈ W :

M, v |= χj}. Such Aj exists because M,w |= Bχj . For

all j ∈ B̂
+

and for all k ∈ B̂
−
, let uj,k ∈ W be such that

M,uj,k 6|= χj ↔ χk. Such uj,k exists because M,w |= Bχj
and M,w 6|= Bχk. Let M ′ = (W ′, N ′, V ′) be the model
defined as follows:

• W ′ = {w} ∪ {vi : i ∈ K̂} ∪ {uj,k : j ∈ B̂
+

& k ∈ B̂
−
},

• N ′ = {Aj ∩W
′ : j ∈ B̂

+
},

• for all p ∈ V AR, V ′(p) = V (p) ∩W ′.

Obviously, card(W ′) and card(N ′) are polynomial in the
size of ϕ. Let Φ be the closure under single negations of the
set of all ϕ’s subformulas.

Lemma 6. Let ϕ be a formula. If ϕ ∈ Φ then for all
s ∈W ′, M, s |= ϕ iff M ′, s |= ϕ.

Proof. By induction on ϕ. We only consider the cases
ϕ = Bχ.

Suppose M, s |= Bχ and M ′, s 6|= Bχ. Let j ∈ B̂
+

be such
that Bχ = Bχj . Hence, Aj = {t ∈ W : M, t |= χ}. By
induction hypothesis, Aj ∩ W ′ = {t ∈ W ′ : M ′, t |= χ}.
Thus, M ′, s |= Bχ: a contradiction.

Suppose M ′, s |= Bχ and M, s 6|= Bχ. Let j ∈ B̂
+

be such
that Aj ∩ W ′ = {t ∈ W ′ : M ′, t |= χ}. By induction

hypothesis, Aj ∩W
′ = {t ∈ W ′ : M, t |= χ}. Let k ∈ B̂

−

be such that Bχ = Bχk. Remember that Aj = {t ∈ W :
M, t |= χj}. Moreover, uj,k ∈ W ′ is such that M,uj,k 6|= χj
and M,uj,k 6|= χk, or M,uj,k 6|= χj and M,uj,k |= χk. In
the former case, uj,k ∈ Aj ∩ W ′. Hence, M,uj,k |= χ: a
contradiction. In the latter case, uj,k ∈ Aj ∩ W ′. Thus,
M,uj,k |= χj : a contradiction.

Theorem 3. If card(Agt) = 1 then satisfiability problem
of LEK is NP-complete.

Proof. Membership in NP follows from Lemma 6. NP-
hardness follows from the NP-hardness of classical proposi-
tional logic.

6.2 Multi-agent case
Our study of the computability in the multi-agent case

will be based on the modal tableaux approach developed by
Halpern and Moses [11]. Assume card(Agt) ≥ 2. For all
formulas ϕ, let SF (ϕ) be the closure under single negations
of the set of all subformulas of ϕ.

Modal tableaux.
A set T of formulas is said to be fully expanded if for all

formulas ϕ, if ϕ ∈ T then for all formulas ψ, if ψ ∈ SF (ϕ)
then either ψ ∈ T , or ¬ψ ∈ T , SF (ϕ) denoting the closure
under single negations of the set of all ϕ’s subformulas. A
propositional tableau is a set T of formulas such that the
following conditions holds: (i) for all formulas ϕ, if ¬¬ϕ ∈ T
then ϕ ∈ T ; (ii) for all formulas ϕ,ψ, if ¬(ϕ ∨ ψ) ∈ T then
¬ϕ ∈ T and ¬ψ ∈ T ; (iii) for all formulas ϕ,ψ, if ϕ∨ψ ∈ T
then either ϕ ∈ T , or ψ ∈ T . A propositional tableau T is
said to be blatantly consistent iff for all formulas ϕ, either
ϕ 6∈ T , or ¬ϕ 6∈ T .



A modal tableau is a structure of the form T = (W,R,L)
where W is a nonempty set of states (with typical mem-
bers denoted w, v, etc), R is a function associating a bi-
nary relation Ri on W to each i ∈ Agt and L is a func-
tion assigning to each w ∈ W a blatantly consistent and
fully expanded propositional tableau L(w) such that for all
w ∈ W , the following conditions holds: (i) for all formu-
las ϕ, if ¬Kiϕ ∈ L(w) then there exists v ∈ Ri(w) such
that ¬ϕ ∈ L(v); (ii) for all formulas ϕ, if Biϕ ∈ L(w)
then for all formulas ψ, if ¬Biψ ∈ L(w) then there exists
v ∈ Ri(w) such that either ϕ ∈ L(v) and ¬ψ ∈ L(v),
or ¬ϕ ∈ L(v) and ψ ∈ L(v); (iii) for all formulas ϕ, if
Kiϕ ∈ L(w) then for all v ∈ (Ri ∪ R

−1
i )⋆(w), ϕ ∈ L(v) and

Kiϕ ∈ L(v); (iv) for all formulas ϕ, if Biϕ ∈ L(w) then for
all v ∈ (Ri ∪ R−1

i )⋆(w), Biϕ ∈ L(v). For all formulas ϕ,
let L−1(ϕ) = {w : w ∈ W & ϕ ∈ L(w)}. We shall say
that a modal tableau T = (W,R,L) is a modal tableau for
a formula ϕ if L−1(ϕ) 6= ∅.

From models to modal tableaux.
Given a model M = (W,R,N, V ), let T ′ = (W ′, R′, L′)

be defined as follows: W ′ =W , R′
i = Ri for each i ∈ Agt, L′

is the function assigning to each w ∈ W ′ the propositional
tableau L′(w) = {ϕ : M,w |= ϕ}. The proof that T ′ is a
modal tableau is easy. As a result,

Proposition 1. Let ϕ be a formula. If ϕ is satisfiable
then there exists a modal tableau for ϕ.

From modal tableaux to models.
Given a modal tableau T = (W,R,L), let

M ′ = (W ′, R′, N ′, V ′)

be defined as follows: W ′ = W , R′
i = (Ri ∪ R

−1
i )⋆ for each

i ∈ Agt, N ′
i(w) = {(Ri ∪R

−1
i )⋆(w)∩L−1(ϕ) : Biϕ ∈ L(w)}

for each w ∈ W and for each i ∈ Agt, V ′ is the function
assigning to each p ∈ Atm the subset V ′(p) = {w : w ∈
W & p ∈ L(w)} of W ′. The proof that T ′ is a model is
easy. Moreover, one can prove by induction on ϕ that for
all w ∈W , ϕ ∈ L(s) iff M ′, s |= ϕ. As a result,

Proposition 2. Let ϕ be a formula. If there exists a
modal tableau for ϕ then ϕ is satisfiable.

Membership in PSPACE.
By Propositions 1 and 2, satisfiability is reducible to the

following decision problem (MT): given a formula ϕ, deter-
mine whether there exists a modal tableau for ϕ. Based
on the tools and techniques developed in ordinary epistemic
logics by Halpern and Moses [11], one can design an algo-
rithm that tries to construct a modal tableau for a given
formula ϕ. The main properties of such algorithm are:

• For all given formulas ϕ, the above algorithm termi-
nates and runs in polynomial space,

• for all given formulas ϕ, the algorithm returns “there
is a modal tableau for ϕ” iff there is a modal tableau
for ϕ.

Proposition 3. There is an algorithm for deciding sat-
isfiability that runs in polynomial space.

As a result,

Theorem 4. If card(Agt) ≥ 2 then satisfiability problem
of LEK is PSPACE-complete.

Proof. Membership in PSPACE follows from the above
discussion. PSPACE-hardness follows from the PSPACE-
hardness of multi-agent epistemic logic.

The reduction axioms and the rule of replacement of equiv-
alents in Definition 4 may then be used to give a decision
procedure for the satisfiability of DLEK; however, due to
exponential blow-up in the size of formulas, this algorithm
would no longer remain in PSPACE without modification.
Thus we will state only the following:

Corollary 1. The satisfiability problem of DLEK is de-
cidable.

Proof. Immediate from the decidability of LEK and the
fact that, given a formula ϕ of LDLEK, the formula ϕ̃ is clearly
computable from ϕ.

However, we do not believe that such a procedure would
be optimal, and indeed conjecture that DLEK is in PSPACE.
We leave the computation of its precise complexity for future
work.

7. CONCLUSION
Let’s take stock. In the paper we have introduced DLEK, a

logical theory of belief dynamics for resource-bounded agents
inspired by existing psychological theories of human mem-
ory. We have provided decidability and complexity results
for DLEK as well as for its static fragment LEK.

Directions of future research are manifold. On the con-
ceptual level, we plan to complete the conceptual framework
described in Section 2 by extending the family of mental op-
erations with operations of storage of information in long-
term memory. We believe that these kinds of operations can
be modelled as special kinds of epistemic actions in the DEL

sense. Specifically, a storage operation modifies an agent’s
background knowledge by restricting the epistemic relation
Ri to worlds in which the information ϕ to be stored is true,
under the condition that this information is already avail-
able in the agent’s working memory and explicitly believed
by the agent.

On the technical level, as emphasized in Section 6, we
plan to obtain a result about complexity of the satisfiabil-
ity problem of DLEK. In particular, we plan to prove that
this problem is PSPACE-complete by appropriately adapt-
ing to our framework the technique proposed by Lutz [18]
for studying complexity of the satisfiability problem of pub-
lic announcement logic (PAL). We also plan to refine our
approach by relaxing the assumption that mental operations
are performed by all agents and that this is a public fact.
To this aim, we will have to introduce a notion of action
model in this sense of [4] which allows us to model a private
form of mental operation (i.e., an operation which occurs in
the mind of a specific agent without the other agents being
aware of this).
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