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Abstract

Markov Decision Processes (MDP) are a widely used model including both non-
deterministic and probabilistic choices. Minimal and maximal probabilities to
reach a target set of states, with respect to a policy resolving non-determinism,
may be computed by several methods including value iteration. This algorithm,
easy to implement and efficient in terms of space complexity, iteratively com-
putes the probabilities of paths of increasing length. However, it raises three
issues: (1) defining a stopping criterion ensuring a bound on the approximation,
(2) analysing the rate of convergence, and (3) specifying an additional proce-
dure to obtain the exact values once a sufficient number of iterations has been
performed. The first two issues are still open and, for the third one, an upper
bound on the number of iterations has been proposed. Based on a graph analy-
sis and transformation of MDPs, we address these problems. First we introduce
an interval iteration algorithm, for which the stopping criterion is straightfor-
ward. Then we exhibit its convergence rate. Finally we significantly improve
the upper bound on the number of iterations required to get the exact values.
We extend our approach to also deal with Interval Markov Decision Processes
(IMDP) that can be seen as symbolic representations of MDPs.
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1. Introduction

Markov Decision Processes (MDP) are a commonly used formalism for mod-
elling systems that use both probabilistic and non-deterministic behaviours.
This is in contrast with discrete-time Markov chains that are fully probabilistic
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(see [12] for a detailed study of these models). MDPs have acquired an even
greater gain of interest since the development of quantitative verification of sys-
tems, which in particular may take into account probabilistic aspects (see [1]
for a deep study of model checking techniques, in particular for probabilistic
systems). Automated verification techniques have been extensively studied to
handle such probabilistic models, leading to various tools like the PRISM prob-
abilistic model checker [11].

In the tutorial paper [6], the authors cover some of the algorithms for the
model-checking of MDPs and Markov chains. The first simple, yet intriguing,
problem lies in the computation of minimum and maximum probabilities to
reach a target set of states of an MDP. Exact polynomial time methods, like lin-
ear programming, are available, but they seem unable to scale to large systems,
though some results have been obtained recently by mixing it with numerical
methods [7]. Nonetheless, they are based on the fact that these probabilities are
indeed fixed points of some operators. Usually, numerical approximate methods
are rather applied in practice, the most used one being value iteration. The
algorithm asymptotically reaches the fixed point by iterating some operator.
However, it raises three issues. First, since the algorithm must terminate after
a finite number of iterations, one has to define a stopping criterion ensuring a
bound on the difference between the computed and the exact values. Surpris-
ingly, the stopping criterion used nowadays, e.g. in the PRISM probabilistic
model checker [11], simply compares two successive computed values to stop
whenever the distance is small enough: it provides no guarantees on the final
result (see Example 1 for a more thorough explanation of this phenomenon).
Then, from a theoretical point of view, establishing the rate of convergence
with respect to the parameters of the MDP (number of states, smallest positive
transition probability, etc.) would help to estimate the complexity of value it-
eration. Similarly, no result is known on this rate of convergence. Finally, the
exact values and/or the optimal policy are sometimes required: these are gener-
ally obtained by performing an additional rounding procedure once a sufficient
number of iterations has been performed. For this issue, an upper bound on the
number of iterations has been claimed in [3, Section 3.5].

Our contributions. Our objective is to deal with these three issues: stopping
criteria, estimation of the rate of convergence and exact computation in the
value iteration algorithm. We meet these objectives by making a detour via
another algorithm, achieving better guarantees, but that requires different pre-
computations on the graph structure of the MDP. Indeed, the numerical com-
putations of (min/max) reachability probabilities are generally preceded by a
qualitative analysis that computes the sets of states for which this probability
is 0 or 1, and performs an appropriate transformation of the MDP. We adopt
here an alternative approach based on the maximal end component (MEC) de-
composition of an MDP (that can be computed in polynomial time [5]). We
show that for an MDP featuring a particular MEC decomposition (i.e. decom-
position into trivial and bottom MECs, see section 2), some safety maximal
probability is null, moreover describing the convergence rate of this probability
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with respect to the length of the run. Then we design a min- (respectively,
max-) reduction that ensures this feature while preserving the minimal (respec-
tively, maximal) reachability probabilities. In both cases, we establish that the
reachability probabilities are unique fixed points of some operator.

This unicity allows us to converge towards the reachability probability by
iterating these operators starting either from the maximal, or the minimal
possible vectors. These two sequences of vectors represent under- and over-
approximations of the optimal probability. Hence, these iterations naturally
yield an interval iteration algorithm for which the stopping criterion is straight-
forward since, at any step, the two current vectors constitute a framing of the
reachability probabilities. Similar computations of parallel under- and over-
approximations have been used in [9], in order to detect steady-state on-the-fly
during the transient analysis of continuous-time Markov chains. In [10], under-
and over-approximations of reachability probabilities in MDPs are obtained by
substituting to the MDP a stochastic game. Combining it with a CEGAR-based
procedure leads to an iterative procedure with approximations converging to the
exact values. However the speed of convergence is only studied from an exper-
imental point of view. Afterwards, we provide probabilistic interpretations for
the adjacent sequences of the interval iteration algorithm. Combining such an
interpretation with the safety convergence rate of the reduced MDP allows us to
exhibit a convergence rate for interval iteration algorithm. Exploiting this con-
vergence rate, we significantly improve the bound on the number of iterations
required to get the exact values by a rounding procedure (with respect to [3]).
Interestingly, our approach has been realised in parallel of Brázdil et al [2] that
solves a different problem with similar ideas over MDPs. There, authors use
some machine learning algorithm, namely real-time dynamic programming, in
order to avoid to apply the full operator at each step of the value iteration, but
rather to partially apply it based on some statistical test. Using the same idea of
lower and upper approximations, they prove that their algorithm almost surely
converges towards the optimal probability, in case of MDPs without non-trivial
MECs. In the presence of non-trivial MECs, rather than computing in advance
a simplified equivalent MDP as we do, they rather compute the simplification
on-the-fly. It allows them to also obtain results in the case where the MDP is
not explicitly given. However, no analysis of the speed of convergence of their
algorithm is provided, nor are given explicit stopping criteria before an exact
computation of values.

Finally, we propose the extension of our interval iteration paradigm for the
study of interval Markov decision processes (IMDP) that have been introduced
and solved in [13, 4]. These IMDPs are compact representations of MDPs where
an action also includes intervals constraining transition probabilities. Hence, at
each turn, the policy not only resolves the non-determinism based on the pos-
sible actions (from a finite alphabet) but also chooses the distribution on the
successor states that may be picked among the (uncountable) set of distribu-
tions defined by the constraints. In [13, 4], it is shown that an IMDP is a
compact representation of an MDP whose actions are obtained by considering
(the finite number of) basic feasible solutions of the linear program specification
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of the interval constraints of the IMDP. However this implicit MDP may have
an exponential size with respect to the size of the IMDP. Fortunately, the au-
thors design a polynomial time algorithm for implementing a step of the value
iteration. In order to apply our approach, we design an algorithm for the MEC
decomposition and min- and max-reduction of the IMDPs both in polynomial
time.

Outline. Section 2 introduces Markov decision processes and the reachabil-
ity/safety problems. It also includes MEC decomposition, dedicated MDP
transformations and characterisation of minimal and maximal reachability prob-
abilities as unique fixed points of operators. Section 3 presents our main con-
tributions: the interval iteration algorithm, the analysis of the convergence rate
and a better bound for the number of iterations required for obtaining the exact
values by rounding. Section 4 extends the framework to deal with IMDPs. This
article is a long version of the version presented at the conference Reachability
Problems 2014 [8], that was not mentioning IMDPs.

2. Reachability problems for Markov decision processes

2.1. Problem specification

We mainly follow the notation of [6]. We denote by Dist(S) the set of
distributions over a finite set S, i.e. every mapping p : S → [0, 1] from S to the
set [0, 1] such that

∑
s∈S p(s) = 1. The support of a distribution p, denoted by

Supp(p), is the subset of S defined by Supp(p) = {s ∈ S | p(s) > 0}.

Definition 1 (MDP). A Markov Decision Process (MDP) is a tuple M =
(S, αM, δM) where

• S is a finite set of states;

• αM =
⋃
s∈S A(s) where every A(s) is a non empty finite set of actions

with A(s) ∩A(s′) = ∅ for all s 6= s′;1

• and δM : S × αM → Dist(S) is a partial probabilistic transition function
defined for (s, a) if and only if a ∈ A(s).

Whenever we adopt an algorithmic point of view, we restrict δM to range over
rationals (and the same restriction will hold later on for IMDP).

The dynamic of the system is defined as follows. Given a current state s, an
action a ∈ A(s) is chosen non deterministically. The next state is then randomly
selected, using the corresponding distribution δM(s, a), i.e. the probability that
a transition to s′ occurs equals δM(s, a)(s′). In a more suggestive way, one
denotes δM(s, a)(s′) by δM(s′|s, a) and

∑
s′∈S′ δM(s′|s, a) by δM(S′|s, a).

1Making the set of actions disjoint in every state is simply an assumption to make further
developments easier. All the following can easily be adapted without this condition.
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More formally, an infinite path through an MDP is a sequence π = s0
a0−→

s1
a1−→ · · · where si ∈ S, ai ∈ A(si) and δM(si+1|si, ai) > 0 for all i ∈ N: in the

following, state si is denoted by π(i). A finite path ρ = s0
a0−→ s1

a1−→ · · · an−1−−−→ sn
is a prefix of an infinite path ending in a state sn, denoted by last(ρ). We denote
by PathM,s (respectively, FPathM,s) the set of infinite paths (respectively, finite
paths) starting in state s, whereas PathM (respectively, FPathM) denotes the
set of all infinite paths (respectively, finite paths).

To associate a probability space with an MDP, we need to eliminate the
non-determinism of the behaviour. This is done by introducing policies (also
called schedulers or strategies).

Definition 2 (Policy). A policy of an MDP M = (S, αM, δM) is a function
σ : FPathM → Dist(αM) such that σ(ρ)(a) > 0 only if a ∈ A(last(ρ)). One
denotes σ(ρ)(a) by σ(a|ρ).

We denote by PolM the set of all policies ofM. A policy σ is deterministic
when σ(ρ) is a Dirac distribution for every ρ ∈ FPathM; it is stationary (also
called memoryless) if σ(ρ) only depends on last(ρ). We denote by DPolM the
set of all deterministic policies of M. For σ ∈ DPolM, we denote as σ(ρ) the
single action a ∈ A(last(ρ)) in the support of the Dirac distribution.

A policy σ and an initial state s ∈ S yields a discrete-time Markov chain
Mσ

s (see [6, Definition 10]), whose states are the finite paths of FPathM,s. The
probability measure PrMσ,s over paths of the Markov chain starting in s (with
basic cylinders being generated by finite paths) defines a probability measure
PrσM,s over PathM,s, capturing the behaviour ofM from state s under policy σ.

Let ρn = s0
a0−→ s1

a1−→ · · · an−1−−−→ sn and ρn+1 = s0
a0−→ s1

a1−→ · · · sn
an−−→ sn+1,

the probability measure is inductively defined by

PrσM,s0(ρn+1) = PrσM,s0(ρn)σ(an|ρn) δM(sn+1|sn, an) .

Given a subset of target states T , reachability properties are specified by FT
while safety properties are specified by G¬T . Formally, let π = s0

a0−→ s1
a1−→

· · · ∈ PathM be an infinite path. It satisfies formula FT , denoted by π |= FT ,
if there exists i ∈ N such that si ∈ T . Similarly, π |= G¬T if for all i ∈ N,
si /∈ T . If T is a singleton {s}, we write the two properties as F s and G¬s.
We also consider restricted scopes F6n and G6n of these operators to prefixes of
length n: π |= F6n T if there exists 0 6 i 6 n such that si ∈ T , and π |= G6n ¬T
if for all 0 6 i 6 n, si /∈ T . Given ϕ ∈ {FT,G¬T}, we denote the probability
measure of paths satisfying ϕ, PrσM,s({π ∈ PathM,s | π |= ϕ}), more concisely
by PrσM,s(ϕ).

Our main goal is to compute the infimum and supremum reachability and
safety probabilities, with respect to the policies:

Prmin
M,s(FT ) = inf

σ∈PolM
PrσM,s(FT ) , P rmax

M,s(FT ) = sup
σ∈PolM

PrσM,s(FT ) ,

P rmin
M,s(G¬T ) = inf

σ∈PolM
PrσM,s(G¬T ) , P rmax

M,s(G¬T ) = sup
σ∈PolM

PrσM,s(G¬T ) .
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Since PrσM,s(G¬T ) = 1− PrσM,s(FT ), one immediately gets:

Prmax
M,s(G¬T ) = 1− Prmin

M,s(FT ) , P rmin
M,s(G¬T ) = 1− Prmax

M,s(FT ) .

Thus we focus on reachability problems and without loss of generality, all
the states of T may be merged in a single state called s+ with A(s+) = {loop+}
such that δM(s+|s+, loop+) = 1. In the sequel, the vector (PrσM,s(ϕ))s∈S (re-

spectively, (Prmin
M,s(ϕ))s∈S and (Prmax

M,s(ϕ))s∈S) of probabilities will be denoted

by PrσM(ϕ) (respectively, Prmin
M (ϕ) and Prmax

M (ϕ)).
For the minimal reachability problem, a policy σ is said optimal when

PrσM,s(FT ) = Prmin
M,s(FT ). A similar definition holds for the maximal reach-

ability problem. By [12], we know that deterministic optimal policies exist
for both minimal and maximal reachability problems. We will use this result
throughout the rest of the article.

2.2. MEC decomposition and transient behaviour

In our approach, we first reduce an MDP by a qualitative analysis based on
end components [5]. We adopt here a slightly different definition of the usual
one by allowing trivial end components (see later on). Preliminarily, the graph
GM of an MDPM is defined as follows: the set of its vertices is S and there is
an edge from s to s′ if there is some a ∈ A(s) with δM(s′|s, a) > 0.

Definition 3 (sub-MDP and end component). Let M = (S, αM, δM) be
an MDP. Then (S′, α′) with ∅ 6= S′ ⊆ S and α′ ⊆

⋃
s∈S′ A(s) is a sub-MDP.

Furthermore (S′, α′) is an end component if:

(i) for all s ∈ S′ and a ∈ A(s) ∩ α′, Supp(δM(s, a)) ⊆ S′;

(ii) and the graph of (S′, α′) is strongly connected.

Given two end components, one says that (S′, α′) is smaller than (S′′, α′′),
denoted by (S′, α′) � (S′′, α′′), if S′ ⊆ S′′ and α′ ⊆ α′′. Given some state s,
there is a minimal end component containing s namely ({s}, ∅). Such end com-
ponents are called trivial end components. The union of two end components
that share a state is also an end component. Hence, maximal end components
(MEC) do not share states and cover all states of S. Furthermore, we consider
bottom MEC (BMEC): a MEC (S′, α′) is a BMEC if α′ =

⋃
s∈S′ A(s). For

instance ({s+}, {loop+}) is a BMEC. Every MDP contains at least one BMEC.
The left of Figure 1 shows the decomposition into MECs of an MDP. There

are two BMECs ({s+}, {loop+}) and ({b, b′}, {d, e}), one trivial MEC ({t}, ∅)
and another MEC ({s, s′}, {a, c}).

The set of MECs of an MDP defines a partition of S =
⊎K
k=1 Sk]

⊎L
`=1{t`}]⊎M

m=0Bm where {t`} is the set of states of a trivial MEC, Bm is the set of states
of a BMEC and Sk’s are the set of states of the other MECs. By convention,
B0 = {s+}.

The set of MECs can be computed in polynomial time by Algorithm 1, de-
signed in [5]. As we will adapt it in Section 4, let us describe its main features.
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Algorithm 1: MECs computation in MDP

Input: an MDP M = (S, αM, δM)
Output: SM, the set of MECs of M
Data: stack, a stack of sub-MDPs

1 Push(stack,M); SM← ∅
2 while not Empty(stack) do
3 (S′, α′)← Pop(stack)
4 for s ∈ S′ and a ∈ α′ ∩A(s) do
5 for s′ ∈ S do
6 if δM(s′|s, a) > 0 and s′ /∈ S′ then α′ ← α′ \ {a}

7 Compute the strongly connected components of G(S′,α′):
S1, . . . , SK

8 if K > 1 then
9 for i = 1 to K do Push(stack, (Si, α

′ ∩
⋃
s∈Si A(s)))

10 else SM← SM∪ {(S′, α′)}
11 return SM

The algorithm manages a stack of sub-MDPs whose subsets of states are dis-
joint. Initially, it pushes on the stack the original MDP. At the beginning of
an iteration, it pops a sub-MDP (S′, α′). Then, the loop of line 4 deletes any
action from α′ that has a non null probability to exit S′. Thus after this trans-
formation, the sub-MDP fulfils condition (i) of Definition 3 (i.e. it is an MDP).
Line 7 builds the strongly connected components of the graph corresponding to
the sub-MDP. If the graph is strongly connected (K = 1) then the sub-MDP
fulfils condition (ii) and, being a (maximal) end component, is added to the set
of MECs. Otherwise, every strongly connected component, and its associated
set of actions, are pushed into the stack.

The next proposition is the key ingredient of our approach.

Proposition 1. LetM be an MDP such that its MEC decomposition only con-
tains trivial MECs and arbitrary BMECs, i.e. S =

⊎L
`=1{t`}]

⊎M
m=0Bm. Then:

1. There is a partition of S =
⊎

06i6I Gi such that G0 =
⊎M
m=0Bm and for

all 1 6 i 6 I, for all s ∈ Gi and all a ∈ A(s) there exists s′ ∈
⋃
j<iGj

such that δM(s′|s, a) > 0.

2. Let η be the smallest positive probability occurring in the distributions of
M. Then for all n ∈ N, and for all s ∈ S, Prmax

M,s(G
6nI ¬G0) 6 (1− ηI)n.

3. For all s ∈ S, Prmax
M,s(G¬G0) = 0.

Proof. 1. One builds the partition of S by induction. We first let G0 =⊎M
m=0Bm. Then, assuming that G0, . . . , Gi have been defined, we let
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Gi+1 = {s ∈ S \
⋃
j6iGj | ∀a ∈ A(s) ∃s′ ∈

⋃
j6iGj δM(s′|s, a) > 0}. The

construction stops when some Gi is empty.

Let GI be the last non-empty set. If S′ = S \
⋃
i6I Gi 6= ∅, then S′, along

with its actions that stay in S′, constitutes an MDP. So it contains a
BMEC but this contradicts the fact that the states of S′ are trivial MECs
of M. Thus S =

⋃
i6I Gi.

2. Consequently, for all states s and deterministic policies σ (that are suffi-
cient as already noticed), there is a path of length at most I in Mσ from
s to ρ with last(ρ) ∈ G0. This proves that PrσM,s(G

6I ¬G0) 6 (1 − ηI),
where η stands for the smallest positive probability occurring in the dis-
tributions of M.

One observes that the path property G6n ¬G0 only depends on the prefix
of length n. There is only a finite number of deterministic policies up to n
and we denote σn the deterministic policy that achieves Prmax

M,s(G
6n ¬G0),

for all states s. Observe also that after a path of length k < n leading to
a state s /∈ G0, policy σn may behave as policy σn−k starting in s. Thus,
for all s ∈ S and n ∈ N:

Pr
σ(n+1)I

M,s (G6(n+1)I ¬G0) =
∑
s′ /∈G0

Pr
σ(n+1)I

M,s (F=I s′)PrσnIM,s′(G
6(n+1)I ¬G0)

6
( ∑
s′ /∈G0

Pr
σ(n+1)I

M,s (F=I s′)
)

max
s′ /∈G0

PrσnIM,s′(G
6(n+1)I ¬G0)

6 (1− ηI) max
s′ /∈G0

PrσnIM,s′(G
6(n+1)I ¬G0) .

So by induction, one obtains the second assertion.

3. The last assertion is a straightforward consequence of the previous one.�

This proposition shows the interest of eliminating MECs that are neither
trivial ones nor BMECs. A quotienting of an MDP has been introduced in [5,
Algorithm 3.3] in order to decrease the complexity of the computation for reach-
ability properties. We now introduce two variants of reductions for MDPs de-
pending on the kind of probabilities we want to compute.

2.3. Characterisation of minimal reachability probabilities

We start with the reduction in the case of minimal reachability probabili-
ties. It merges all non-trivial MECs different from ({s+}, {loop+}) into a fresh
state s−: all these states merged into s− will have a zero minimal reachability
probability.

Definition 4 (min-reduction). LetM be an MDP with the partition of S =⊎K
k=1 Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm. The min-reduced M• = (S•, αM• , δM•) is

defined by:
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f, 0.8

loop+

loop−

Figure 1: Min-reduction of an MDP

• S• = {s−, s+, t1, . . . , tL}, and for all s ∈ S, s• is defined by: (1) s• = t` if
s = t`, (2) s• = s+ if s = s+, and (3) s• = s− otherwise.

• A•(s−) = {loop−}, A•(s+) = {loop+} and for all 1 6 ` 6 L, A•(t`) =
A(t`).

• For all 1 6 `, `′ 6 L, a ∈ A•(t`),

δM•(s−|t`, a) = δM(
⋃K
k=1Sk ∪

⋃M
m=1Bm|t`, a),

δM•(s+|t`, a) = δM(s+|t`, a),

δM•(t`′ |t`, a) = δM(t`′ |t`, a),

δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .

An MDP M is called min-reduced if M = N • for some MDP N . The min-
reduction of an MDP is illustrated in Fig. 1. The single trivial MEC ({t}, ∅) is
preserved while MECs ({b, b′}, {d, e}) and ({s, s′}, {a, c}) are merged in s−.

Proposition 2. Let M be an MDP and M• be its min-reduced MDP. Then
for all s ∈ S, Prmin

M,s(F s+) = Prmin
M•,s•(F s+).

Proof. Consider any non trivial MEC of M different from (s+, {loop+}). Us-
ing actions of the MEC, there is a policy σstay that ensures to stay forever in
this MEC. So Prmin

M,s(F s+) = 0 = Prmin
M•,s−(F s+) for any state s of this MEC.

Given any policy σ of M, we modify it by following policy σstay when
entering a non trivial MEC. This transformation cannot increase the probability
to reach s+. Such a policy can then be applied to M• until it reaches either
s− or s+ leading to the same probability to reach s+. The transformation of a
policy ofM• into a policy ofM with the same reaching probabilities is similar.

�

We now establish another property of the min-reduced MDP that allows us
to use Proposition 1.

Lemma 1. Let M• be the min-reduced MDP of an MDP M. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.
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Proof. Assume that there is a subset S′ = {ti1 , . . . , tin} ⊆ {t1, . . . , tL} such
that (S′, α′) is a non trivial MEC of M• for some α′. By construction of M•,
(S′, α′) is an end component of M. Using maximality of the MECs of M, one
obtains, n = 1 and α′ = ∅ which contradicts the assumption. �

In order to characterise PrσM(F s+) with a fixed point equation, we define
the set of S-vectors as V = {x = (xs)s∈S | ∀s ∈ S \ {s−, s+} 0 6 xs 6 1∧xs+ =
1 ∧ xs− = 0}. We also introduce the operator fmin : V → V by letting for all
x ∈ V

fmin(x)s = min
a∈A(s)

∑
s′∈S

δM(s′|s, a)xs′

for every s ∈ S \ {s−, s+}, fmin(x)s− = 0 and fmin(x)s+ = 1.
We claim that there is a single fixed point of fmin. In order to establish that

claim, given a stationary deterministic strategy σ, we introduce the operator
fσ : V → V defined for all x ∈ V by:

fσ(x)s =
∑
s′∈S

δM(s′|s, σ(s))xs′

for every s ∈ S \ {s−, s+}, fσ(x)s− = 0 and fσ(x)s+ = 1.

Lemma 2. LetM be a min-reduced MDP. Then PrσM(F s+) is the unique fixed
point of fσ.

Proof. We define a sequence (xn)n∈N as follows: x0 is defined by x0s+ = 1 and

x0s = 0 for s 6= s+, and for all n ∈ N, xn+1 = fσ(xn). By induction, we obtain
that xn = PrσM(F6n s+). Since {π ∈ PathM,s | π |= F s+} =

⋃
n∈N{π ∈

PathM,s | π |= F6n s+}, we have PrσM(F s+) = limn→∞ PrσM(F6n s+) =
limn→∞ xn. Because fσ is continuous, PrσM(F s+) is then a fixed point of fσ.

Define the square matrix Pσ over S \ {s−, s+} by Pσs,s′ = δM(s′|s, σ(s)) and
vector vσ by vσs = δM(s+|s, σ(s)). Due to Lemma 1 and Proposition 1, all states
of S \ {s−, s+} are transient in Mσ implying that Id− Pσ is invertible (where
Id denotes the identity matrix). Hence, there is a single fixed point of fσ whose
restriction to S \ {s−, s+} is (Id− Pσ)−1 vσ. �

Proposition 3. LetM be a min-reduced MDP. Then Prmin
M (F s+) is the unique

fixed point of fmin and it is obtained by a stationary deterministic policy.

Proof. Let us define vector v by vs = Prmin
M,s(F s+). We first establish that v

is a fixed point of fmin. We decompose a σ as selecting a first move given by a
distribution p on A(s) and then applying a policy σ′. Hence,

PrσM,s(F s+) =
∑

a∈A(s)

p(a)
∑
s′∈S

δM(s′|s, a)Prσ
′

M,s′(F s+)

>
∑

a∈A(s)

p(a)
∑
s′∈S

δM(s′|s, a) vs′ > min
a∈A(s)

∑
s′∈S

δM(s′|s, a) vs′ .

10



By minimising over σ arbitrary, one obtains:

vs > min
a∈A(s)

∑
s′∈S

δM(s′|s, a)vs′ .

Let ε > 0 and σ′ be a policy such that for all s ∈ S, Prσ
′

M,s(F s+) 6 vs +
ε. We define a policy σ that in state s selects an action a that minimizes∑
s′∈S δM(s′|s, a)Prσ

′

M,s′(F s+) and then applies σ′. We have

vs 6 Pr
σ
M,s(F s+) = min

a∈A(s)

∑
s′∈S

δM(s′|s, a)Prσ
′

M,s′(F s+)

6 ε+ min
a∈A(s)

∑
s′∈S

δM(s′|s, a)vs′

Since the inequality holds for any ε, we obtain

vs 6 min
a∈A(s)

∑
s′∈S

δM(s′|s, a)vs′ .

We finally conclude that v is a fixed point of fmin by combining the two inequal-
ities.

We then show that stationary deterministic policy suffices. We define a
stationary deterministic σ as follows for every state s ∈ S \ {s−, s+}: σ(s) is an
action a ∈ A(s) that minimizes

∑
s′∈S δM(s′|s, a) vs. Thus fσ(v) = fmin(v) = v.

Due to Lemma 2, v = (PrσM,s(F s+))s∈S .

We finally prove the uniqueness of the fixed point. For that purpose, let v′

be any fixed point of fmin. With a similar reasoning as the previous one, we get
that v′ is a fixed point of fσ′ for some stationary deterministic policy σ′. Then:

fσ′(v
′ − v) = fσ′(v

′)− fσ′(v) = v′ − fσ′(v) 6 v′ − fmin(v) = v′ − v .

We define Pσ
′

over S \ {s−, s+} as in Lemma 2. When vectors are restricted to
S \ {s−, s+}, the previous inequalities can be rewritten as Pσ

′
(v′ − v) 6 v′ − v.

Iterating one gets (Pσ
′
)n(v′−v) 6 v′−v. Since inMσ′ , all states of S\{s−, s+}

are transient, limn→∞(Pσ
′
)n = 0. Hence, 0 6 v′ − v, i.e. v 6 v′, which shows

that v is the least fixed point of fmin. To show the uniqueness of the fixed point,
let us now apply fσ to v′ − v, instead of fσ′ :

fσ(v′ − v) = fσ(v′)− fσ(v) = fσ(v′)− v > fmin(v′)− v = v′ − v > 0 .

With the same argument using the matrix Pσ, and transient states of S \
{s−, s+}, we obtain that v′ − v = 0, i.e. v′ = v. �

2.4. Characterisation of maximal reachability probabilities

The reduction for maximal reachability probabilities is more complex. In-
deed, we cannot merge any non-trivial MEC different from ({s+}, {loop+}) into
the state s− anymore, since some of these states may have a non-zero maximal
reachability probability. Hence, we consider a fresh state sk for each MEC Sk
deleting actions that may not exit from Sk, and simply merge all BMECs Bm’s
different from ({s+}, {loop+}) into state s−.

11
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Figure 2: Max-reduction of an MDP

Definition 5 (max-reduction). Let M be a MDP with the partition of S =⊎K
k=1 Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm. Then the max-reducedM• = (S•, αM• , δM•)

is defined by:

• S• = {s−, s+, t1, . . . , tL, s1, . . . , sK}. For all s ∈ S, one defines s• by: (1)
s• = t` if s = t`, (2) s• = s+ if s = s+, (3) s• = sk if s ∈ SK , and (4)
s• = s− otherwise.

• A•(s−) = {loop−}, A•(s+) = {loop+} for all 1 6 ` 6 L, A•(t`) = A(t`),
and for all 1 6 k 6 K, A•(sk) = {a | ∃s ∈ Sk a ∈ A(s)∧Supp(δM(s, a)) *
Sk}.

• For all 1 6 `, `′ 6 L, a ∈ A•(t`), 1 6 k, k′ 6 K, b ∈ A•(sk) ∩ A(s) with
s ∈ Sk,

δM•(s−|t`, a) = δM(
⋃M
m=1Bm|t`, a), δM•(s+|t`, a) = δM(s+|t`, a),

δM•(t`′ |t`, a) = δM(t`′ |t`, a), δM•(sk|t`, a) = δM(Sk|t`, a),

δM•(s−|sk, b) = δM(
⋃M
m=1Bm|s, b), δM•(s+|sk, b) = δM(s+|s, b),

δM•(t`|sk, b) = δM(t`|s, b), δM•(sk′ |sk, b) = δM(Sk′ |s, b),
δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .

Once again, we say that an MDP M is max-reduced if it is obtained as
a max-reduction. Observe that M• is indeed an MDP since A•(sk) cannot be
empty (otherwise Sk would be BMEC). Fig. 2 illustrates the max-reduction of an
MDP. The single trivial MEC ({t}, ∅) is preserved while MEC ({b, b′}, {d, e}) is
merged in s−. The MEC ({s, s′}, {a, c}) is now merged into s1 with only action
g preserved.

The following propositions are similar to Proposition 2 and Lemma 1 for the
min-reductions.

Proposition 4 ([5, Theorem 3.8]). Let M be an MDP and M• be its max-
reduced MDP. Then for all s ∈ S, Prmax

M,s(F s+) = Prmax
M•,s•(F s+).

Lemma 3. LetM• be the max-reduced MDP of an MDPM. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.

12



Proof. Assume that there is a subset: S′ = {ti1 , . . . , tin , sj1 , . . . , sjn′} ⊆
{t1, . . . , tL, s1, . . . , sK} such that (S′, α′) is a non trivial MEC of M• for some
α′. Let us consider S′′ = {ti1 , . . . , tin}∪Sj1 ∪· · ·∪Sjn′ . By construction ofM•,
(S′′, α′) is an end component of M.
Case 1: n′ = 0. Using maximality of the MECs of M, one obtains n = 1 and
α′ = ∅ which contradicts the assumption.
Case 2: n′ > 0. Using maximality of the MECs of M, one obtains n = 0 and
n′ = 1. Let s ∈ Sj1 such that there exists a ∈ α′. Then Supp(δM(s, a)) ⊆ Sj1
which contradicts the definition of the max-reduction. �

As for minimal reachability probabilities, we introduce fmax : V → V as an
operator mapping every x ∈ V to

fmax(x)s = max
a∈A(s)

∑
s′∈S

δM(s, a)(s′)xs′

for all s ∈ S \ {s−, s+}, fmax(x)s− = 0 and fmax(x)s+ = 1.
We observe that Lemma 3 combined with Proposition 1 ensures that in a

max-reduced MDPM, for any policy σ, S \ {s−, s+} is a set of transient states
of Mσ. Thus Lemma 2 holds for max-reduced MDPs and using a proof very
close to the one of Proposition 3, one obtains the following proposition:

Proposition 5. LetM be a max-reduced MDP. Prmax
M (F s+) is the unique fixed

point of fmax and it is obtained by a stationary deterministic policy.

Discussion. Usually, algorithms that compute maximal and minimal reachabil-
ity probabilities first determine the set of states for which those probabilities
are 0 or 1, and merge them in states s− and s+ respectively (see for instance [6,
Algorithms 1-4]). This preliminary transformation is performed via graph-based
methods ignoring the actual values of the positive probabilities of the MDP (as
for the MEC decomposition). For the case of minimal reachability probabili-
ties, the MDP obtained after this transformation—which is a quotient of our
M•—fulfils the hypotheses of Proposition 1 and our further development is still
valid.

Unfortunately, our development is no more valid for the MDP obtained in
the maximal case: for instance, for the MDP on the left of Fig. 2, the obtained
MDP, that we call M′, simply merges {b, b′} into s−, without merging {s, s′}
(since the maximal probability to reach s+ from s or s′ is equal to 0.5, when
choosing action g in s′, different from 0 or 1). Indeed, Proposition 5 does not
hold either in M′ for maximal probabilities2. In fact, the vector of maximal
probabilities in the transformed MDP is only the smallest fixed point of fmax,
as it can be verified for the MDP M′. Indeed, the reader can check that the
vector which is equal to 0 for s−, 0.7 for t, and 1 for all the other states is also

2This is already observed in [6], but a wrong statement is made in [1, Theorem 10.100]
(they instead claim the unicity of the fixed point, without any assumptions on the MDP).
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a fixed point of fmax, whereas the maximal reachability probability to reach
s+ from s or s′ is equal to 0.5. Notice that in the max-reduction M• of this
MDP, the MEC ({s, s′}, {a, c}) is merged into a single state, hence removing
this non-unicity problem, as shown in Proposition 5.

While this issue does not preclude the standard computation of the proba-
bilities, the approach we have followed enables us to solve the convergence issues
of the previous methods. This is our main contribution, and is the subject of
the next section.

3. Value iteration for reachability objectives

This section presents the value iteration algorithm used, for example in
PRISM [11], to compute optimal reachability probabilities of MDPs. After stat-
ing convergence issues of this method, we give a new algorithm, called interval
iteration algorithm, and the guarantees that it provides.

3.1. Convergence issues

The idea of the value iteration algorithm is to compute the fixed points of
fmin and fmax (more precisely, the smallest fixed points of fmin and fmax) by
iterating them on a given initial vector, until a certain convergence criterion

is met. More precisely, as recalled in [6], we let x(0) defined by x
(0)
s+ = 1 and

x
(0)
s = 0 for s 6= s+ (observe that x(0) is the minimal vector of V for the pointwise

order over V), and we then build one of the two sequences x = (x(n))n∈N or
x = (x(n))n∈N defined by

• x(0) = x(0) and for all n ∈ N, x(n+1) = fmin(x(n));

• x(0) = x(0) and for all n ∈ N, x(n+1) = fmax(x(n)).

Since fmin and fmax are monotone operators and due to the choice of the ini-
tial vector, x and x are non-decreasing bounded sequences, hence convergent.
Let x(∞) and x(∞) their respective limits. Since fmin and fmax are continu-
ous, x(∞) (respectively, x(∞)) is a fixed point of fmin (respectively, fmax). Due
to Propositions 3 and 5, x(∞) is the vector Prmin

M (F s+) of minimal reachabil-
ity probabilities and x(∞) is the vector Prmax

M (F s+) of maximal reachability
probabilities.

In practice, several stopping criteria can be chosen. In the model-checker
PRISM [11], two criteria are implemented. For a vector x ∈ V, we let ‖x‖ =
maxs∈S |xs|. For x ∈ {x, x} and a given threshold ε > 0, the absolute criterion
consists in stopping once ‖x(n+1) − x(n)‖ 6 ε, whereas the relative criterion

considers max
s∈S s.t. x

(n+1)
s 6=0

|x(n+1)
s − x(n)s |/x(n+1)

s 6 ε. However, as noticed

in [6], no guarantee is obtained when using such value iteration algorithms,
whatever the stopping criterion. As an example, consider the MDP (indeed the
Markov chain) of Fig. 3. By symmetry, it is easy to check that (minimal and
maximal) reachability probability of s+ = 0 in state n is 1/2. However, if ε is
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Figure 3: An MDP—indeed, a Markov chain, where actions are not drawn— with problems
of convergence in value iteration

chosen as 1/2n (or any value above), the sequence of vectors computed by the
value iteration algorithm will be

x(0) = (1, 0, 0, . . . , 0, 0, . . . , 0)

x(1) = (1, 1/2, 0, . . . , 0, 0, . . . , 0)

x(2) = (1, 1/2, 1/4, . . . , 0, 0, . . . , 0)

...

x(n) = (1, 1/2, 1/4, . . . , 1/2n, 0, . . . , 0)

at which point the absolute stopping criterion is met. Hence, the algorithm

outputs x
(n)
n = 1/2n as the reachability probability of s+ = {0} in state n.

Example 1. The use of PRISM confirms this phenomenon. On this MDP,
choosing n = 10 and threshold ε = 10−3 < 1/210, the absolute stopping criterion
leads to the probability 9.77×10−4 ≈ 1/210 (after 10 steps of iteration), whereas
the relative stopping criterion leads to the probability 0.198 (after 780 steps of
iteration). It has to be noticed that the tool indicates that the value iteration
has converged, and does not warn the user that a possible problem may have
occurred.

We consider a slight modification of the algorithm in order to obtain a strong
convergence guarantee when stopping the value iteration algorithm. We will
provide (1) stopping criteria for approximation and exact computations and,
(2) rate of convergence.

3.2. Stopping criterion for ε-approximation

Here, we introduce two other sequences. For that, let vector y(0) be the

maximal vector of V, defined by y
(0)
s− = 0 and y

(0)
s = 1 for s 6= s−. We then

define inductively the two sequences y and y of vectors by

• y(0) = y(0) and for all n ∈ N, y(n+1) = fmin(y(n));
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Algorithm 2: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S, αM, δM), convergence threshold ε
Output: Under- and over-approximation of Prmin

M (F s+)
1 xs+ := 1; xs− := 0; ys+ := 1; ys− := 0
2 foreach s ∈ S \ {s+, s−} do xs := 0; ys := 1
3 repeat
4 foreach s ∈ S \ {s+, s−} do
5 x′s := mina∈A(s)

∑
s′∈S δM(s, a)(s′)xs′

6 y′s := mina∈A(s)

∑
s′∈S δM(s, a)(s′) ys′

7 δ := maxs∈S(y′s − x′s)
8 foreach s ∈ S \ {s+, s−} do x′s := xs; y

′
s := ys

9 until δ 6 ε
10 return (xs)s∈S , (ys)s∈S

• y(0) = y(0) and for all n ∈ N, y(n+1) = fmax(y(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y(∞) and y(∞) re-
spectively, are the minimal (respectively, maximal) reachability probabilities.
In particular, notice that x and y, as well as x and y, are adjacent sequences,
and that

x(∞) = y(∞) = Prmin
M (F s+) and x(∞) = y(∞) = Prmax

M (F s+) .

Let us first consider a min-reduced MDPM. Then, our new value iteration
algorithm computes both in the same time sequences x and y and stops as soon

as ‖y(n) − x(n)‖ 6 ε. In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Prmin

M (F s+)
with precision at least ε on every component. Because of the simultaneous
computation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 2. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 1. For every min-reduced (respectively, max-reduced) MDP M, and
convergence threshold ε, if the interval iteration algorithm returns the vectors x
and y on those inputs, then Prmin

M,s(F s+) (respectively, Prmax
M,s(F s+)) is in the

interval [xs, ys] of length at most ε, for all s ∈ S.

For the MDP of Example 1, we can check that the algorithm converges
after 10548 steps, and outputs, for the initial state s = n, xn = 0.4995 and
yn = 0.5005, giving a good confidence to the user.
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Figure 4: Another MDP (indeed, a Markov chain) with less iterations for the initial state

Notice that it is possible to speed up the convergence if we are only interested
in the optimal reachability probability of a given state s0. Indeed, because of
the use of adjacent sequences, we can simply replace the stopping criterion

‖y(n) − x(n)‖ 6 ε by y
(n)
s0 − x

(n)
s0 6 ε.

Example 2. Let us look at the MDP (in fact a Markov chain) of Fig. 4 with
initial state s0 = n. Assume that we select threshold ε = 2−(n−1). For state s0,
the algorithm stops after n−1 iterations with interval

[
1
3 ,

1
3 (1 + 2−(n−2))

]
for the

reachability probability. However, for the reaching probability of state 1, the in-

terval after k iterations is
[

1
2n

∑
06i<k(1− 1

n )i, 1
2n

∑
06i<k(1− 1

n )i + (1− 1
n )k
]
.

So it will stop when (1− 1
n )k 6 2−(n−1), i.e. k > − (n−1)

log2(1− 1
n )

implying k = Θ(n2).

3.3. Rate of convergence

In this section, we establish guarantees on the rate of convergence of the
interval iteration algorithm. Notice that the results will also apply to the usual
value iteration algorithm, even though the proof strongly relies on the introduc-
tion of adjacent sequences.

Lemma 4. Let M be a min-reduced (respectively, max-reduced) MDP and n ∈
N. Then x(n) = Prmin

M (F6n s+) and y(n) = Prmin
M (G6n ¬s−) (respectively,

x(n) = Prmax
M (F6n s+) and y(n) = Prmax

M (G6n ¬s−)).

Proof. All proofs are similar. So we only establish the first assertion by in-
duction on n. More precisely we simultaneously prove the equality and the
existence of a policy σn that achieves Prmin

M (F6n s+).
Let n = 0. The definition of x(0) is exactly Prmin

M (s+) = PrσM(s+) for any
policy σ. So σ0 can be arbitrarily chosen.

Assume that the inductive assertion holds for n. Define the policy σn+1

selecting for each state s an action achieving the minimum

min
a∈A(s)

(∑
s′∈S

δM(s′|s, a)Prmin
M,s(F

6n s+)
)
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and then applies σn. Thus:

Pr
σn+1

M (F6n+1 s+) = fmin(PrσM(F6n s+)) = fmin(x(n)) = x(n+1) .

Let σ be an arbitrary policy that uses some distribution p over A(s) and
then applies some σa,s′ depending on the selected action and the target state.
Then:

PrσM,s(F
6n+1 s+) =

∑
s′∈S

∑
a∈A(s)

p(a)δM(s′|s, a)Pr
σa,s′

M,s′(F
6n s+)

>
∑
s′∈S

∑
a∈A(s)

p(a)δM(s′|s, a)Prmin
M,s′(F

6n s+)

> min
a∈A(s)

(∑
s′∈S

δM(s′|s, a)Prmin
M,s′(F

6n s+)

)
= Pr

σn+1

M,s (F6n+1 s+) �

In the sequel, we assume that there is at least one transition probability
0 < δ 6 1

2 (otherwise the problems are trivial). To state the property in a
uniform way, an MDP is said to be reduced if it is either min-reduced or max-
reduced depending on the probability we want to compute.

Theorem 2. For a reduced MDP M, and a convergence threshold ε, the in-
terval iteration algorithm converges in at most Id log ε

log(1−ηI)e steps, where I is

the integer of Proposition 1 and η is the smallest positive transition probability
of M.

Proof. Let σ be the policy corresponding to the minimal probability of sat-
isfying G6n ¬s− and σ′ be the policy corresponding to the minimal proba-
bility of satisfying F6n s+. In particular, notice that PrσM,s(G

6nI ¬s−) 6

Prσ
′

M,s(G
6nI ¬s−).

Since G6n ¬s− holds if either G6n ¬{s−, s+} or F6n s+ is true (exclusive
disjunction), we have for all s ∈ S,

Prmin
M,s(G

6nI ¬s−)− Prmin
M,s(F

6nI s+) = PrσM,s(G
6nI ¬s−)− Prσ

′

M,s(F
6nI s+)

6 Prσ
′

M,s(G
6nI ¬s−)− Prσ

′

M,s(F
6nI s+)

= Prσ
′

M,s(G
6nI ¬{s−, s+}) 6 (1− ηI)n

due to Proposition 1.
Using Lemma 4, we have ‖y(nI) − x(nI)‖ 6 (1 − ηI)n. In conclusion, the

stopping criterion is met when (1 − ηI)n 6 ε, i.e. after at most Id log ε
log(1−ηI)e

steps.
A similar proof can be made for maximal probabilities. �

It may also be noticed, from similar arguments, that for all n, ‖y((n+1)I) −
x((n+1)I)‖ 6 (1 − ηI)‖y(nI) − x(nI)‖ (and similarly for the maximum case),
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implying that the value iteration algorithm has a linear rate of convergence,
that is I

√
1− ηI .

Remark 1. One may use this convergence rate to delay the computation of
one of the two adjacent sequences of Algorithm 2. Indeed assume that one only
computes x(n) until step n. In order to get the stopping criterion provided by

the adjacent sequences, one sets the upper sequence with y
(n)
s := min(x

(n)
s +

(1−ηI)bnI c, 1) for all s /∈ {s−, s+}, y(n)s+ := 1, and y
(n)
s− := 0 and then applies the

algorithm. In the favorable cases, this could divide by almost 2 the computation
time.

3.4. Stopping criterion for exact computation

In [3], a convergence guarantee was given for MDPs with rational transi-
tion probabilities. For such an MDP M, let d be the largest denominator of
transition probabilities (expressed as irreducible fractions), N the number |S| of
states, and M the number of transitions with non-zero probabilities. A bound
γ = d4M was announced so that, after γ2 iterations, the obtained probabilities
lie in intervals that could only contain one possible probability value for the
system, permitting to claim for the convergence of the algorithm. So after γ2

iterations, the actual probability might be computed by considering the rational
of the form α/γ closest to the current estimate3.

Using our simultaneous computation of under- and over-approximations of
the probabilities, we provide an alternative stopping criterion for exact compu-
tation that moreover exhibits an optimal policy.

Theorem 3. Let M be a reduced MDP with rational transition probabilities.
Optimal reachability probabilities and optimal policies can be computed by the
interval iteration algorithm in at most 4N3d(1/η)N ln de steps.

Proof. Consider our interval iteration algorithm with the threshold ε = 1/2α
where α is the greatest denominator of probabilities in the optimal reachability
probabilities x(∞) and fσ(x(∞)) for all stationary deterministic policies σ. When
the stopping criterion ‖y(n) − x(n)‖ < 1/2α is met, we know that the optimal
reachability probability is the only vector of rationals β/α ∈ [x(n), y(n)] with β ∈
{0, . . . , α}. Moreover, consider the stationary deterministic policy σn induced
by x(n) at this step n of the algorithm, i.e. such that x(n+1) = fσn(x(n)). We
claim that σn is an optimal policy. Indeed, we have:

‖fσn(x(∞))− x(∞)‖ 6 ‖fσn(x(∞))− x(n+1)‖+ ‖x(n+1) − x(∞)‖
< ‖fσn(x(∞))− fσn(x(n))‖+ 1/2α (stopping criterion)

6 ‖x(∞) − x(n)‖+ 1/2α (since fσn is 1-Lipschitz)

< 1/α (stopping criterion)

3However, no proof of this result is given in [3].
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Since both x(∞) and fσn(x(∞)) are composed of probabilities of the form β/α
with β ∈ {0, . . . , α}, we conclude that fσn(x(∞)) = x(∞). By unicity of the fixed
point of fσn (Lemma 2 and observation before Proposition 5), we know that σn
is an optimal policy.

We now give an upper bound for α, depending on d and N . Let σ be any de-
terministic optimal policy (that exists because of Propositions 3 and 5). Letting,
as in Lemma 2, Pσ be the transition matrix of the Markov chainMσ restricted
to the transient states S \{s−, s+}, and vσ the one-step reachability probability
(see the proof of Lemma 2), we obtain (Id − Pσ)x(∞) = vσ (here x(∞) is also
restricted to S \ {s−, s+}). Consider the matrix A′ obtained from Id − Pσ by
multiplying its sth column by the greatest common multiple ds of denomina-

tors of coefficients in this column. Then, the vector u = (x
(∞)
s /ds)s∈S\{s−,s+}

verifies A′u = vσ. Moreover, A′ is a matrix of integers in {−dN , . . . , dN} since
ds 6 dN for all s. Multiplying both sides by the greatest common multiple
of denominators of coefficients of vσ which is at most dN , we obtain Au = b
where the coefficients of A are integers in {−d2N , . . . , d2N} and b is a vector
of integers. Since u = A−1b, the Cramer formula shows that every coefficient
of u is rational with denominator equal to |detA|. This implies that every
coefficient of x(∞) is also a rational with denominator |detA|. Observe that

|detA| 6 N !(d2N )N 6 NNd2N
2

. Consider now fσ′(x
(∞)) for any deterministic

policy σ′. The least common multiple of the denominators of the coefficients of
Pσ
′

is bounded by dN
2

. So α, the common denominator of every coefficient of
fσ′(x

(∞)) and x(∞), is at most NNd3N
2

. Thus, ln(α) 6 N lnN + 3N2 ln d.
By using Theorem 2, we know that the threshold ε = 1/2α is met after a

number of steps at most

I

⌈
log(1/2α)

log(1− ηI)

⌉
= I

⌈
ln(2α)

− ln(1− ηI)

⌉
6 I

⌈
ln(2α)

ηI

⌉
noticing that − ln(1 − x) > x for x ∈ (0, 12 ]. Bounding I by N , and using the
inequality for lnα, we obtain as an upper bound

Nd(1/η)N (ln 2 +N lnN + 3N2 ln d)e 6 4N3d(1/η)N ln de

since ln 2 +N lnN 6 N2 for all N > 1. �

The theorem also holds for the value iteration algorithm. Observe that our
stopping criterion is significantly better than the bound d8M claimed in [3]
since N 6M and 1/η 6 d. Furthermore M may be in Ω(N2) even with a single
action per state and 1/η may be significantly smaller than d as for instance in
the extreme case η = 1

2 −
1

10n and d = 10n for some large n.

4. Interval Markov Decision Processes

In [13], interval Markov chains were introduced to model uncertainties in
the probability distributions of Markov chains. Two semantics of this model
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have been proposed: either an uncountable set of Markov chains obtained by
fixing the possible transition probabilities, denoted by UMC (uncertain Markov
chain), or an MDP where the actions are bound to choose these transition
probabilities, denoted by IMDP (interval Markov decision process). Here we
consider the latter semantic. For this model, PCTL model-checking, and there-
fore the computation of minimal or maximal reachability probabilities, is shown
to be decidable in PSPACE (later dropped from PSPACE to coNP [4]). A value
iteration algorithm is also developed to approximate these values with a simple
iteration scheme. However, the previous problems regarding the convergence of
value iteration are still valid, and no guarantee is given to the user of a value it-
eration algorithm in the context of IMDPs. Therefore, we extend our technique
in this context. We begin by recalling the basic definitions of IMDPs. In fact,
we slightly extend the model of [13, 4] by adding actions: on top of allowing for
more behaviours, this keeps the formalism closer to the MDP formalism.

Definition 6. An interval Markov decision process (IMDP) is a tuple M =

(S, αM, qδM, δ̂M) where

• S is a finite set of states;

• αM =
⋃
s∈S A(s) where every A(s) is a non empty finite set of actions

with A(s) ∩A(s′) = ∅ for all s 6= s′;

• qδM : S × αM → [0, 1]S associates with each pair (s, a) a lower bound on
the distribution of transition probabilities to the next state; and

• δ̂M : S ×αM → [0, 1]S associates with each pair (s, a) an upper bound on
the distribution of transition probabilities to the next state.

In particular, we require that for all triples (s, a, s′), qδM(s, a)(s′) 6 δ̂M(s, a)(s′),

and that
∑
s′∈S

qδM(s, a)(s′) 6 1 6
∑
s′∈S δ̂M(s, a)(s′).

As before, we also denote by qδM(s′|s, a) (respectively, δ̂M(s′|s, a)) the prob-

ability qδM(s, a)(s′) (respectively, δ̂M(s, a)(s′)). The semantics is based on the
idea that the non-determinism on the choice of actions, and on the choice of
probability distributions, is resolved by some policy, at each step of the com-
putation. Then, a random choice on the successor is chosen according to the
previous probability distribution. Therefore, it is useful to characterise the set
of possible probability distributions that satisfy the constraints described by qδM
and δ̂M. For an action a ∈ A(s) (s is uniquely defined thanks to the assumption
on the set of actions of the IMDP), we let

Steps(a) = {p ∈ Dist(S) | ∀s′ ∈ S qδM(s′|s, a) 6 p(s′) 6 δ̂M(s′|s, a)} .

The assumptions on qδM and δ̂M ensure that this set is non-empty. We keep
as a notion of infinite path a sequence π = s0

a0−→ s1
a1−→ · · · such that si ∈ S,

ai ∈ A(si) for all i ∈ N. Notice in particular that we do not indicate the
probability distributions of Steps(ai) in these, for a reason that will become
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clear later. Notations used for MDPs are straightforwardly extended in this
context: π(i) for si, suffixes, finite paths, etc.

In this context, a policy is now a function σ : FPathM → Dist(αM) ×
(Dist(S))αM such that for every finite path ρ ∈ FPathM, σ(ρ) = (f, g) with
Supp(f) ⊆ A(last(ρ)), and g(a) ∈ Steps(a) for all a ∈ A(last(ρ)). As before,
a policy is said deterministic when the first component of σ(ρ) is a Dirac dis-
tribution, and stationary if σ(ρ) only depends on last(ρ). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ρn = s0

a0−→ s1
a1−→

· · · an−1−−−→ sn and ρn+1 = s0
a0−→ s1

a1−→ · · · sn
an−−→ sn+1, the probability measure

is inductively defined by

PrσM,s0(ρn+1) = PrσM,s0(ρn) f(an) g(an)(sn+1)

where σ(ρn) = (f, g) ∈ Dist(αM)×
(
Dist(S)

)αM
.

This allows us to define as before the probability PrσM,s(ϕ) that a property ϕ
is satisfied along paths of the IMDPM starting in state s and following policy σ.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [13] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a ∈ A(s). Recall that it consists of all distributions

p ∈ Dist(S) such that
∑
s′∈S p(s

′) = 1, and qδM(s′|s, a) 6 p(s′) 6 δ̂M(s′|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p ∈ Dist(S)

such that for all states s′ ∈ S, except at most one, either p(s′) = qδM(s′|s, a)

or p(s′) = δ̂M(s′|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 3. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by
[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a1, . . . , a5 corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
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Figure 5: Solution and basic feasible solutions of the linear program associated with an IMDP:
circles denote basic feasible solutions, while the gray area is the set of solutions
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Figure 6: Local simulation of an IMDP by an MDP

policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP M̃ = (S, αM̃, δM̃) with the same set of

states as in M, actions αM̃ =
⊎
s∈S Ã(s) where Ã(s) = {(a, p) | a ∈ A(s), p ∈

BFS(a)}, and transitions probabilities given by δM̃
(
s′|s, (a, p)

)
= p(s′). This

MDP may have an exponential number of actions: Θ(|S|2|S|−1). It is shown

in [13, Proposition 2] that M̃ indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies σ inM, there exists a policy σ̃ in M̃ such that M̃σ̃
s =Mσ

s ;

• For all policies σ̃ in M̃, there exists a policy σ inM such thatMσ
s = M̃σ̃

s .
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The existence of optimal deterministic stationary policies in the MDP M̃ en-
sures the existence of optimal deterministic stationary policies in the IMDPM
playing distributions p that are basic feasible solutions of the linear programs.

Using this simulation of IMDPs by MDPs, a value iteration algorithm to
compute the maximal (or minimal) probability to reach a state s+ (as before
we suppose that the target is a single state with a self-loop labelled by loop+)
is proposed in [13]. The algorithm is based on the iteration of operator fmax

defined by

fmax(x)s =

1 if s = s+

max
a∈A(s)

max
p∈BFS(a)

∑
s′∈S

p(s′)xs′ otherwise.

A similar computation in the minimal case is possible. It is noticed that al-
though one iteration of the operator of fmax seems to require the study of an
exponential number of distributions p ∈ BFS(a), the computation can be done in
O(|S| log |S|). Indeed, consider the computation of maxp∈BFS(a)

∑
s′∈S p(s

′)x′s
for a given action a, and vector x. We order the states of S following a descend-
ing order with respect to the probabilities in the vector x, i.e. we consider an
ordering s1, s2, . . . , s|S| such that xs1 6 xs2 6 · · · 6 xs|S| . Using [13, Lemma 7],
we obtain

Lemma 6. There exists 1 6 i 6 |S| such that the distribution p defined by

p(s′) =


qδM(sj |s, a) if s′ = sj with 1 6 j < i

q if s′ = si

δ̂M(sj |s, a) if s′ = sj with i < j 6 |S|

with q = 1−
∑i−1
j=1 δ̂M(sj |s, a)−

∑|S|
j=i+1

qδM(sj |s, a) is a basic feasible solution
of LP(a). For this particular i,

max
p∈BFS(a)

∑
s′∈S

p(s′)x′s =

i−1∑
j=1

qδM(sj |s, a)xsj + xsiq +

|S|∑
j=i+1

δ̂M(sj |s, a)xsj .

For the minimal probability, we switch in the previous lemma qδM and δ̂M.
After having performed the ordering of the vector, the search for an index i
as in the lemma can be performed in O(|S|): the dominant factor in the com-
plexity is thus in the sorting, that can be achieved, e.g. in O(|S| log |S|). The
same termination problem for value iteration as in classical MDPs occurs in the
context of IMDPs. Therefore, the remaining part of this section is devoted to
the adaptation of our interval iteration paradigm for IMDPs. The main diffi-
culty is to avoid the exponential explosion triggered by the number of BFS, by
implicitly computing on the MDP simulating the IMDP, without building it.

In order to adapt our approach to IMDP, we must define and compute the
MECs of an IMDP, and build the min- and max-reduction of an IMDP. Af-
terwards, two steps of the value iteration algorithm explained above will be
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Algorithm 3: MECs computation in IMDP

Input: an IMDP M = (S, αM, qδM, δ̂M);
Output: SM, a concise representation of the set of MECs of M;
Data: stack, a stack of sub-IMDPs;

1 Push(stack,M); SM← ∅
2 while not Empty(stack) do

3 (S′, α′, qδ′, δ̂′)← Pop(stack)
4 for s ∈ S′ and a ∈ α′ ∩A(s) do

5 if qδ′(S \ S′|s, a) > 0 ∨ δ̂′(S′|s, a) < 1 then
6 α′ ← α′ \ {a}
7 else

8 for s′ /∈ S′ do δ̂′(s′|s, a)← 0

9 E ← ∅
10 for s, s′ ∈ S′ and a ∈ α′ ∩A(s) do

11 if δ̂′(s′|s, a) > 0 ∧ qδ′(S \ {s′}|s, a) < 1 then E ← E ∪ {(s, s′)}
12 compute the strongly connected components of (S′, E): S1, . . . , SK
13 if K > 1 then

14 for i = 1 to K do Push(stack, (Si, α
′ ∩
⋃
s∈Si A(s), qδ′|Si , δ̂′|Si))

15 else SM← SM∪ {(S′, α′, qδ′, δ̂′)}
16 return SM

applied in our interval iteration algorithm. Therefore, we focus on the pretreat-
ment part, i.e. the MECs computation and min- and max-reduction. In order
to keep this pretreatment polynomial, it should be implemented so that it never
enumerates the basic feasible solutions of some interval constraints.

First, MECs of an IMDP M are simply the MECs of the underlying MDP
M̃, i.e. they are sub-MDPs (S′, α′) of M̃, in particular with α′ ⊆ αM̃. In order
to avoid an exponential explosion, we represent them concisely. In particular,
we will show that such MECs are indeed of the form Ñ with N a sub-IMDP of
M: sub-IMDPs must now incorporate the interval constraints on the probability
distributions in order to recover the basic feasible solutions, therefore they are
simply IMDPs (S′, α′, qδ′, δ̂′) with ∅ 6= S′ ⊆ S, and α′ ⊆

⋃
s∈S′ A(s). Therefore,

we mimic what Algorithm 1 would have done on M̃, but directly computing
overM. This leads to Algorithm 3 where qδM(S′|s, a) denotes

∑
s′∈S′

qδM(s′|s, a)

(and similarly for δ̂M(S′|s, a)).
The next proposition establishes that MECs can be computed with no rel-

evant additional cost compared to the case of MDPs since the complexity of
Algorithm 3 has the same magnitude order as the one of Algorithm 1.

Proposition 6. Algorithm 3 computes a concise representation of the MECs
of an IMDP M in polynomial time. More precisely, it computes a set of sub-
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Figure 7: An IMDP with its MECs. Missing intervals are [1, 1].

IMDPs {Ni | 1 6 i 6 k} of M such that {Ñi | 1 6 i 6 k} is the set of MECs of

the MDP M̃.

Proof. Our proof shows that Algorithm 3 mimics the computation of Algo-
rithm 1 on the MDP M̃, in a symbolic way.

Consider the loop of line 4. It has to delete the basic feasible solutions
defined by qδM(s, a) and δ̂M(s, a) that have a non null probability to exit S′. If

δ̂M(S′|s, a) < 1 or qδM(S \ S′|s, a) > 0 then all basic feasible solutions may exit
S′: thus, the action a is deleted (line 6). Otherwise, there is at least one basic
feasible solution that ensures to remain in S′. Hence, the new constraints for a
are obtained by enforcing the probability to exit S′ to be null (line 8).

In line 8-11, the algorithm builds the graph associated with the sub-MDP
and more specifically checks whether the edge (s, s′) belongs to it as follows:

for all actions a from s in the sub-MDP, it checks whether δ̂M(s′|s, a) > 0

and qδM(S \ {s′}|s, a) < 1, that is a necessary and sufficient condition for the
existence of a basic feasible solution with a non null probability to visit s′.

After having computed the strongly connected components of the graph
(exactly as in Algorithm 1), each component is taken care of independently. �

Example 4. Consider the IMDP M depicted in Figure 7. Its MECs are de-
picted with dashed boxes. One is composed of the states s and s′, actions a and
c (not action g, due to the underlined upper bound 0.7). It represents the MEC(
{s, s′}, {(a, (s′ 7→ 1)), (c, (s 7→ 1))}

)
of the MDP M̃. During the execution of

Algorithm 3, the bold upper bound on the interval on transition labelled by c
going to state b is modified from 0.5 to 0 in line 8. Observe that in this MEC,
the lower bound 0.5 in the interval of the transition from s′ to s is not reached by
any BFS. The MEC ofM with set of states {b, b′}, and actions {d, e}, represents

the MEC of M̃
(
{b, b′}, {(d, (b′ 7→ 1)), (e, (b 7→ 0.2, b′ 7→ 0.8)), (e, (b 7→ 1))}

)
.

The state t, without any action, represents also a MEC of the IMDP (as in M̃).
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Once the MECs have been computed, the min-reduction of an IMDP M is
very close to the one of the MDP M̃. As before, we split the MECs into three
sorts: trivial ones that contain no actions, bottom ones with no actions in the
original IMDP able to exit them, and the other ones. It is still valid to merge
into s− all the non-trivial MECs different from s+. Moreover, a distribution of
the actions triggered from a trivial MEC is kept unchanged except that upper
and lower bounds for entering state s− are respectively the sums of upper and
lower bounds for entering the non trivial MECs different from s+ (up to 1 for
upper bound).

Definition 7 (min-reduction). Let M be an IMDP with the partition of

S =
⊎K
k=1 Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm given by its MEC decomposition. The

min-reduced M• = (S•, αM• , qδM• , δ̂M•) is defined by:

• S• = {s−, s+, t1, . . . , tL}, and for all s ∈ S, s• is defined by: (1) s• = t` if
s = t`, (2) s• = s+ if s = s+, and (3) s• = s− otherwise.

• A•(s−) = {loop−}, A•(s+) = {loop+}, and A•(t`) = A(t`) for all 1 6 ` 6
L.

• for all 1 6 `, `′ 6 L, and a ∈ A•(t`),

qδM•(s−|t`, a) = qδM
(⋃K

k=1Sk ∪
⋃M
m=1Bm|t`, a

)
,

δ̂M•(s−|t`, a) = min
(
δ̂M
(⋃K

k=1Sk ∪
⋃M
m=1Bm|t`, a

)
, 1
)
,

qδM•(s+|t`, a) = qδM(s+|t`, a), qδM•(t`′ |t`, a) = δ̂M(t`′ |t`, a),

δ̂M•(s+|t`, a) = δ̂M(s+|t`, a), δ̂M•(t`′ |t`, a) = δ̂M(t`′ |t`, a),

qδM•(s+|s+, loop+) = qδM(s−|s−, loop−) = 1,

δ̂M•(s+|s+, loop+) = δ̂M(s−|s−, loop−) = 1 .

We now establish the soundness of this min-reduction, i.e. thatM• is exactly
(a concise representation of) the min-reduction (M̃)• of the MDP M̃.

Theorem 4. Let M be an IMDP. Then the MDP M̃• induced by the min-
reduction of M• is isomorphic to the min-reduction (M̃)• of the MDP M̃.

Proof. Set of states of M̃• and (M̃)• are identical, as a consequence of the
correction of our MEC computation (see Proposition 7). Therefore, we only
have to prove that actions and probability distributions are isomorphic. It is
immediate for actions loop− and loop+.

In order to proceed, let us define S′ =
⋃K
k=1 Sk ∪

⋃M
m=1Bm and introduce

the mapping from a distribution q over S to a distribution q• over S• by:
q•(s−) =

∑
s∈S′ q(s) and q•(s) = q(s) for all other s.

Consider an index ` ∈ {1, . . . , L} and an action a ∈ A•(t`) = A(t`). Observe

first that all the BFS of LP(a) remain in (M̃)•. Let q be a BFS of LP(a) inM,
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we necessarily have qδM(S′|t`, a) 6
∑
s∈S′ q(s) 6 δ̂M(S′|t`, a), and

∑
s∈S′ q(s) 6

1. Therefore, q• fulfils the interval constraints of M•.
To conclude, we only have to prove that any feasible solution p of LP(a)

in M• is equal to some q• for some (a, q) in M̃. Therefore, let p be a fea-
sible solution of LP(a) in M•. The value x = p(s−) belongs to the interval[
qδM•(s−|t`, a), δ̂M•(s−|t`, a)

]
by definition. We let yλs = (1 − λ)qδM(s|t`, a) +

λδ̂M(s|t`, a), for λ ∈ [0, 1]. Since λ 7→
∑
s∈S′ y

λ
s is a continuous mapping with∑

s∈S′ y
0
s = qδM•(s−|t`, a) 6 x 6 δ̂M•(s−|t`, a) 6

∑
s∈S′ y

1
s , we deduce the exis-

tence of 0 6 λ 6 1 such that
∑
s∈S′ y

λ
s = x. Let us define q(s) = yλs for s ∈ S′

and q(s) = p(s) otherwise. Then q• = p achieving the proof. �

This allows us to recover all the results of the min-reduction of MDPs (for in-
stance, the unicity of fixed point for fmin), and to compute on a concise represen-
tation of them. Indeed, once computed (in polynomial time) the min-reduction
of the IMDP, computing an ε-approximation of the minimal probability to reach
s+ can be done using our interval iteration algorithm, using Lemma 6 to achieve
in O(|S| log |S|) the computation of one step in a symbolic way.

To compute the maximal probability to reach s+, we must define a max-
reduction. However, it is not as easy to obtain a concise representation of the
max-reduction of the underlying MDP (see Proposition 7 in particular). We
will rather define a max-reduction easy to compute, but that only represents
an approximation of the max-reduction of the underlying MDP, yet sufficient
to obtain all the expected results, and to compute the maximal probability.

Indeed, given a non-trivial MEC Sk (that we must not delete, as we did for
the min-reduction), s ∈ Sk and a ∈ A(s), one has to delete the basic feasible
solutions p of LP(a) in M (by changing the interval constraints in the max-
reduction) that entirely remain in Sk, i.e. such that δM̃(Sk|s, (a, p)) = 1. Other
basic feasible solutions are called admissible in the following.

When no basic feasible solutions of LP(a) is admissible, action a should

be entirely deleted: this is the case when, in the IMDP, qδM(Sk|s, a) = 1 or

δ̂M(S \ Sk|s, a) = 0.
When all basic feasible solutions of LP(a) are admissible, action a should

be entirely kept: this is the case when, in the IMDP, qδM(S \ Sk|s, a) > 0 or

δ̂M(Sk|s, a) < 1.
Otherwise, action a is split as follows. Consider a state C 6= sk of the

max-reduced MDP M• corresponding to a subset of states SC in M such that
δ̂M(SC |s, a) > 0 and qδM(Sk|s, a) < 1 (since the two previous conditions do
not hold4). We create an action aC in the max-reduction M•, associated with
the representation sk of the MEC Sk. It must have a positive lower bound
qδM•(c|sk, aC) to go to the representation c of the MEC C to ensure that some
probability will leak: this is indeed the main ingredient to obtain the unicity of

4We also have qδM(SC |s, a) = 0 and δ̂M(Sk|s, a) = 1.
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fixed point, and the correctness of the interval iteration algorithm. So we have
to set qδM•(c|sk, aC) to a positive lower bound over p(C) for all basic feasible
solutions p ∈ BFS(a) such that p(C) > 0. Computing the exact lower bound
is shown difficult in Proposition 7. As an approximation, since all probabilities
appearing in the intervals of M are rational, we define den(a) as the least
common multiple of denominators of fractions appearing in intervals of action
a:

den(a) = lcm
(
d | ∃n ∃s′ δ̂M(s′|s, a) =

n

d
> 0 ∨ qδM(s′|s, a) =

n

d
> 0
)

where the fractions are supposed to be irreducible. By construction, 1/ den(a)
is a lower bound over p(C) for all basic feasible solutions p ∈ BFS(a) such that
p(C) > 0.

We now formalise the definition.

Definition 8 (max-reduction). LetM be an IMDP (with rational probabil-

ities in all intervals), and the partition of S =
⊎K
k=1 Sk ]

⊎L
`=1{t`} ]

⊎M
m=0Bm.

Then the max-reduced M• = (S•, αM• , qδM• , δ̂M•) is defined by:

• S• = {s−, s+, t1, . . . , tL, s1, . . . , sK}. For all s ∈ S, one defines s• by: (1)
s• = tl if s = tl, (2) s• = s+ if s = s+, (3) s• = sk if s ∈ SK , and (4)
s• = s− otherwise. For s′ ∈ S•, we let Ss′ = {s | s• = s′}.

• A•(s−) = {loop−}, A•(s+) = {loop+}, A•(t`) = A(t`) for all 1 6 ` 6 L,
and for all 1 6 k 6 K,

A•(sk) = {a | ∃s ∈ Sk a ∈ A(s) qδM(S \ Sk|s, a) > 0}
∪ {aC | ∃s ∈ Sk a ∈ A(s) ∧ C 6= sk ∧

qδM(Sk|s, a) < 1 ∧ qδM(S \ Sk|s, a) = 0 ∧ δ̂M(C|s, a) > 0}

• transition intervals defined by:

qδM•(s+|s+, loop+) = δ̂M•(s+|s+, loop+) = 1

qδM•(s−|s−, loop−) = δ̂M•(s−|s−, loop−) = 1

for all 1 6 `, `′ 6 L, a ∈ A•(t`), 1 6 k 6 K,

qδM•(s−|t`, a) = qδM
(⋃M

m=1Bm|t`, a
)
,

δ̂M•(s−|t`, a) = min
(
δ̂M
(⋃M

m=1Bm|t`, a
)
, 1
)
,

qδM•(s+|t`, a) = qδM(s+|t`, a), δ̂M•(s+|t`, a) = δ̂M(s+|t`, a),

qδM•(t`′ |t`, a) = qδM(t`′ |t`, a), δ̂M•(t`′ |t`, a) = δ̂M(t`′ |t`, a),

qδM•(sk|t`, a) = qδM(Sk|t`, a), δ̂M•(sk|t`, a) = min
(
δ̂M(Sk|t`, a), 1

)
,

29



s

s+

t

s−

gs+ , [0.1, 0.5]
gs− , [0, 0.5]

gs+ , [0, 1]
gs− , [0.1, 1]

gs+ , [0.3, 0.7]
gs− , [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

loop−

Figure 8: Max-reduced IMDP of the IMDP in Figure 7.

for all 1 6 ` 6 L, 1 6 k, k′ 6 K, a ∈ A•(sk) with a ∈ A(s) and s ∈ Sk,

qδM•(s−|sk, a) = qδM
(⋃M

m=1Bm|s, a
)
,

δ̂M•(s−|sk, a) = min
(
δ̂M
(⋃M

m=1Bm|s, a
)
, 1
)
,

qδM•(s+|sk, a) = qδM(s+|s, a), δ̂M•(s+|sk, a) = δ̂M(s+|s, a),

qδM•(t`′ |sk, a) = qδM(t`′ |s, a), δ̂M•(t`|s, a) = δ̂M(t`|sk, a),

qδM•(sk′ |sk, a) = qδM(Sk′ |s, a), δ̂M•(sk′ |sk, a) = min
(
δ̂M(Sk′ |s, a), 1

)
,

and for all 1 6 ` 6 L, 1 6 k, k′ 6 K, aC ∈ A•(sk) with a ∈ A(s) and
s ∈ Sk,

qδM•(s−|sk, aC) =
1s−=C

den(a)
, δ̂M•(s−|sk, aC) = min

(
δ̂M(

⋃M
m=1Bm|s, a), 1

)
,

qδM•(s+|sk, aC) =
1s+=C

den(a)
, δ̂M•(s+|sk, aC) = δ̂M(s+|s, a),

qδM•(t`|sk, aC) =
1t`=C
den(a)

, δ̂M•(t`|sk, aC) = δ̂M(t`|s, a),

qδM•(sk′ |sk, aC) =
1sk′=C

den(a)
, δ̂M•(sk′ |sk, aC) = min

(
δ̂M(Sk′ |s, a), 1

)
,

Example 5. In Figure 8 is depicted the max-reduced IMDP of the IMDP of
Figure 7. MECs have been merged, and action g (single action exiting the
non-trivial MEC) is split into two actions gs+ and gs− . The bold lower bounds
represent the lift of null probabilities to 1/ den(g), with den(g) = 10 the common
denominator of bounds in intervals of action g.

Observe that the set of basic feasible solutions of all the actions aC defined
above is different from the one that we would have get by picking all the ad-
missible ones from a. However, we now show that this splitting of a in aC ’s is
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sound. For that, we map each a distribution q over S to a distribution q• over
S• by q•(s) =

∑
s′∈Ss q(s

′), and show that (1) the image q• of an admissible
basic feasible solution q of a in M is a feasible solution of some aC in M•, and
(2) the basic feasible solutions p of aC inM• are images p = q• of feasible solu-
tions q of a inM. From the point of view of complexity, this splitting entails at
worst a quadratic blowup, allowing us to keep a polynomial time complexity for
the pre-computation. We now state and prove formally the correctness result.

Theorem 5. Let M be an IMDP, and s ∈ S• \ {s−, s+}.

• For all actions b of s in M• and distributions p over S• solution of LP(b)
(defined by interval constraints in M•), there exists an action a ∈ A(s′)
of some s′ ∈ Ss and a distribution q over S solution of LP(a) (defined by
interval constraints in M) such that q• = p.

• For all actions (a, q) ∈ A•(s) in (M̃)•, there exists an action b ∈ A•(s)
such that q• is a solution of LP(b) in M•.

• (s, ∅) is a trivial MEC of M̃•.

As an immediate consequence of the first and second items, for all s ∈ S,

Prmax
M̃•,s•(F s+) = Prmax

M̃,s
(F s+) .

Proof. For a state t`, and an action a ∈ A•(t`) = A(t`), every distribution

q ∈ BFS(a) in M verifies qδM(Ss|t`, a) 6
∑
s′∈Ss q(s

′) 6 δ̂M(Ss|t`, a), and∑
s′∈Ss q(s

′) 6 1. Therefore, q• fulfils the interval constraints of M•, and is
still a basic feasible solution. Then, the two first assertions of the theorem for
s ∈ {t1, . . . , tL} are established using a proof similar to the one of Theorem 4.

We now focus on the case s = sk for some k. We do not consider the case
of an action a in M that is fully kept as it is very close to the case of t`.
For the first item, consider an action b = aC ∈ A•(s). Therefore, let p be a
solution of LP(aC) in M•. For all s′ ∈ S•, the probability p(s′) belongs to[
qδM•(s

′|s, aC), δ̂M•(s
′|s, aC)

]
by definition. For s′′ ∈ Ss′ and λ ∈ [0, 1], we let

yλs′′ = (1−λ)qδM(s′′|s, a) +λδ̂M(s′′|s, a). Since λ 7→
∑
s′′∈Ss′

yλs′′ is a continuous
mapping with∑

s′′∈Ss′

y0s′′ 6 qδM•(s
′|s, aC) 6 p(s′) 6 δ̂M•(s

′|s, aC) 6
∑

s′′∈Ss′

y1s′′ ,

we deduce the existence of 0 6 λs′ 6 1 such that
∑
s′′∈Ss′

y
λs′
s′′ = p(s′). Then,

the distribution q defined by q(s′′) = y
λs′
s′′ , for all s′ ∈ S• and s′′ ∈ Ss′ , verifies

q• = p, which proves the first item.
For the second item (always in the case s = sk for some k), consider a

distribution q ∈ BFS(a) that remains in (M̃)• with distribution q•. Then, for
some s′ ∈ S\Ss, q(s′) > 0. This implies that as′• belongs toA•(s). Furthermore,
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q(s′) > 1
den(a) .

5 On the other hand, by summing the constraints over q, 0 =

qδM(Ss′• |s, a) 6
∑
s′′∈Ss′•

q(s′′) 6 δ̂M(Ss′• |s, a), and
∑
s′′∈Ss′•

q(s′′) 6 1. Thus:

qδM•(s
′•|s, as′•) =

1

den(a)
6

∑
s′′∈Ss′•

q(s′′) = q•(s′
•
)

and
δ̂M•(s

′|s, as′•) > min
(
δ̂M(Ss′• |s, a), 1

)
> q•(s′

•
) .

For a MEC s∗ different from the specific MEC s′
•
, we also have by summation:

qδM(Ss∗ |s, a) 6
∑
s′′∈Ss∗ q(s

′′) 6 δ̂M(Ss∗ |s, a), and
∑
s∈Ss∗ q(s) 6 1. Thus, by

applying the other definitions of M•, we obtain

qδM•(s
∗|s, as′•) = qδM(Ss∗ |s, a) 6 q•(s∗)

6 min
(
δ̂M(Ss∗ |s, a), 1

)
= δ̂M•(s

∗|s, as′•) .

Therefore, q• fulfils the interval constraints of M•, and is therefore a solution
of LP(as′•).

To prove the third item, we follow a similar reasoning as in the proof of
Lemma 3 for MDPs. Suppose that there is a non-trivial MEC of the IMDPM•,
i.e. a non-trivial MEC ({ti1 , . . . , tin , sj1 , . . . , sjn′}, α

′) of M̃•. Consider the cor-

responding sub-MDP ({ti1 , . . . , tin} ∪ Sj1 ∪ · · · ∪ Sjn′ , α
′′) of M̃ (with α′′ =

{(a, q) | (a, q•) ∈ α′}). If n′ = 0, using maximality of the MECs of M̃, we know
that n = 1 and α′′ = ∅, which contradicts the assumption of non-triviality.
Otherwise, n′ > 0, and by maximality of the MECs of M̃, we have n = 0 and
n′ = 1. The non-trivial MEC is then ({sj1}, α′) with α′ 6= ∅, corresponding to

the sub-MDP (Sj1 , α
′′) of M̃. Consider an action (b, p) of α′ with b ∈ A•(sj1)

and p a distribution over S• solution of LP(b): in particular, Supp(p) = {sj1},
since ({sj1}, α′) is a sub-MDP. Using the first item, there exists a state s ∈ Sj1 ,

an action a ∈ A(s), and actions (a, q1), . . . , (a, qn) of M̃ such that p is a convex
combination of q•1 , . . . , q

•
n. Notice that we then have b = a or b = aC with

C 6= sj1 . Since Supp(p) = {sj1}, all qi have a support included in Sj1 , which

implies that qδM(S \ Sj1 |s, a) = 0 and δ̂M(Sj1 |s, a) = 1. These two assumptions
contradict the fact that b is an action of A•(sj1), which concludes the proof. �

Even though M̃• is not necessarily the max-reduced MDP of M̃, the third
item of the last theorem implies, as for max-reduced MDP in Proposition 5, the
unicity of the fixed point of fmax. Therefore, as before, we are able to compute
the maximal reachability probability directly in the IMDPM•. Notice that the
difference between M̃• and M̃• also has an impact on the speed of convergence
of our interval iteration for IMDPs. It might be slower to converge that the

5This property is generally false for linear programs, but holds here since basic feasible
solutions have all, but at most one, coordinates on the bounds of the interval constraints.
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interval iteration on M̃•. In practice, we believe that this would not be too
harmful. Unfortunately, we can not hope for an exact computation of M̃• in
polynomial time. Indeed, instead of using 1

den(a) , one would need to compute

the minimal positive value with respect to some fixed state s′ over basic feasible
solutions of an action a allowed in s. Unfortunately, the next proposition shows
that its computational cost is prohibitive. This forbids us to use a more precise
max-reduction than the one we proposed, and this also implies a bigger number
of steps needed to compute exactly the maximum reachability probability as
done in Theorem 3.

Proposition 7. Let M be an IMDP, a ∈ A(s) an action, and s′ a state differ-

ent from s such that qδM(s′|s, a) = 0 and δ̂M(s′|s, a) = 1. Deciding whether the
smallest positive value p(s′) of a basic feasible solution p in BFS(a) is equal to

1
den(a) is NP-complete.

Proof. The problem belongs to NP: one guesses a basic feasible solution p ∈
BFS(a) and checks the condition p(s′) = 1

den(a) .

We now prove the NP-hardness by a reduction of the subset sum problem.
Let (v0, . . . , vn−1,W ) be an instance of the subset sum problem such that with-

out loss of generality
∑n−1
i=0 vi >W and gcd(v0, . . . , vn−1) = 1. Define an IMDP

with states S = {s0, . . . , sn}, a single action a ∈ A(s0), and transition probabil-

ities: qδM(sn|s0, a) = 0, δ̂M(sn|s0, a) = 1, and for all 0 6 i < n, qδM(si|s0, a) = 0

and δ̂M(si|s0, a) = vi
W+1 . Due to our assumptions, den(a) = W + 1.

Assume there exists I ⊆ {0, . . . , n− 1} with
∑
i∈I vi = W . Then one defines

the following basic feasible solution p ∈ BFS(a): p(si) = vi
W+1 for i ∈ I, p(si) =

0 for i ∈ {0, . . . , n− 1} \ I and p(sn) = 1
W+1 .

Assume reciprocally that there is a basic feasible solution with p(sn) = 1
W+1 .

Since 0 < 1
W+1 < 1, all other probabilities are extremal values of their interval.

So we define I = {i | p(si) = vi
W+1} and obtain

∑
i∈I vi = W . �

5. Conclusion

Our study of interval iteration algorithm enabled to provide guarantees
about the convergence of value iteration algorithms for optimal reachability
probabilities of Markov decision processes. On top of pointing out some dif-
ficulties related to non-trivial end components in MDPs, we gave results over
the convergence rate, as well as criteria for obtaining exact convergence. We
have also extended our approach for IMDPs, where the preprocessing on end
components is harder, but still polynomial thanks to a careful study of linear
programs. As future works, besides an optimised implementation and experi-
mentation of the interval iteration algorithm, it seems particularly interesting to
test these algorithms on real world instances, as it is done in [2], where authors
moreover apply machine learning techniques.
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[6] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker.
Automated verification techniques for probabilistic systems. In Formal
Methods for Eternal Networked Software Systems (SFM’11), volume 6659
of Lecture Notes in Computer Science, pages 53–113. Springer, 2011.

[7] Sergio Giro. Optimal schedulers vs optimal bases: An approach for efficient
exact solving of Markov decision processes. Theoretical Computer Science,
538:70–83, 2014.

[8] Serge Haddad and Benjamin Monmege. Reachability in MDPs: Refin-
ing convergence of value iteration. In Joël Ouaknine, Igor Potapov, and
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