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High frequency limit for a chain of harmonic oscillators with a point

Langevin thermostat

Tomasz Komorowski∗ Stefano Olla† Lenya Ryzhik‡ Herbert Spohn§

June 6, 2018

Abstract

We consider an infinite chain of coupled harmonic oscillators with a Langevin thermostat at
the origin. In the high frequency limit, we establish the reflection-transmission coefficients for the
wave energy for the scattering of the thermostat. To our surprise, even though the thermostat
fluctuations are time-dependent, the scattering does not couple wave energy at various frequencies.

1 Introduction

Heat reservoirs with some given temperature T are usually modelled at the microscopic level by
the Langevin stochastic dynamics, or by other random mechanisms such as the renewal of velocities
at random times with Gaussian distributed velocities of variance T . This latter mechanism repre-
sents the interaction with an infinitely extended reservoir of independent particles in equilibrium at
temperature T and uniform density.

When such reservoirs are in contact with the system boundary and if energy diffuses on the
macroscopic space-time scale, then it is expected that a thermostat enforces a local equilibrium at
the boundary at the temperature T . The situation is much less clear for kinetic (hyperbolic) space-
time scales. For instance, if the bulk evolution is governed by a discrete nonlinear wave equation, then
in the kinetic (high frequency) limit the wave number density is governed by a phonon Boltzmann
equation [15, 1]. If this system is coupled to a thermostat at the boundary, what are the appropriate
macroscopic boundary conditions which have to be added to the kinetic equation?

To make a study feasible, we very much simplify the set-up. We consider an infinite one-
dimensional chain of harmonic oscillators, characterized by its dispersion relation ω(k), and couple
it with a single Langevin thermostat at the origin. An efficient way to localize the distribution of
the energy at wave number k is to use the Wigner distribution. In a space-time hyperbolic rescaling,
first ignoring the thermostat, the Wigner distribution converges to the solutionW (t, x, k) of a simple
transport equation, namely phonons of wavenumber k have energy ω(k) and travel independently
with group velocity ω′(k)/2π. It will be proved that when the dispersion relation is unimodal, see
Section 2 for a precise definition, in the scaling limit, the thermostat enforces the following reflection-
transmission (and production) conditions at x = 0: phonons of wave number k are generated with
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De Tassigny, 75016 Paris, France, e-mail: olla@ceremade.dauphine.fr
‡ Mathematics Department, Stanford University, Stanford, CA 94305, USA , email: ryzhik@stanford.edu
§ Zentrum Mathematik and Physik Department, Technische Universität Munchen, Boltzmannstrasse 3, 85747

Munich, Germany , email: spohn@ma.tum.de

1



rate ı(k)T and an incoming k-phonon is transmitted with probability p+(k), reflected with proba-
bility p−(k), and absorbed with probability ı(k), see formulas (2.28) below. These coefficients are
positive, depend on ω(·), and satisfy

p+(k) + p−(k) + ı(k) = 1.

With such boundary conditions the stationary solution of the transport equation is the thermal
equilibrium Wigner function W (t, x, k) = T .

The thermostat can be viewed as a “scatterer” of a time-varying strength: at the microscopic scale
a wave incident on the thermostat would produce reflected and transmitted waves at all frequencies.
It is remarkable that, after the scaling limit, the reflected and transmitted waves are of the same
frequency as the incident wave, all other waves produced by the microscopic scattering are damped
by oscillations in the macroscopic limit. The presence of oscillatory integrals, responsible for the
damping mechanism, presents the main mathematical difficulty of the model. To deal with the issue
we consider the high frequency limit of the Laplace transform of the Wigner distribution. The limit,
see (2.33) below, can be decomposed into the parts that correspond to the production, transmission
and reflection of a phonon. The calculation of the production term is relatively straightforward, see
Section 4. In contrast, the computations related to the scattering terms are remarkably difficult, see
Sections 5–9 for the proof. Moreover, the description of the limit is not intuitive and it is not clear
to us how to obtain it by a simple heuristic argument.

The multimodal case, that we shall not consider here, can be also dealt with using the technique
of the present paper. In this situation the level set of ω(k) has generically 2N points (we assume
that ω is even) for some positive integer N . The macroscopic description of the system is as fol-
lows: a k-phonon arriving at interface with group velocity ω′(k) > 0 is transmitted as a k′-phonon
corresponding to the solutions of ω(k′) = ω(k), with a positive group velocity. The probabilities of
transmission at a given k′ can be computed explicitly in terms of the dispertion relation. On the
other hand, it reflects as a k′-phonon corresponding to a solution of ω(k′) = ω(k), with a group
velocity ω′(k′) < 0. The probability of absorption is the same as in the unimodal case.

We expect that introducing a rarefied random scattering in the bulk, in the same fashion as
in [1], leads to a similar transport equation with a linear scattering term, without modifying the
transmission properties at the interface with the thermostat [10].

There are rather few results on the high frequency limits of the Wigner transform in the presence
of boundaries, interfaces or sources. We mention [2, 4, 6, 8, 13] which, while highly non-trivial, are
all ultimately based on essentially explicit computations of the Wigner transform near the interface.
Our analysis also starts with computing the Wigner transform, but then passes to the limit in the
resulting expression. The thermal production of phonons can be seen quite straightforwardly in this
limit. However the scattering terms are much more difficult to handle and they constitute the major
part of our work.

Acknowledgement. TK was partially supported by the NCN grant 2016/23/B/ST1/00492, SO
by the French Agence Nationale Recherche grant LSD ANR-15-CE40-0020-01, and LR by an NSF
grant DMS-1613603 and by ONR. This work was partially supported by the grant 346300 for IMPAN
from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund. The authors thank
Stanford University and Université Paris Dauphine for hospitality during the preparation of this
article.

2



2 The dynamics and the main result

The infinite chain of harmonic oscillators

We consider the evolution of an infinite particle system governed by the Hamiltonian

H(p, q) :=
1

2

∑

y∈Z

p2y +
1

2

∑

y,y′∈Z

αy−y′qyqy′ . (2.1)

Here, the particle label is y ∈ Z, (py , qy) is the position and momentum of the y’s particle, respec-
tively, and (q, p) = {(py , qy), y ∈ Z} denotes the entire configuration. The coupling coefficients αy

are assumed to have exponential decay and chosen such that the energy is bounded from below.
A stochastically perturbed version of this system was considered first in [1], where the long time

behavior of the wave energy was analyzed, and then in [9], where the wave field itself was studied.
The stochasticity in [1, 9] was introduced as a random exchange of momenta between particles at
adjacent sites. Here, instead of random fluctuations “in the bulk”, we couple the particle with
label 0 to a Langevin thermostat at temperature T and with friction γ > 0. Then the Hamiltonian
dynamics with stochastic source is governed by

q̇y(t) = py(t), (2.2)

dpy(t) = −(α ⋆ q(t))ydt+
(
− γp0(t)dt+

√
2γTdw(t)

)
δ0,y, y ∈ Z.

Here, {w(t), t ≥ 0} is a standard Wiener process over a probability space (Ω,F ,P). We use the
notation

(f ⋆ g)y =
∑

y′∈Z

fy−y′gy′

for the convolution of two functions on Z.
It is convenient to introduce the complex wave function

ψy(t) := (ω̃ ⋆ q(t))y + ipy(t) (2.3)

where {ω̃y, y ∈ Z} is the inverse Fourier transform of the dispersion relation

ω(k) :=
√
α̂(k). (2.4)

Hence |ψy(t)|2 is the local energy of the chain at time t. The Fourier transform of the wave function
is given by

ψ̂(t, k) := ω(k)q̂(t, k) + ip̂(t, k), (2.5)

so that

p̂ (t, k) =
1

2i
[ψ̂(t, k)− ψ̂∗(t,−k)], p0(t) =

∫

T

Im ψ̂(t, k)dk.

Using (2.2), it is easy to check that the wave function evolves according to

dψ̂(t, k) =
(
− iω(k)ψ̂(t, k)− iγp0(t)

)
dt+ i

√
2γTdw(t). (2.6)

Above, the Fourier transform of fx ∈ l2(Z) and the inverse Fourier transform of f̂ ∈ L2(T) are

f̂(k) =
∑

x∈Z

fx exp{−2πixk}, fx =

∫

T

f̂(k) exp{2πixk}dk, x ∈ Z, k ∈ T. (2.7)

For a function G(x, k), we denote by G̃ : R× Z → C, Ĝ : R× T → C the Fourier transforms of G in
the k and x variables, respectively,

G̃(x, y) :=

∫

T

e−2πikyG(x, k)dk, (x, y) ∈ R× Z, Ĝ(η, k) :=

∫

R

e−2πiηxG(x, k)dx, (η, k) ∈ R× T.
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The initial conditions

For simplicity sake we restrict ourselves to initial configurations of finite energy. In addition, we
assume that the initial energy density |ψy|2 is finite per unit length on the macroscopic scale x ∼ εy,
where ε > 0 is the scaling parameter. More precisely, given ε > 0, the initial wave function is
distributed randomly, independent of the Langevin noise w(·), according to aprobability measure µε
on ℓ2(Z), and

sup
ε∈(0,1)

∑

y∈Z

ε〈|ψy |2〉µε = sup
ε∈(0,1)

ε〈‖ψ̂‖2L2(T)〉µε <∞, (2.8)

where 〈·〉µε denotes the expectation with respect to µε. We will also assume that

〈ψ̂(k)ψ̂(ℓ)〉µε = 0, k, ℓ ∈ T, (2.9)

Condition (2.9) can be replaced by 〈ψ̂(k)ψ̂(ℓ)〉µε ∼ 0, as ε → 0 at the expense of some additional
calculations that we prefer not to perform in this article.

An additional hypothesis concerning the initial configuration will be stated later on, see formula
(2.18).

The Wigner distribution

To study the effect of the thermostat, we follow the evolution of the chain on the macroscopic time

scale t′ ∼ εt, and consider the rescaled wave function ψ
(ε)
y (t) = ψy(t/ε). A convenient tool to analyse

the energy density is the Wigner distribution (or Wigner transform) defined by its action on a test
function G ∈ S(R× T) as

〈G,W (ε)(t)〉 := ε

2

∑

y,y′∈Z

Eε

[
ψ(ε)
y (t)

(
ψ
(ε)
y′

)∗
(t)

]
G̃∗

(
ε
y + y′

2
, y − y′

)
. (2.10)

Here, Eε is the expectation with respect to the product measure µε ⊗ P.
The Fourier transform of the Wigner distribution is

Ŵε(t, η, k) :=
ε

2
Eε

[
(ψ̂(ε))∗(t, k − εη

2
)ψ̂(ε)(t, k +

εη

2
)
]
, (t, η, k) ∈ [0,∞)× T2/ε × T, (2.11)

so that

〈G,W (ε)(t)〉 =
∫

T×R

Ŵε(t, η, k)Ĝ
∗(η, k)dηdk, G ∈ S(R× T). (2.12)

We use the notation Ta = [−a/2, a/2] for the torus of size a > 0, with identified endpoints.
A straightforward calculation shows that the macroscopic energy grows at most linearly in time,

d‖ψ̂(ε)(t)‖2L2(T) =
[
− γ

ε
[p

(ε)
0 (t)]2 +

2γT

ε

]
dt+

√
2γT

ε
p
(ε)
0 (t)dw(t), (2.13)

with p
(ε)
0 (t) := p0(t/ε). Thus, we have a uniform bound

sup
ε∈(0,1]

εEε‖ψ̂(ε)(t)‖2L2(T) ≤ sup
ε∈(0,1]

εEε‖ψ̂(ε)(0)‖2L2(T) + 2γT t, t ≥ 0. (2.14)

Let us denote by A the completion of S(R× T) in the norm

‖G‖A :=

∫

R

sup
k∈T

|Ĝ(η, k)|dη (2.15)
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and by A′ its dual. We conclude from (2.14) that (see [7])

sup
t∈[0,T ]

‖W (ε)(t)‖A′ <∞, for each τ > 0, (2.16)

hence W (ε)(·) is sequentially weak-⋆ compact over (L1([0, τ ];A))⋆ for any τ > 0. We will assume
that the initial Wigner distribution

Ŵε(η, k) := Ŵε(0, η, k), (η, k) ∈ T2/ε × T (2.17)

is a family that converges weakly in A′ to a non-negative function W0 ∈ L1(R× T)∩C(R×T). We
will also assume that there exist C, κ > 0 such that

|Ŵε(η, k)| ≤ Cϕ(η), (η, k) ∈ T2/ε × T, ε ∈ (0, 1], (2.18)

where

ϕ(η) :=
1

(1 + η2)3/2+κ
. (2.19)

Assumptions on the dispersion relation and its basic properties

We assume, as in [1], that αy is a real-valued even function of y ∈ Z, and there exists C > 0 so that

|αy| ≤ Ce−|y|/C , for all y ∈ Z,

thus α̂ ∈ C∞(T). We also assume that α̂(k) > 0 for k 6= 0, and if α̂(0) = 0 then α̂′′(0) > 0, so
that α̂(k) = sin2(πk)α̂0(k) for some strictly positive even function α̂0 ∈ C∞(T). It follows that
the dispersion relation ω(k) =

√
α̂(k) is also an even and continuous function in C∞(T \ {0}).

We assume that ω is increasing on [0, 1/2], and denote its unique minimum attained at k = 0
by ωmin ≥ 0, its unique maximum, attained at k = 1/2, by ωmax, and the two branches of the inverse
of ω(·) as ω− : [ωmin, ωmax] → [−1/2, 0] and ω+ : [ωmin, ωmax] → [0, 1/2]. They satisfy ω− = −ω+,
ω+(ωmin) = 0, ω+(ωmax) = 1/2 and in the case ω ∈ C∞(T):

ω′
±(w) = ±(w − ωmin)

−1/2χ∗(w), w − ωmin ≪ 1, (2.20)

and
ω′
±(w) = ±(ωmax − w)−1/2χ∗(w), ωmax − w ≪ 1, (2.21)

with χ∗, χ
∗ ∈ C∞(T) that are strictly positive. When ω is not differentiable at 0 (the acoustic case)

instead of (2.20) we assume
ω′
±(w) = ±χ∗(w), w − ωmin ≪ 1, (2.22)

leaving condition (2.21) unchanged.
An important role in the analysis will be played by the function

J(t) =

∫

T

cos (ω(k)t) dk, (2.23)

its Laplace transform

J̃(λ) :=

∫ ∞

0
e−λtJ(t)dt =

∫

T

λ

λ2 + ω2(k)
dk, Reλ > 0, (2.24)

and the function
g̃(λ) := (1 + γJ̃(λ))−1. (2.25)

5



Note that Re J̃(λ) > 0 for λ ∈ C+ := [λ ∈ C : Reλ > 0], therefore

|g̃(λ)| ≤ 1, λ ∈ C+. (2.26)

The function g̃(·) is analytic on C+ so, by the Fatou theorem, see e.g. p. 107 of [11], we know that

ν(k) := lim
ε→0

g̃(ε− iω(k)) (2.27)

exists a.e. in T and in any Lp(T) for p ∈ [1,∞).
To state our main result we need some additional notation. Let us introduce the group velocity

ω̄′(k) := ω′(k)/(2π)

and

℘(k) :=
γν(k)

2|ω̄′(k)| , ı(k) :=
γ|ν(k)|2
|ω̄′(k)| , p+(k) := |1− ℘(k)|2 , p−(k) := |℘(k)|2. (2.28)

We will show in Section 10 that

Re ν(k) =

(
1 +

γ

2|ω̄′(k)|

)
|ν(k)|2. (2.29)

It follows that
p+(k) + p−(k) = 1− ı(k) ≤ 1, (2.30)

so that, in particular, we have
0 ≤ ı(k) ≤ 1. (2.31)

The main result

Our main result reads as follows.

Theorem 2.1 Suppose that the initial conditions and the dispersion relation satisfy the above as-

sumptions. Then, for any τ > 0 and G ∈ L1 ([0, τ ];A) we have

lim
ε→0

∫ τ

0
〈G(t),Wε(t)〉dt =

∫ τ

0
dt

∫

R×T

G∗(t, x, k)W (t, x, k)dxdk, (2.32)

where

W (t, x, k) =W0

(
x− ω̄′(k)t, k

)
1[0,ω̄′(k)t]c(x) + ı(k)T1[0,ω̄′(k)t](x) (2.33)

+ p+(k)W0

(
x− ω̄′(k)t, k

)
1[0,ω̄′(k)t](x) + p−(k)W0

(
−x+ ω̄′(k)t,−k

)
1[0,ω̄′(k)t](x).

The limit dynamics has an obvious interpretation. The first term is the ballistic transport of
those phonons which did not cross {x = 0} up to time t. The second term on the RHS of (2.33)
describes the phonon production of the thermostat. The third and the fourth term correspond
respectively to the transmission and reflection of the phonons at the boundary point {x = 0}. More
precisely, ı(k)T is the phonon production rate, p−(k) is the probability of reflection, and p+(k) is
the probability of transmission at {x = 0}. Notice that the phonons are absorbed by the thermostat
with probability 1− p+(k)− p−(k) = ı(k). The scattering at the origin depends only on the friction
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coefficient γ. At zero temperature the production of phonons is turned off, while the scattering
remains unmodified.

From (2.29) it follows that
ı(k) = Re ν(k)− |ν(k)|2,

and we also know that ν(k0) = 0 at the points where ω′(k0) = 0. This means that the thermostat
does not generate phonons with zero velocity, which otherwise would have led to an accumulation
of energy at the boundary.

Our main theorem is for the averaged Wigner distribution. In general, one expects a suitable
law of large numbers for the quantity on the left of (2.32) with respect to µε ⊗ P.

Our result can be written as a boundary value problem, which is a simple but useful exercise. In
case the bulk is governed by a wave equation with a small nonlinearity, one would expect a nonlinear
transport equation for the bulk, but the boundary terms would be dominated by the linear equation,
hence of the form as written below. Firstly W (t, x, k) solves the homogeneous transport equation

∂tW (t, x, k) + ω̄′(k)∂xW (t, x, k) = 0, (2.34)

away from the boundary point {x = 0}. Secondly we denote the right and left limits of W by

W−(t, k) :=W (t, 0−, k), W+(t, k) :=W (t, 0+, k).

Then at {x = 0} the outgoing phonons are related to the incoming phonons as

W+(t, k) = p−(k)W+(t,−k) + p+(k)W−(t, k) + ı(k)T, for 0 ≤ k ≤ 1/2, (2.35)

and
W−(t, k) = p−(k)W−(t,−k) + p+(k)W+(t, k) + ı(k)T, for −1/2 ≤ k ≤ 0, (2.36)

where in both equations the term for the production of phonons has been added.
By equipartition, the equilibrium Wigner distribution is given by

W (t, x, k) ≡ T,

which indeed satisfies (2.35)-(2.36), as one should expect.
It is interesting to consider what happens when the strength of the thermostat γ → +∞, so that

the oscillations of the particle in contact with the thermostat are sped up by a factor of γ. Then
g̃(λ) ∼ γ−1, and ν(k) ∼ γ−1, hence ı(k) → 0 (see (2.28)), and there is no phonon production or
absortion by the thermostat as the particle at the thermostat moves “too incoherently”. However,
there is still non-trivial reflection and transmission at the interface.

The paper is organized as follows. In Section 3, we define the Fourier-Laplace transform of the
wave function and explain how the functions J(t) and g̃(λ) appear in this context. The Wigner
transform can be decomposed into the ballistic part coming from the initial condition with no
scattering, the thermostat production part (which is independent from the initial condition) and the
scattering part. It is quite straightforward to analyze the former two terms and pass to the limit
ε → 0 in the corresponding expressions. Passage to the limit in the scattering term is much more
difficult. It is outlined in Section 5, where one of the scattering terms is analyzed in Lemma 5.1, and
the asymptotics for the other one is stated in Lemma 5.2. The scattering terms are put together in
Section 5.3. The bulk of the remainder of the paper, Sections 6, 7 and 8, is essentially devoted to the
proof of that Lemma. The critical steps are outlined in Lemmas 7.1-7.4. Each of these statements
is quite intuitive on the formal level but a rigorous justification is, unfortunately, rather lengthy and
with little room to spare in the estimates. In Section 9, we remove an extra assumption that the
initial condition is supported away from the non-propagating modes, made to simplify the proof.
Finally, in Section 10 we prove relation (2.29).
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3 The Laplace-Fourier transform of the wave function and of the

Wigner distribution

In this section, we obtain an explicit expression for the Laplace-Fourier transform of the wave
function. We use the mild formulation of (2.6):

ψ̂(t, k) = e−iω(k)tψ̂(0, k) − iγ

∫ t

0
e−iω(k)(t−s)p0(s)ds + i

√
2γT

∫ t

0
e−iω(k)(t−s)dw(t). (3.1)

Integrating both sides in the k-variable and taking the imaginary part in both sides, we obtain a
closed equation for p0(t):

p0(t) = p00(t)− γ

∫ t

0
J(t− s)p0(s)ds +

√
2γT

∫ t

0
J(t− s)dw(s), (3.2)

where J(t) is given by (2.23) and

p00(t) =

∫

T

Im
(
ψ̂(0, k)e−iω(k)t

)
dk, (3.3)

is the momentum at y = 0 for the free evolution with γ = 0 (without the thermostat). Taking the
Laplace transform

p̃0(λ) =

∫ +∞

0
e−λtp0(t)dt, Reλ > 0,

in (3.2) we obtain
p̃0(λ) = g̃(λ)p̃00(λ) +

√
2γT g̃(λ)J̃(λ)w̃(λ). (3.4)

Here, g̃(λ) is given by (2.25), and p̃00(λ) and J̃(λ) are the Laplace transforms of p00(t) and J(t),
respectively, and w̃(λ) is the Laplace transform of the Wiener process. It is a zero mean Gaussian
process with the covariance

E[w̃(λ1)w̃(λ2)] =
1

λ1 + λ2
, Reλ1, Reλ2 > 0. (3.5)

Next, taking the Laplace transform of both sides of (3.1) and using (3.4), we arrive at an explicit
formula for the Fourier-Laplace transform of ψy(t):

ψ̃(λ, k) =
ψ̂(0, k) − iγp̃0(λ) + i

√
2γT w̃(λ)

λ+ iω(k)

=
ψ̂(0, k) − iγg̃(λ)(p̃00(λ) +

√
2γT J̃(λ)w̃(λ)) + i

√
2γT w̃(λ)

λ+ iω(k)

=
ψ̂(0, k) − iγg̃(λ)p̃00(λ) + ig̃(λ)

√
2γT w̃(λ)

λ+ iω(k)
.

(3.6)

Note that (3.6) implies, in particular, that, even at the zero temperature, and if the initial wave
function is monochromatic, that is, ψ̂(0, k) = δ0(k − k0) for some k0, scattering at the thermostat
generates various modes k 6= k0, due to the damping at y = 0. This is a microscopic phenomenon
not observed on the macroscopic level, as seen from the discussion following Theorem 2.1.

Let us momentarily assume that g̃(λ) is the Laplace transform of a signed locally finite mea-
sure g(dτ). Then, the term (λ+iω(k))−1g̃(λ)p̃00(λ), that appears in (3.6), is the Laplace transform of

∫ t

0
ds

∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)p00(s). (3.7)

8



Now, the Laplace inversion of (3.6) gives an explicit expression for ψ̂(t, k):

ψ̂(t, k) =e−iω(k)tψ̂(0, k)− iγ

∫ t

0
ds

∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)p00(s)

+ i
√

2γT

∫ t

0
ds

∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)dw(s)

=e−iω(k)tψ̂(0, k)− iγ

∫ t

0
φ(t− s, k)p00(s) ds+ i

√
2γT

∫ t

0
φ(t− s, k) dw(s),

(3.8)

where

φ(t, k) =

∫ t

0
e−iω(k)(t−τ)g(dτ). (3.9)

Likewise, we conclude from (3.4) that

p0(t) =

∫ t

0
p00(t− s)g(ds) +

√
2γT

∫ t

0
dw(s)

∫ t−s

0
J(t− s− τ)g(dτ). (3.10)

In order to understand how g(dτ) looks like, note that a function g∗(t) that has the Laplace
transform

g̃∗(λ) := g̃(λ)− 1 = − γJ̃(λ)

1 + γJ̃(λ)
,

is the solution of the Volterra equation

g∗(t) + γJ ⋆ g∗(t) = −γJ(t), t ≥ 0. (3.11)

Here, we denote by

f1 ⋆ f2(t) =

∫ t

0
f1(t− s)f2(s)ds

the convolution of f1, f2 ∈ L1
loc[0,+∞). The solution g∗ of (3.11) is given by the convolution series

g∗(t) =

+∞∑

n=1

(−γ)nJ⋆,n(t). (3.12)

Here, J⋆,n(t) is the n-time convolution of J with itself. As |J(t)| ≤ 1, we see that g∗ ∈ C∞[0,+∞)
and |g∗(t)| ≤ eγt, t ≥ 0. Then, we can represent g(dτ) as

g(dt) = δ0(dt) + g∗(t)dt, t ≥ 0. (3.13)

Here, δ0 is the Dirac distribution.
Observe that the existence of g(dt) with the above properties implies that

∫ t

0
eiω(k)τg(dτ) = eiω(k)tφ(t, k) −→

t→∞
ν(k) (3.14)

in the sense that for Reλ > 0 the limit defined by (2.27) implies

lim
ε→0

∫ +∞

0
e−λt

∫ ε−1t

0
eiω(k)τ g(dτ) =

ν(k)

λ
(3.15)
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We let

ŵε(λ, η, k) :=

∫ +∞

0
e−λtŴε(t, η, k)dt, Reλ > 0 (3.16)

be the Laplace-Fourier transform of the Wigner distribution defined in (2.10). The claim of Theo-
rem 2.1 is equivalent to the following: for any test function G ∈ S(R× T) we have

lim
ε→0+

∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk =

∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk, (3.17)

where

ŵ(λ, η, k) :=
T |ω̄′(k)| ı (k)
λ(λ+ iω′(k)η)

+
Ŵ0(η, k)

λ+ iω′(k)η
(3.18)

+
|ω̄′(k)|(p+(k)− 1)

λ+ iω′(k)η

∫

R

Ŵ0(η
′, k)dη′

λ+ iω′(k)η′
+

|ω̄′(k)|p−(k)
λ+ iω′(k)η

∫

R

Ŵ0(η
′,−k)dη′

λ− iω′(k)η′
.

and p±(k) and ı(k) are given by (2.28). The Fourier-Laplace transform of (3.18) leads to (2.33).
The rest of the paper is devoted to the derivation of (3.18).

4 The phonon creation term

Since the contribution to the energy given by the thermal term and the initial energy are completely
separate, we can derive the first term of (3.18) assuming Ŵ0 = 0. In this case ψ̂(0, k) = 0 and (3.8)
reduce to a stochastic integral:

ψ̂(t, k) = i
√

2γT

∫ t

0
φ(t− s, k) dw(s), (4.1)

To shorten notations denote φ̃(t, k) =
∫ t
0 e

iω(k)τg(dτ) = eiω(k)tφ(t, k), and

δεω(k, η) :=
1

ε

[
ω
(
k +

εη

2

)
− ω

(
k − εη

2

)]
. (4.2)

We can compute directly

Ŵε(t, η, k) = γT

∫ t

0
e−iδεω(k,η)sφ̃(s/ε, k + εη/2)φ̃∗(s/ε, k + εη/2)ds

The Laplace transform of φ̃(ε−1t, k) is given by g̃(ελ − iω(k)). Then we can compute directly the
Laplace-Fourier tranform of the Wigner distribution and obtain

ŵε(λ, η, k) = γT

∫ ∞

0
dte−λt

∫ t

0
dse−iδεω(k,η)sφ̃

(
ε−1s, k +

εη

2

)
φ̃∗

(
ε−1s, k − εη

2

)

=
γT

λ

∫ ∞

0
dse−(λ+iδεω(k,η))sφ̃

(
ε−1s, k +

εη

2

)
φ̃∗

(
ε−1s, k − εη

2

) (4.3)

and by using the inverse Laplace formula for the product of functions we have, for c > 0, we obtain

ŵε(λ, η, k) =
γT

λ

1

2πi
lim
ℓ→∞

∫ c+iℓ

c−iℓ

g̃(εσ − iω(k + εη
2 ))g̃

∗(ε(λ+ iδεω(k, η)− σ)− iω(k − εη
2 ))

σ (λ+ iδεω(k, η) − σ)
dσ (4.4)

Since g̃ is bounded and Reλ > 0, there is no problem in taking the limit as ε→ 0 obtaining

γT |ν(k)|2
λ (λ+ iω′(k)η)

. (4.5)
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5 The scattering terms

If the thermal production at 0 was easy to prove, the scattering terms are much more challenging.
Since the terhmal part will not affect the scattering, we can set T = 0 and consider a non-zero initial
energy.

We will first prove (3.18) under a stronger assumption than (2.18): we will assume no energy
is concentrated around modes that have null velocity, more precisely that there exist C, δ > 0 and
κ > 0 such that

|Ŵε(η, k)| ≤ Cϕ(η)χ
(
k − εη

2

)
χ
(
k +

εη

2

)
, (η, k) ∈ T2/ε × T, ε ∈ (0, 1], (5.1)

here ϕ(·) is given by (2.19) and χ ∈ C(T) is non-negative and satisfies

χ(k) ≡ 0 for k ∈ L(δ), (5.2)

with
L(δ) := [k : dist(k,Ω∗) < δ] (5.3)

and Ω∗ := [k ∈ T : ω′(k) = 0] ⊂ {0, 1/2}. The proof of Theorem 2.1 under the weaker assump-
tion (2.18) is presented in Section 9 below.

We could have continued to compute ŵε directly from the expression of the wave function, as we
did for the termal part. We find more practical to use the time evolution of Ŵε(t, η, k)

A straightforward computation starting from (2.6) and (2.11) shows that the Wigner transform
obeys, for T = 0, an evolution equation

∂tŴε(t, η, k) = −iδεω(k, η)Ŵε(t, η, k)

(5.4)

+iγ

{∫

T

Eε

[
ψ̂(ε)

(
t, k +

εη

2

)
(p̂(ε))∗(t, k′)

]
dk′ −

∫

T

Eε

[
(ψ̂(ε))∗

(
t, k − εη

2

)
p̂(ε)(t, k′)

]
dk′

}
,

Performing the Laplace transform in both sides of (5.4), we obtain

(λ+ iδεω(k, η))wε(λ, η, k) = Ŵε(η, k) −
γ

2

[
dε

(
λ, k − εη

2

)
+ d⋆ε

(
λ, k +

εη

2

)]
, (5.5)

where

dε(λ, k) := i

∫ +∞

0
e−λt

Eε

[
(ψ̂(ε))∗ (t, k) p

(ε)
0 (t)

]
dt. (5.6)

As δεω(k, η) → ω′(k)η as ε → 0, to get (3.18), we need to understand the limit of dε(λ, k). Us-
ing (3.8) for T = 0, we may write

dε (λ, k) = d1ε (λ, k) + d2ε (λ, k)

Here, djε (λ, k), j = 1, 2 are the Laplace transforms of Iε(t/ε), IIε(t/ε), where

Iε(t, k) := ieiω(k)t
∫ t

0

〈
p00(t− s)ψ̂∗(k)

〉
µε

g(ds), (5.7)

IIε(t, k) := −γ
∫ t

0
g
(
ds′

) ∫ t

0
φ∗ (t− s, k) 〈p00(s)p00(t− s′)〉µεds,
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Now, with (3.17) in mind, we can introduce

Lε(λ) :=

∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk = Lε
init(λ) + Lε

scat(λ). (5.8)

The first term in the right side is

Lε
init(λ) :=

∫

R×T

Ĝ∗(η, k)
Ŵε(η, k)

λ + iδεω(k, η)
dηdk. (5.9)

The scattering term in the right side of (5.8) is

Lε
scat(λ) = Lε

scat,1 + Lε
scat,2, (5.10)

with

Lε
scat,j := −γ

2

∫

R×T

Ĝ∗(η, k)

λ+ iδεω(k, η)

[
djε

(
λ, k − εη

2

)
+ (djε)

⋆
(
λ, k +

εη

2

)]
dηdk, j = 1, 2. (5.11)

The ballistic term

We note that thanks to assumption I2), we can easily show that

Lε
init(λ) :=

∫

R×T

Ĝ∗(η, k)
Ŵε(η, k)

λ+ iδεω(k, η)
dηdk →

∫

R×T

Ĝ∗(η, k)
Ŵ0(η, k)

λ + iω′(k)η
dηdk, as ε→ 0, (5.12)

which is the second term in the right side of (3.18).

5.1 The limit of the first scattering term

Here, we use the notation

δ+ε ω(k, η) := δεω
(
k +

εη

2

)
=

1

ε

[
ω(k + εη)− ω(k)

]
,

δ−ε ω(k, η) := δεω
(
k − εη

2

)
=

1

ε

[
ω(k)− ω(k − εη)

]
.

(5.13)

We now compute the limit of Lε
scat,1(λ) in (5.10) that we can re-write, after a simple change of

variables as

Lε
scat,1(λ) = −γ

2

∫

R×T

[Ĝ∗(η, k + εη/2)

λ+ iδ+ε ω(k, η)
d1ε (λ, k) +

Ĝ∗(η, k − εη/2)

λ+ iδ−ε ω(k, η)

(
d1ε
)∗

(λ, k)
]
dηdk.

We will show the following.

Lemma 5.1 For any test function G ∈ S(R× T) and λ > 0 we have

lim
ε→0+

Lε
scat,1(λ) = −γ

∫

R×T

Re[ν(k)]
Ŵε(η

′, k)

λ + iω′(k)η′

{∫

R

G∗(η, k)

λ+ iω′(k)η
dη

}
dkdη′. (5.14)

Proof. From (5.7) and (3.3) we get

Iε(t, k) =
1

2

∫ t

0
g (ds)

∫

T

{
〈ψ̂⋆(k)ψ̂(ℓ)〉µεe

i(ω(k)−ω(ℓ))t+iω(ℓ)s − 〈ψ̂⋆(k)ψ̂⋆(ℓ)〉µεe
i(ω(k)+ω(ℓ))t−iω(ℓ)s

}
dℓ.

(5.15)

12



Using assumption I1) (see (2.9)) and (5.15) we conclude that

d1ε(λ, k) =
1

2

∫

T

ε〈ψ̂⋆(k)ψ̂(ℓ)〉µεdℓ

∫ +∞

0
exp {iω(ℓ)s} g(ds)

∫ +∞

s
e−λεt exp {i(ω(k) − ω(ℓ))t} dt

=
1

2

∫

T

ε〈ψ̂⋆(k)ψ̂(ℓ)〉µεdℓ

λε+ i(ω(ℓ) − ω(k))

∫ +∞

0
g(ds)e−λεs exp {iω(k)s} ds

=

∫

T

(ε/2)〈ψ̂⋆(k)ψ̂(ℓ)〉µεdℓ

λε+ i(ω(ℓ) − ω(k))
g̃(ελ− iω(k)).

For any test function G ∈ S(T× R) we can write, therefore, (cf. (5.13))

∫

R×T

Ĝ⋆(η, k + εη/2)d1ε(λ, k)

λ+ iδ+ε ω(k, η)
dkdη (5.16)

=

∫

R×T

Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
dkdη

{∫

T

(ε/2)〈ψ̂⋆(k)ψ̂(ℓ)〉µε g̃(ελ− iω(k))

λε+ i(ω(ℓ)− ω(k))
dℓ

}
.

Changing variables k := k′ − εη′/2, ℓ := k′ + εη′/2 the right hand side of (5.16) can be rewritten in
the form

∫

R

dη

{∫

Tε

Ŵε(η
′, k′)g̃(ελ− iω(k′ − εη′/2))Ĝ∗(η, k′ + εη/2 − εη′/2)

[λ+ iδ+ε ω(k′ − εη′/2, η)][λ + iε−1(ω(k′ + εη′/2) − ω(k′ − εη′/2))]
dk′dη′

}
. (5.17)

Here, Tε ⊂ T2/ε × T is the image of T2 under the inverse map k′ := (ℓ+ k)/2, η′ := (ℓ− k)/ε. Note
that

lim
ε→0

g̃(ελ− iω(k′ − εη′/2))Ĝ⋆(η, k′ + εη/2 − εη′/2)

[λ+ iδ+ε ω(k′ − εη′/2, η)][λ + iε−1(ω(k′ + εη′/2) − ω(k′ − εη′/2))]
=

ν(k′)Ĝ⋆(η, k′)

[λ+ iω′(k′)η][λ + iω′(k′)η′]

a.e. in (η, η′, k′). Using bounds (5.1) and (2.26) we can argue, via the dominated convergence
theorem that the limit of (5.17), as ε→ 0, is the same as that of

∫

R2×T

Ŵε(η
′, k′)ν(k′)Ĝ∗(η, k′)dηdη′dk′

[λ+ iω′(k′)η][λ+ iω′(k′)η′]
. (5.18)

Summarizing, the above argument proves that

lim
ε→0+

∫

R×T

Ĝ∗(η, k + εη/2)d1ε(λ, k)

λ+ iδ+ε ω(k, η)
dkdη =

∫

R×T

ν(k)Ŵ0(η
′, k)

λ+ iω′(k)η′

{∫

R

Ĝ∗(η, k)

λ+ iω′(k)η
dη

}
dη′dk, (5.19)

for any test function G ∈ S(T× R). Similarly, we have

lim
ε→0+

∫

R×T

Ĝ∗(η, k − εη/2)(d1ε)
∗(λ, k)

λ+ iδ−ε ω(k, η)
dkdη =

∫

R×T

ν∗(k)Ŵ ∗
0 (η

′, k)

λ− iω′(k)η′

{∫

R

Ĝ∗(η, k)

λ+ iω′(k)η
dη

}
dη′dk.

(5.20)

As Ŵ ∗
ε (η, k) = Ŵε(−η, k), we conclude that (5.14) holds. �
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5.2 Asymptotics of the second scattering term

Let us split Lε
scat,2(λ) as

Lε
scat,2(λ) = −γ

2

∫

R×T

[
d2ε

(
λ, k − εη

2

)
+ (d2ε)

∗
(
λ, k +

εη

2

)] Ĝ∗(η, k)

λ+ iδεω(k, η)
dηdk (5.21)

= −γ
2

∫

R×T

[
d2ε (λ, k)

Ĝ∗(η, k + εη/2)

λ+ iδ+ε ω(k, η)
+ (d2ε)

∗ (λ, k)
Ĝ∗(η, k − εη/2)

λ+ iδ−ε ω(k, η)

]
dηdk

= Lε
scat,21(λ) + Lε

scat,22(λ),

with the two terms corresponding to writing

d2ε = Red2ε + iImd2ε. (5.22)

We recall that

d2ε(λ, k) = ε

∫ +∞

0
e−λεtIIε (t, k) dt = −γε

∫ +∞

0
e−λεtdt

{∫ t

0
eiω(k)(t−s)

〈
g ⋆ p00(s)g ⋆ p

0
0(t)

〉
µε

}
ds.

We will prove the following.

Lemma 5.2 For any λ > 0 and G ∈ S(R× T) we have

lim
ε→0

Lε
scat,2(λ) =

γ

4

∫

R×T

ı(k)Ŵ (η′, k)dη′dk

λ+ iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
(5.23)

+
γ

4

∫

R×T

ı(k)Ŵ (η′,−k)dη′dk
λ− iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
.

The conclusion of this lemma is the consequence of the following two limits

lim
ε→0+

Lε
scat,21(λ) =

γ

4

∫

R×T

ı(k)Ŵ (η′, k)dη′dk

λ+ iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
(5.24)

+
γ

4

∫

R×T

ı(k)Ŵ (η′,−k)dη′dk
λ− iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
,

and
lim

ε→0+
Lε
scat,22(λ) = 0. (5.25)

5.3 The limit of the full scattering term

Putting together the results of Lemmas 5.1 and 5.2, we see that

lim
ε→0

Lε
scat(λ) = −γ

∫

R×T

Re[ν(k)]
Ŵε(η

′, k)

λ + iω′(k)η′

{∫

R

G∗(η, k)

λ+ iω′(k)η
dη

}
dkdη′

+
γ

4

∫

R×T

ı(k)Ŵ (η′, k)dη′dk

λ+ iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
+
γ

4

∫

R×T

ı(k)Ŵ (η′,−k)dη′dk
λ− iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η

=

∫
[Wtr(η, k) +Wref (η, k)]Ĝ

∗(η, k)
|ω̄′(k)|dηdk
λ + iω′(k)η

dηdk, (5.26)
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with the transmission term

Wtr(η, k) =
γ

|ω̄′(k)|
[
− Re[ν(k)] +

ı(k)

4

] ∫ Ŵ (η′, k)dη′dk

λ+ iω′(k)η′
= (p+(k)− 1)

∫
Ŵ (η′, k)dη′dk

λ+ iω′(k)η′
. (5.27)

We used (2.29) in the last step. The other term in (5.26), corresponding to reflection, is

Wref (η, k) =
γ ı (k)

4|ω̄′(k)|

∫

R×T

Ŵ (η′,−k)dη′dk
λ− iω′(k)η′

= p−(k)

∫

R×T

Ŵ (η′,−k)dη′dk
λ− iω′(k)η′

. (5.28)

Combining the scattering terms in (5.26)-(5.28), together with the ballistic term in (5.12), we obtain
(3.18). Thus, the proof of Theorem 2.1 is reduced to the computation in Lemma 5.2.

6 The proof of Lemma 5.2: the limit of Lεscat,21(λ)

We now turn to the proof of Lemma 5.2. In this section, we begin the rather long and technical
computation leading to (5.24).

A calculation of Re d2ε

Recall that Lε
scat,21(λ) comes from the contribution to Lε

scat,2(λ) that appears from Re d2ε. Our first

task, therefore, is to compute Re d2ε. We have

2Re d2ε(λ, k) = −2γε

〈∫ +∞

0
e−λεtdt

{∫ t

0
cos(ω(k)s)(g ⋆ p00)(s)ds

}
cos(ω(k)t)(g ⋆ p00)(t)

〉

µε

−2γε

〈∫ +∞

0
e−λεtdt

{∫ t

0
sin(ω(k)s)(g ⋆ p00)(s)ds

}
sin(ω(k)t)(g ⋆ p00)(t)

〉

µε

= −γε
〈∫ +∞

0
e−λεt d

dt

{[∫ t

0
cos(ω(k)s)g ∗ p00(s)ds

]2
+

[∫ t

0
sin(ω(k)s)g ∗ p00(s)ds

]2}
dt

〉

µε

.

Integrating by parts, we obtain

2Re d2ε(λ, k) = −γε2λ
∫ +∞

0
e−λεtdt

〈{∫ t

0
cos(ω(k)s)(g ⋆ p00)(s)ds

}2
〉

µε

−γε2λ
∫ +∞

0
e−λεtdt

〈{∫ t

0
sin(ω(k)s)(g ⋆ p00)(s)ds

}2
〉

µε

:= Cε(λ, k) + Sε(λ, k). (6.1)

The first term in the right side is

Cε(λ, k) = −γε2λ
∫ +∞

0
e−λεtdt

∫ t

0

∫ t

0
dsds′ cos(ω(k)s) cos(ω(k)s′)〈g ∗ p00(s)g ∗ p00(s′)〉µε (6.2)

Using (2.9) and (3.3) gives

ε〈(g ⋆ p00)(s)(g ⋆ p00)(s′)〉µε =
1

4

∫ s

0

∫ s′

0
g(dτ)g(dτ ′)

∫

T2

dℓdℓ′e−iω(ℓ)(s−τ)eiω(ℓ
′)(s′−τ ′)ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε

+
1

4

∫ s

0

∫ s′

0
g(dτ)g(dτ ′)

∫

T2

dℓdℓ′eiω(ℓ)(s−τ)e−iω(ℓ′)(s′−τ ′)ε〈ψ̂∗(ℓ)ψ̂(ℓ′)〉µε . (6.3)
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Now, symmetry implies that the two terms above make an identical contribution to Cε(λ, t), hence

Cε(λ, k) = −γ
2
ελ

∫ +∞

0
e−λεtdt

∫ t

0

∫ t

0
dsds′ cos(ω(k)s) cos(ω(k)s′)

∫ s

0

∫ s′

0
g(dτ)g(dτ ′)

∫

T2

dℓdℓ′

×e−iω(ℓ)(s−τ)eiω(ℓ
′)(s′−τ ′)ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε (6.4)

= − γ

4π
ελ

∫

R

dβ

∫

T2

dℓdℓ′ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε

∫ +∞

0

∫ +∞

0
eiβ(t−t′)e−λε(t+t′)/2dtdt′

×
∫ t

0

∫ t′

0
dsds′ cos(ω(k)s) cos(ω(k)s′)

∫ s

0

∫ s′

0
g(dτ)g(dτ ′)e−iω(ℓ)(s−τ)eiω(ℓ

′)(s′−τ ′)

= − γ

4π
ελ

∫

R

dβ

∫

T2

ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε

∣∣Ω(ℓ, ℓ′, k, λ)
∣∣2 dℓdℓ′,

with

Ω(ℓ, ℓ′, k, λ) :=

∫ +∞

0
cos(ω(k)s)ds

{∫ s

0
e−iω(ℓ)(s−τ)g(dτ)

∫ +∞

s
e(−λε/2+iβ)tdt

}
.

Integrating out first the t variable, and then the s varable, we obtain

Ω(ℓ, ℓ′, k, λ) =
1

λε/2 − iβ

∫ +∞

0
eiω(ℓ)τg(dτ)

∫ +∞

τ
cos(ω(k)s)e[−λε/2+i(β−ω(ℓ))]sds

=
1

2(λε/2 − iβ)

∫ +∞

0
g(dτ)eiω(ℓ)τ

{
e[−λε/2+i[β+ω(k)−ω(ℓ)]]τ

λε/2− i(β + ω(k)− ω(ℓ))
+

e[−λε/2+i(β−ω(k)−ω(ℓ))]τ

λε/2− i[β + ω(k) + ω(ℓ)]

}

=
1

2(λε/2 − iβ)

{
g̃ (λε/2 − i[β + ω(k)])

λε/2− i(β + ω(k)− ω(ℓ))
+

g̃ (λε/2− i[β − ω(k))])

λε/2− i[β + ω(k) + ω(ℓ)]

}
.

Hence, after a change of variables β := εβ′ we get

Cε(λ, k) = − γλ

16 · πε2
∫

R

dβ

(λ/2)2 + β2

∫

T2

dℓdℓ′ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε (6.5)

×
{

g̃ (λε/2− i[εβ + ω(k)])

λ/2− i{β + ε−1[ω(k)− ω(ℓ)]} +
g̃ (λε/2 − i[εβ − ω(k)])

λ/2− i{β + ε−1[ω(k) + ω(ℓ)]}

}

×
{

g̃ (λε/2 + i[εβ + ω(k)])

λ/2 + i{β + ε−1[ω(k)− ω(ℓ′)]} +
g̃ (λε/2 + i[εβ + ω(k)]))

λ/2 + i{β + ε−1[ω(k) + ω(ℓ′)]}

}
.

A similar calculation leads to

Sε(λ, k) =
γλ

24πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2

dℓdℓ′ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε (6.6)

×
{

g̃ (λε/2− i[εβ + ω(k)])

λ/2− i{β + ε−1[ω(k)− ω(ℓ)]} − g̃ (λε/2 − i[εβ − ω(k)])

λ/2− i{β + ε−1[ω(k) + ω(ℓ)]}

}

×
{

g̃ (λε/2 + i(εβ − ω(k)]))

λ/2 + i{β − ε−1[ω(k) + ω(ℓ′)]} − g̃ (λε/2 + i[εβ + ω(k)])

λ/2 + i{β + ε−1[ω(k)− ω(ℓ′)]}

}
.

Putting (6.1), (6.5) and (6.6) together, gives

2Re d2ε(λ, k) = Rε(λ, k) + ρε(λ, k), (6.7)

with

Rε(λ, k) := − γλ

8πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2

dℓdℓ′ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε (6.8)

× |g̃ (λε/2− i[εβ + ω(k)]) |2
λ/2− i{β + ε−1[ω(k)− ω(ℓ)]} × 1

λ/2 + i{β + ε−1[ω(k)− ω(ℓ′)]}
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and

ρε(λ, k) := − γλ

16 · πε2
∫

R

dβ

(λ/2)2 + β2

∫

T2

dℓdℓ′ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε

{ g̃ (λε/2 − i[εβ + ω(k)])

λ/2− i{β + ε−1[ω(k)− ω(ℓ)]}

×
{ g̃ (λε/2 + i[εβ + ω(k)])

λ/2 + i{β + ε−1[ω(k) + ω(ℓ′)]} +
g̃ (λε/2 + i(εβ − ω(k)]))

λ/2 + i{β − ε−1[ω(k) + ω(ℓ′)]

}

+
g̃ (λε/2− i[εβ − ω(k)])

λ/2− i{β + ε−1[ω(k) + ω(ℓ)]} (6.9)

×
{ g̃ (λε/2 + i[εβ + ω(k)])

λ/2 + i{β + ε−1[ω(k) + ω(ℓ′)]} +
g̃ (λε/2 + i(εβ − ω(k)]))

λ/2 + i{β − ε−1[ω(k) + ω(ℓ′)]

}}
.

The main contribution to Lε
scat,21(λ) will come from the termRε(λ, k) due to the difference ω(k)−ω(ℓ)

in the denominator that can become small. As ρε(λ, k) only has the sum ω(k) + ω(ℓ), we expect its
contribution to be small in the limit. More precisely, we will show the following result for the limit
of Rε(λ, k).

Lemma 6.1 Let

H±(λ, ε) :=

∫

R×T

Rε (λ, k)
Ĝ∗(η, k ± εη/2)

λ+ iδ±ε ω(k, η)
dηdk (6.10)

and

Itr(λ) := −2γπ

∫

R×T

|ν(k)|2Ŵ (η′,±k)dη′dk
|ω′(k)|[λ+ iω′(k)η′]

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
, (6.11)

and

Iref (λ) := −2γπ

∫

R×T

|ν(k)|2Ŵ (η′,±k)dη′dk
|ω′(k)|[λ − iω′(k)η′]

∫

R

Ĝ∗(η, k)dη

λ+ iω′(k)η
, (6.12)

then

lim
ε→0+

H±(λ, ε) =
1

2
(Itr(λ) + Iref (λ)). (6.13)

On the other hand, ρε(λ, k) vanishes in the limit.

Lemma 6.2 For each λ > 0 we have

lim
ε→0+

∫

T

|ρε(λ, k)|dk = 0. (6.14)

These two lemmas, together with (5.21)-(5.22) and (6.7) imply (5.24).

Proof of Lemma 6.2

A word on notation: for two functions f, g : D → R we say that f � g if there exists C > 0 such
that f(x) ≤ Cg(x), x ∈ D. We shall use the notation f ≈ g if f � g and g � f .

Opening the parentheses in (6.9), we can write

ρε(λ, k) =
4∑

j=1

ρjε(λ, k).

We will only show that

lim
ε→0

∫

T

|ρ1ε(λ, k)|dk = 0, (6.15)
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as the other terms are analyzed in a similar fashion. To verify (6.15), it suffices to show that

lim
ε→0

1

ε

∫

R

dβ

(λ/2)2 + β2

∫

T3

∣∣∣〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µε

∣∣∣ (6.16)

×
∣∣∣∣

g̃ (λε/2 − i[εβ + ω(k)])

λ/2− i{β + ε−1[ω(k)− ω(ℓ)]}

∣∣∣∣×
∣∣∣∣

g̃ (λε/2 + i[εβ + ω(k)])

λ/2 + i{β + ε−1[ω(k) + ω(ℓ′)]}

∣∣∣∣ dkdℓdℓ′ = 0.

Change variables

ℓ =: k′ +
εη′

2
, ℓ′ =: k′ − εη′

2
(6.17)

and let

T 2
ε :=

[
(η′, k′) : |η′| ≤ 1

ε
, |k′| ≤ 1− ε|η′|

2

]
⊂ T2/ε × T, (6.18)

be the image of T2 under the inverse map, as below (5.17). The expression under the limit in (6.16)
can then be estimated by

‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k′)|

|λ/2 − i{β + ε−1[ω(k)− ω(k′ + εη′/2)]}|

× dkdk′dη′

|λ/2 + i{β + ε−1[ω(k) + ω(k′ − εη′/2)]}| ≤ I1,ε + I2,ε, (6.19)

where

I1,ε :=
‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k′)|

|λ+ iε−1 (ω(k′ − εη′/2) + ω(k′ + εη′/2)) |

× dkdk′dη′

|λ/2− i{β + ε−1[ω(k)− ω(k′ + εη′/2)]}|

and

I2,ε :=
‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k′)|

|λ+ iε−1 (ω(k′ − εη′/2) + ω(k′ + εη′/2)) |

× dkdk′dη′

|λ/2 + i{β + ε−1[ω(k) + ω(k′ − εη′/2)]}| .

We used here the identity

1

(λ/2 − ia)(λ/2 + ib)
=

( 1

λ/2− ia
+

1

λ/2 + ib

) 1

λ− i(a− b)
.

Now, we can estimate I1,ε as follows:

I1,ε ≤ εΓε‖g̃‖2∞
∫

R

dβ

(λ/2)2 + β2

∫

T×T2/ε

|Ŵε(η
′, k′)|dk′dη′

ω(k′ − εη′/2) + ω(k′ + εη′/2)
,

with

Γε := sup
A∈R

∫

T

dk

|ελ/2 − i (ω(k)−A) | ≤ Γ+
ε + Γ−

ε ,

with

Γ±
ε := sup

A∈R

∫ ωmax

0

du

|ελ/2 − i(u−A)||ω′(ω±(u))|
.
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Recall that ω−, ω+ are the decreasing and increasing branches of the inverse function of the dispersion
relation ω(·). Our assumptions on the dispersion relation imply that

ω′(ω±(u)) ≈ (ωmax − u)1/2, for ωmax − u≪ 1.

The consideration near the minimum of ω is identical unless ωmin = 0, in which case |ω′(k)| stays
uniformly positive near the minimum. Therefore, we have

Γ±
ε � sup

A∈[0,1]

∫ 1

0

du

[ε+ |u−A|]√u � ε−1/2 log ε−1.

We obtain therefore

I1,ε � ε1/2 log ε−1

∫

Tε×T

|Ŵε(η
′, k′)|dη′dk′

ω(k′ − εη′/2) + ω(k′ + εη′/2)
�

∫ +∞

0

∫ 1

0

ε1/2 log ε−1dqdu

(u+ ε(q ∧ 1))(1 + q3+2κ)
→ 0,

as ε → 0, due to (5.1) and (2.19), and since if ωmin = 0, then ω(k) behaves as |k| near the mini-
mum k = 0. One can easily verify that the right hand side vanishes, with ε→ 0. Similarly we obtain
also that

lim
ε→0+

I2,ε = 0,

which finishes the proof of Lemma 6.2. �

7 The proof of Lemma 6.1

7.1 Outline of the proof

We now turn to the proof of Lemma 6.1, the main ingredient in the computation of the limit
of Lε

scat,21(λ). We will only consider the term H+(λ, ε), as the computation of the limit of H−(λ, ε)
is essentially the same. We will focus on the harder case when the dispersion relation ω(k) is smooth
both at its maximum k = 1/2 and its minimum k = 0, so that the inverse function has a square root
singularity at each of these points. That is, the two branches of its inverse ω+ : [ωmin, ωmax] → [0, 1/2]
and ω− := −ω+ satisfy

ω′
±(w) = ±(w − ωmin)

−1/2χ∗(w), w − ωmin ≪ 1,

and
ω′
±(w) = ±(ωmax − w)−1/2χ∗(w), ωmax − w ≪ 1,

with χ∗, χ
∗ ∈ C∞(T) that are strictly positive.

Using (6.8) and the change of variables (6.17) we can write

H+(λ, ε) = − γλ

4πε

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T×T 2
ε

Ŵε(η
′, k′)dkdη′dk′

λ/2− i{β + ε−1[ω(k)− ω(k′ + εη′/2)]} (7.1)

× |g̃ (λε/2− i[εβ + ω(k)]) |2
λ/2 + i{β + ε−1[ω(k)− ω(k′ − εη′/2)]} × Ĝ∗(η, k + εη/2)

λ+ iδ+ε ω(k, η)
.

In fact, we may discard the contribution due to large η′, thanks to assumption (5.1). More precisely,
let H̃+(λ, ε) be the expression analogous to H+(λ, ε) corresponding to integration over η′ and k′ over

T 2
ε :=

[
(η′, k′) : |η′| ≤ δ

2100ε
, |k′| ≤ 1− ε|η′|

2

]
⊂ T2/ε × T, (7.2)
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with δ as in (5.2). Due to (5.1) and (2.19) we have

∣∣∣H+(λ, ε) − H̃+(λ, ε)
∣∣∣ � 1

ε2

∫

|η′|≥δ/(2100ε)

dη′

(1 + (η′)2)3/2+κ
= ε2κ → 0, as ε→ 0. (7.3)

In what follows we restreict ourselves therefore to studying the limit of H̃+(λ, ε).
The main contribution to the limit comes from the regions where ω(k) ≈ ω(k′), that is, where

either k ≈ k′ – this generates the transmission term, or k ≈ −k′ – this is responsible for the reflection
term in the limit. The smallness of these regions will compensate for the factor 1/ε in front of the
integral in (7.1). To distinguish the contributions of these two regions, we decompose

H̃+(λ, ε) =
∑

ι∈{−,+}

Iι(λ, ε). (7.4)

Here Iι(λ, ε) correspond to the integration over the domains T̃ 3
ε,ι, ι = ±:

T̃ 3
ε,ι :=

[
(k, η′, k′) ∈ T× T̃ 2

ε : sign k = ιsign(k′ + εη′/2)
]
,

so that the integration over T̃ 3
ε,+ will generate the transmission term, and over T̃ 3

ε,− the reflection.
Changing variables k′ := ιk + εη′′/2, and using the fact that ω(k) is even, gives

Iι(λ, ε) = −γλ
8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, ιk + εη′′/2)dkdη′dη′′

λ/2− i{β + ε−1[ω(k)− ω(k + ι(εη′/2 + εη′′/2))]}

× |g̃ (λε/2− i[εβ + ω(k)]) |2
λ/2 + i{β + ε−1[ω(k)− ω(k + ι(−εη′/2 + εη′′/2))]} × Ĝ∗(η, k + εη/2)

λ+ iδ+ε ω(k, η)
. (7.5)

Here, T 3
ε,ι ⊂ T×T2/ε×T6/ε is the pre-image of T̃ 3

ε,ι under the mapping (k, η′, η′′) 7→ (k, η′, ιk+εη′′/2):

T 3
ε,ι :=

[
(k, η′, η′′) : k ∈ T, |η′| ≤ δ

250ε
,
∣∣∣k+ ιεη

′′

2

∣∣∣ ≤ 1− ε|η′|
2

, sign k = sign
(
k + ι(εη′/2 + εη′′/2)

) ]
.

(7.6)
We will pass to the limit ε → 0 in expression (7.5) in several steps. The first step will be to

replace the quotient ε−1[ω(k)−ω(k+ι(εη′/2+εη′′/2))] in the first denominator by −ιω′(k)(η′+η′′)/2.
That is, we will show the following.

Lemma 7.1 We have

lim
ε→0

{Iι(λ, ε)− I(1)
ι (λ, ε)} = 0, ι ∈ {−,+}, (7.7)

where

I(1)
ι (λ, ε) := −γλ

8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε (η
′, ιk + εη′′/2)

λ/2− i{β − ιω′(k)(η′ + η′′)/2} (7.8)

× |g̃ (λε/2 − i[εβ + ω(k)]) |2
λ/2 + i{β + ε−1[ω(k)− ω(k + ι(−εη′/2 + εη′′/2))]} × Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
dkdη′dη′′.

Next, we will replace a similar term in the second denominator by ιω′(k)(η′ − η′′)/2.

20



Lemma 7.2 We have

lim
ε→0

{I(1)
ι (λ, ε)− I(2)

ι (λ, ε)} = 0, ι ∈ {−,+}, (7.9)

where

I(2)
ι (λ, ε) := −γλ

8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε (η
′, ιk + εη′′/2)

λ/2− i{β − ιω′(k)(η′ + η′′)/2} (7.10)

× |g̃ (λε/2 − i[εβ + ω(k)]) |2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
dkdη′dη′′.

The third step will be to replace the term |g̃ (λε/2− i[εβ + ω(k)]) |2 in (7.10) by its limit |ν(k)|2.

Lemma 7.3 We have

lim
ε→0

|I(2)
ι (λ, ε) − I(3)

ι (λ, ε)| = 0, ι ∈ {−,+}, (7.11)

with

I(3)
ι (λ, ε) = −γλ

8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, ιk + εη′′/2)dkdη′dη′′

λ/2− i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
. (7.12)

Next, we will approximate the Wigner transform Ŵε(η
′, ιk+ εη′′/2) by Ŵε(η

′, ιk), the test func-
tion G∗(η, k + εη/2) by G∗(η, k), and δ+ε ω(k, η) by ω

′(k)η, respectively.

Lemma 7.4 We have

lim
ε→0

|I(3)
ι (λ, ε) − I(4)

ι (λ, ε)| = 0, ι ∈ {−,+}, (7.13)

with

I(4)
ι (λ, ε) = −γλ

8π

∫

R×R

dβdη

(λ/2)2 + β2

∫

T×R2

Ŵε(η
′, ιk)dkdη′dη′′

λ/2− i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
. (7.14)

The last step will be to pass to the limit in Ŵε(η
′, ιk) and integrate in β, which is done in Section 7.5.

7.2 The proof of Lemmas 7.1 and 7.2

We only present the proof of Lemma 7.1 since the proof of Lemma 7.2 is very similar except somewhat
simpler. We will also only consider ι = + (the transmission case) in the proof of Lemma 7.1, as the
reflection case can be treated in a similar fashion.

Let us drop the subscript +, setting

I(λ, ε) := I+(λ, ε), I(1)(λ, ε) := I(1)
+ (λ, ε),

to reduce the number of subscripts. We split the domain of integration T 3
ε,+ into four regions

T 3
ε,+,ι1,ι2 := [(k, η′, η′′) ∈ T 3

ε,+ : ι1k > 0, ι2(k − εη′/2 + εη′′/2) > 0], ι1, ι2 ∈ {−,+}, (7.15)
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and write
I(λ, ε) =

∑

ι1,ι2=±

Iι1,ι2(λ, ε), I(1)(λ, ε) =
∑

ι1,ι2=±

I(1)
ι1,ι2(λ, ε).

We will only consider the case ι1 = ι2 = +, as the other cases can be done similarly, and set

Ĩ(λ, ε) = I+,+(λ, ε), Ĩ(1)(λ, ε) = I(1)
+,+(λ, ε).

Our goal is to show that for any σ > 0 we have

lim sup
ε→0

|Ĩ(λ, ε) − Ĩ(1)(λ, ε)| < σ. (7.16)

We perform the change of variables

w0 := ω(k), w1 := ω(k − εη′/2 + εη′′/2), w2 := ω(k + εη′/2 + εη′′/2) (7.17)

in the integrals over k, η′, η′′, to get

Ĩ(λ, ε) − Ĩ(1)(λ, ε) (7.18)

=
γλi

4πε2

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

Dε

Ŵε

(
ε−1[ω+(w2)− ω+(w1)], (1/2)[ω+(w2) + ω+(w1)]

)

λ/2− i{β + ε−1(w0 − w2)}

× ∆
(ε)
+ (w2, w0, β)|g̃ (λε/2 − i(εβ + w0)) |2

λ/2 + i{β + ε−1(w0 − w1)}
× Ĝ∗(η, ω+(w0) + εη/2)

λ+ iδ+ε ω(ω+(w0), η)

2∏

j=1

1

ω′(ω+(wj))
dw0dw1dw2,

with Dε ⊂ [ωmin, ωmax]
3 – the image of T 3

ε,+,+,+ under the change of variables mapping,

∆
(ε)
± (w′, w, β) :=

ε−1δω+(w
′, w)

λ/2 ∓ i{β + ε−1(w − w′) + ε−1ω′(ω+(w))δω+(w′, w)} , (7.19)

and
δω+(w

′, w) := ω+(w) − ω+(w
′)− ω′

+(w)(w − w′).

Let us explain some difficulties in passing to the limit in (7.18). Formally, we have a factor of ε−2

in front of the integral compensated by the terms of the order ε−1 in the first two denominators.
The factor of ε−1 in the first argument in Ŵε seemingly would then bring a collapse of one variable
of integration and show that the overall expression is small in the limit. However, there are two
obstacles: first, the factors ω′(ω+(wj)) have a square root singularity at ωmin and ωmax, so that the
effect of the ε−1 terms in the first two denominators is reduced. Second, the terms of the size εβ are
not necessarily small and may influence the limit since the domain of integration in β is all of R.

In order to deal with the first issue, using assumption (5.1), we see that there exists δ0 > 0 such
that for all (w1, w2), for which we have

Ŵε

(
1

ε
[ω+(w2)− ω+(w1)] ,

1

2
[ω+(w2) + ω+(w1)]

)
= 0, (7.20)

provided that either w1, w2 ∈ [ωmin, ωmin+δ0), or w1, w2 ∈ (ωmax−δ0, ωmax], and (w0, w1, w2) ∈ Dε

for some w0.
We can further write

I(λ, ε)− Ĩ(1)(λ, ε) =

2∑

j=1

Jj,ε,
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where the integration is split into the regions |w1−w2| ≥ δ0/4 and otherwise. From (5.1) and (7.18)
we conclude that |J1,ε| � ε. If, on the other hand |w1 − w2| < δ0/4 we only need to be concerned
with the integration over w2 ∈ I(δ0/2), where I(δ) := [ωmin+δ, ωmax−δ], as otherwise the integrand
vanishes because of (7.20). The above implies that w1 ∈ I(δ0/4). Since ω+ ∈ C∞(I(δ0/4)) we can
can find C > 0 such that, after integration in η, we have, with a constant depending on λ:

|J2,ε| � Rε :=
1

ε2

∫

R×T2/ε

dβ

1 + β2

∫ ωmax

ωmin

dw0

∫

I(δ0/4)

∫

I(δ0/2)

ϕ
(
Cε−1(w2 − w1)

)

1 + |β + ε−1(w0 − w2)|

× |∆(ε)
+ (w2, w0, β)|dw1dw2

1 + |β + ε−1(w0 − w1)|
= R1

ε +R2
ε.

The two terms above correspond to the integration in w0 over the regions I ′(ρ) := [ωmin, ωmax]\ I(ρ)
and I(ρ), with ρ < δ0/8. We have

R1
ε �

1

ε3

∫

I′(ρ)

(
1 +

1

ω′(ω+(w0))

)
dw0

∫

I(δ0/4)

∫

I(δ0/2)
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2

×
∫

R

1

1 + |β + ε−1(w0 − w2)|
× 1

1 + |β + ε−1(w0 − w1)|
× dβ

1 + β2
(7.21)

� 1

ε3

2∑

j=1

∫

I′(ρ)

(
1 +

1

ω′(ω+(w0))

)
dw0

∫

I(δ0/4)

∫

I(δ0/2)
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2

×
∫

R

1

1 + |β + ε−1(w0 − wj)|2
× dβ

1 + β2
. (7.22)

An elementary estimate
∫

R

1

1 + (β + a)2
× dβ

1 + β2
� 1

1 + a2
, a ∈ R (7.23)

implies that

R1
ε �

1

ε3

2∑

j=1

∫

I′(ρ)

(
1 +

1

ω′(ω+(w0))

)
dw0

∫

I(δ0/4)

∫

I(δ0/2)
ϕ
(
Cε−1(w2 − w1)

) dw1dw2

1 + ε−2(w0 − wj)2
.

If w0 ∈ I ′(ρ) we have |w0 − wj| ≥ δ0/8, thus

R1
ε �

1

δ20

∫

I′(ρ)

(
1 +

1

ω′(ω+(w0))

)
dw0

∫ 1

0

∫ 1

0

1

ε
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2.

We conclude that

lim sup
ε→0

R1
ε �

1

δ20

∫

I′(ρ)

(
1 +

1

ω′(ω+(w0))

)
dw0, ρ ∈ (0, 1). (7.24)

Selecting ρ > 0 sufficiently small, we deduce

lim sup
ε→0

R1
ε < σ. (7.25)

23



Next, we fix ρ > 0 sufficiently small, so that (7.25) holds and look at the term R2
ε, that involves

integration in w0 over the region I(ρ). Note that ω+ ∈ C∞(I(ρ)) and

inf
w∈I(ρ)

ω′(ω+(w)) > 0,

hence

R2
ε �

1

ε2

∫

R

dβ

1 + β2

∫

I(ρ)

∫

I(δ0/4)

∫

I(δ0/2)

ϕ
(
Cε−1(w2 − w1)

)

1 + |β + ε−1(w0 − w2)|
× |∆(ε)

+ (w2, w0)|dw0dw1dw2

1 + |β + ε−1(w0 − w1)|
.

After the change of variables w′
1 := ε−1(w1 −w0), w

′
2 := ε−1(w2 −w0), β

′ := β −w′
2, the expression

in the right side can be estimated by

Iε :=
∫

I(ρ)
dw0

∫

Iε(δ0)
dw1dw2

∫

R

ϕ (C(w2 − w1))

1 + |β + w2 − w1|
× |∆̃(ε)

+ (w2, w0, β)|
1 + (β + w2)2

× dβ

1 + |β| = I(1)
ε +I(2)

ε , (7.26)

with

∆̃
(ε)
± (w′, w, β) :=

ε−1δ̃εω+(w
′, w)

λ/2 ∓ i{β + ε−1ω′(ω+(w))δ̃εω+(w′, w)}
and

δ̃εω+(w
′, w) = −

∫ w+εw′

w
(ω′

+(v)− ω′
+(w))dv = ω+(w) + ω′

+(w)εw
′ − ω+(w + εw′). (7.27)

The two terms in the right side of (7.26) correspond to splitting the region Iε(δ0) ⊂ [−C1ε
−1, C1ε

−1]2

of integration in w1, w2 (the image of I(δ0/4)× I(δ0/2) under the above map) into two sub-regions,
corresponding to the integration over

Bε(ρ
′) := [w2 : |w2| ≤ ρ′/ε]

and its complement, with ρ′ > 0 is to be determined later. Note that in both regions we have the
estimates

lim
ε→0

ε−1δ̃εω+(w
′, w) = 0 for each w,w′, (7.28)

and ∫

R

ϕ (Cw) dw

1 + |β + w| �
1

1 + |β| , β ∈ R. (7.29)

As the domain of integration in (7.26) depends on ε, even with (7.28) in hand, we still can not apply
the Lebesgue dominated convergence theorem directly. In addition, we have the estimate

|∆̃(ε)
+ (w,w0, β)| � |ε−1δ̃εω+(w,w0)| � εw2, (7.30)

for all w0 and w in the domain of integration in (7.26). Integrating out the w1-variable using (7.29)
and (7.30), we obtain

I(1)
ε �

∫

I(ρ)
dw0

∫ ρ′/ε

−ρ′/ε
dw

∫

R

εw2

1 + (β +w)2
× dβ

1 + β2
�

∫

I(ρ)
dw0

∫ ρ′/ε

−ρ′/ε

εw2dw

1 + w2
� ρ′. (7.31)

It follows that
lim
ε→0

I(1)
ε ≤ σ, (7.32)
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for a sufficiently small ρ′ ∈ (0, 1).
For the second term in the right side of (7.26), we use (7.29) to integrate out the w1-variable

once again, and write

I(2)
ε =

∫

I(ρ)
dw0

∫

I′ε

dw

∫

R

|∆̃(ε)
+ (w,w0)|

1 + (β + w)2
× dβ

1 + β2
= I(2,1)

ε + I(2,2)
ε . (7.33)

Here, I ′ε ⊂ [ρ′/ε ≤ |w| ≤ C1/ε] is the projection of Iε ∩ Bc
ε(ρ

′) onto the w2-axis. The first integral in
the right side of (7.33) corresponds to integration over the set

[(β,w) ∈ R
2 : |β + w| ≤ |w|3/4]

and the second over its complement. We split again

I(2,1)
ε = I(2,1)

ε,+ + I(2,1)
ε,− ,

according to the integration in w over I±ε = I ′ε ∩ [w > 0] and its complement, so that

I(2,1)
ε,± �

∫

I(ρ)
dw0

∫

I+ε

ε−1|δ̃εω+(w,w0)|dw
1 + w2

∫

[|β−w|≤|w|3/4]

dβ

1 + |β − ε−1ω′(ω+(w0))δ̃εω+(w,w0)|
.

(7.34)
Let us set

zε(w,w0) := ε−1ω′(ω+(w0))δ̃εω+(w,w0) = w − ω+(w0 + εw) − ω+(w0)

εω′
+(w0)

,

so that
w − zε(w,w0) > w4/5, for all w0 ∈ I(ρ) and w ∈ I+ε , (7.35)

for all ε > 0 sufficiently small. Then, we have

Zε(w,w0) :=

∫ w+w3/4

w−w3/4

dβ

1 + |β − zε|
=

∫ w+w3/4−zε

w−w3/4−zε

dβ

1 + |β| = log
(1 + w + w3/4 − zε

1 + w − w3/4 − zε

)
.

It follows from (7.35) that by taking ε sufficiently small we may ensure that

lim sup
ε→0

sup
w0∈I(ρ),w∈I+ε

|Zε(w,w0)| = 0. (7.36)

Then, using (7.30), we get

I(2,1)
ε,+ �

∫

I(ρ)
dw0

∫

|w−z|≥w4/5

|Zε(w,w0)|
εw2dw

1 +w2
≤ σ

2
, (7.37)

for ε > 0 sufficiently small. A similar calculation yields the same estimate for I(2,1)
ε,− , thus

lim sup
ε→0

I(2,1)
ε < σ. (7.38)

As for I(2,2)
ε we can write

I(2,2)
ε �

∫

I(ρ)
dw0

∫

I′ε

ε−1|δ̃εω+(w,w0)|dw
1 + w3/2

∫

R

dβ

(1 + |β + ε−1ω′(ω+(w0))δ̃εω+(w,w0)|)(1 + β2)
.
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Using an elementary estimate

∫

R

1

1 + |β + a| ×
dβ

1 + β2
� 1

1 + |a| , a ∈ R, (7.39)

we obtain

I(2,2)
ε �

∫

I(ρ)
dw0

∫

I′ε

ε−1|δ̃εω+(w,w0)|dw
[1 + |ε−1ω′(ω+(w0))δ̃εω+(w,w0)|](1 +w3/2)

.

Here, we can use the Lebesgue dominated convergence theorem and (7.28) to conclude that

lim
ε→0

I(2,2)
ε = 0.

This finishes the proof of (7.16).

7.3 The proof of Lemma 7.3

Let us note that the integration in η′′ both in expression (7.10) for I(2)
ι and (7.12) for I(3)

ι would
bring out the factor of [ω′(k)]−1 that is not integrable. This singularity should be compensated by
the g̃-term in (7.10) and by its limit |ν(k)|2 in (7.12), as can be seen from (2.27), (2.28) and (2.31).
The following auxiliary result will allow us to use this argument.

Lemma 7.5 For each k∗ such that ω′(k∗) = 0, we have

lim
δ′→0

lim sup
ε→0

sup
β∈(−δ′,δ′)

|g̃ (ε− i[β + ω(k∗)]) | = 0. (7.40)

Proof. As follows from (2.25), it suffices to show that

lim
δ′→0

lim inf
ε→0

inf
β∈(−δ′,δ′)

|J̃ (ε− i[β + ω(k∗)]) | = +∞, (7.41)

with J̃(·) as in (2.24). Consider the point k∗ = 1/2 where ω attains its maximum ωmax = ω(k∗) > 0,
and write

J̃ (ε− i[β + ω(k∗)]) =
i

2

{∫

T

dℓ

iε+ β + ω(k∗) + ω(ℓ)
+

∫

T

dℓ

iε+ β + ω(k∗)− ω(ℓ)

}
.

Hence, (7.41) would follow if we can show that for each M > 0 there exist ε0, δ0 ∈ (0, 1) such that

∣∣∣
∫

T

dℓ

iε+ β + ω(k∗)− ω(ℓ)

∣∣∣ > M, β ∈ (−δ0, δ0), ε ∈ (0, ε0). (7.42)

The real and imaginary parts of the expression under the absolute value in (7.42) are

rε(β) :=

∫

T

[β + ω(k∗)− ω(ℓ)]dℓ

ε2 + [β + ω(k∗)− ω(ℓ)]2
, jε(β) := −

∫

T

εdℓ

ε2 + [β + ω(k∗)− ω(ℓ)]2
.

Changing variables u := ω(ℓ)− β, we obtain

|jε(β)| ≥
∫ ωmax−β

ωmin−β

ε

ε2 + [ωmax − u]2
× du

|ω′(ω+(u+ β))| .
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Choosing a sufficiently small δ0 > 0, we see that

|ω′(ω+(u+ β))| ≤ π/(2M) for |β| < δ0 and u ∈ (ωmax − δ0, ωmax + δ0),

hence

inf
β∈(−δ0,δ0)

|jε(β)| ≥
2M

π

∫ ωmax+δ0

ωmax−δ0

εdu

ε2 + [ωmax − u]2
.

It follows that for a sufficiently small ε0 we have

inf
β∈(−δ0,δ0)

|jε(β)| ≥M, ε ∈ (0, ε0)

and (7.42) follows. �
We now turn to the proof of Lemma 7.3. Once again, we will only consider ι = + and drop the

subscript + in the notation. Let σ > 0 be arbitrary. For ρ ∈ (0, δ/4), with δ > 0 as in (5.2), we let

L(ρ) := [k : dist(k,Ω∗) < ρ], Ω∗ := [k ∈ T : ω′(k) = 0] ⊂ {0, 1/2}, (7.43)

with ρ to be specified further later. We can write

I(2)(λ, ε) − I(3)(λ, ε) = Ĩ1(λ, ε) + Ĩ2(λ, ε),

with the two terms corresponding to the integration in (7.10) and (7.12) in the k-variable over Lc(ρ),
the complement of L(ρ), and L(ρ) itself, respectively. Since |ω′(k)| is bounded away from 0 on Lc(ρ),
an elementary application of the Lebesgue dominated convergence theorem implies that

lim
ε→0

Ĩ1(λ, ε) = 0. (7.44)

Assumption (5.1), (5.2) on the support of Ŵε(η, k) in k allows us to write

|Ĩ2(λ, ε)| � Ĩ2,1(λ, ε) + Ĩ2,2(λ, ε), (7.45)

where

Ĩ2,j(λ, ε) :=

∫

R

dβ

(λ/2)2 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

|δj,ε(β, k)|
1 + |β + ω′(k)(η′ − η′′)/2| ×

ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′ + η′′)/2| ,

with
A(δ, ε) := [η′′ : δ/(2ε) ≤ |η′′| ≤ 6/ε], B(δ, ε) := [η′ : |η′| ≤ δ/(2100ε)] (7.46)

and
δ1,ε(β, k) := |g̃ (λε/2 − i[εβ + ω(k)]) |2, δ2,ε(β, k) := |ν(k)|2 � |ω′(k)|. (7.47)

The last inequality above follows from (2.26) and (2.29). It follows that

Ĩ2,2(λ, ε) �
∫

R

dβ

(λ/2)2 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

|ω′(k)|
1 + |β + ω′(k)(η′ − η′′)/2|

ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′ + η′′)/2|
≤ C(J+ + J−), (7.48)

with

J± :=

∫

L(ρ)×B(δ,ε)×A(δ,ε)

ϕ(η′)|ω′(k)|dkdη′dη′′
1 + [ω′(k)(η′ ± η′′)]2

, (7.49)
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and a constant C > 0 independent of ε, ρ. We used the Cauchy-Schwarz inequality and (7.23) in the
last inequality in (7.48). Note that

J± :=

∫

L(ρ)×B(δ,ε)×A(δ,ε)

ϕ(η′)|ω′(k)|dkdη′dη′′
1 + [ω′(k)(η′ ± η′′)]2

. (7.50)

Changing variables η′′ := ω′(k)(η′ ± η′′) we conclude that

J± ≤
∫

L(ρ)×R2

ϕ(η′)dkdη′dη′′

1 + |η′′|2 ≤ σ, (7.51)

provided that ρ > 0 is sufficiently small.
As for the term Ĩ2,1(λ, ε), using Cauchy-Schwarz inequality we obtain

Ĩ2,1(λ, ε) � Kε,+ +Kε,−,

with

Kε,±(ρ) :=

∫

R

dβ

1 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

δ1,ε(β, k)ϕ(η
′)dkdη′dη′′

1 + |β − ω′(k)(η′′ ± η′)/2|2

= K1
ε,+(ρ, ρ

′) +K2
ε,+(ρ, ρ

′).

(7.52)

The terms in the right side correspond to integration over the regions

K1
ε,+(ρ, ρ

′) := [(β, k, η′, η′′) ∈ R× L(ρ)× R×A(δ, ε) : |η′| < δ/(2100ε), |β| ≥ ρ′ε−1],

K2
ε,+(ρ, ρ

′) := [(β, k, η′, η′′) ∈ R× L(ρ)× R×A(δ, ε) : |η′| < δ/(2100ε), |β| < ρ′ε−1],

with ρ′ > 0 to be chosen later. Since ω′(k∗) = 0, for each ρ′ > 0 we can find ρ sufficiently small so
that

|β − ω′(k)(η′′ + η′)/2| ≥ |β|/2, on K1
ε,+(ρ, ρ

′).

Therefore, for each ρ′ > 0 we can find ρ > 0 sufficiently small so that

K1
ε,+(ρ, ρ

′) � 1

ε

∫

[|β|≥ρ′ε−1]

dβ

(1 + β2)2
→ 0, as ε→ 0, (7.53)

with the pre-factor ε−1 coming again from the integration over η′′ in (7.52) . Finally, we can write

K2
ε,+(ρ, ρ

′) ≤ mε(ρ, ρ
′)

∫

R

dβ

1 + β2

∫

L(ρ)×[|η′|<δ/(2100ε)]×A(δ,ε)

ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′′ + η′)/2|2 ,

where
δ′ := ρ′ + sup

k∈L(ρ)
|ω(k) − ω(k∗)|, mε(ρ, ρ

′) := sup
β′∈(−δ′,δ′)

|g̃(ελ− i[β′ + ω(k∗)])|2.

Using (7.23) again gives

K2
ε,+(ρ, ρ

′) � mε(ρ, ρ
′)

∫

L(ρ)×[|η′|<δ/(2100ε)]×A(δ,ε)

ϕ(η′)dkdη′dη′′

1 + |ω′(k)(η′′ + η′)|2

� mε(ρ, ρ
′)

∫

L(ρ)×A(δ/10,ε/2)

dkdη′′

1 + |ω′(k)η′′|2

� mε(ρ, ρ
′)

∫

L(ρ)

dk

|ω′(k)|

[
arctan

(
12|ω′(k)|

ε

)
− arctan

(
δ|ω′(k)|

5ε

)]
.
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Using a well known trigonometric identity we write

arctan
(6|ω′(k)|

ε

)
− arctan

(δ|ω′(k)|
2ε

)
= arctan

((12− δ/5)|ω′(k)|
ε

{
1 +

(12/5)δ|ω′(k)|2
ε2

}−1)
,

therefore

K2
ε,+(ρ, ρ

′) � mε(ρ, ρ
′)

∫ ρ

0

dk

k
arctan

( (k/ε)

1 + (k/ε)2

)
� mε(ρ, ρ

′)

∫ ∞

0

dk

k
arctan

( k

1 + k2

)
� mε(ρ, ρ

′).

Lemma 7.5 implies now that we can choose ρ, ρ′ so small that

lim sup
ε→0

K2
ε,+(ρ, ρ

′)� σ. (7.54)

Combining (7.53) and (7.54) we conclude that for each σ > 0 there exists ρ ∈ (0, 1) such that

lim sup
ε→0

Kε,+(ρ) � σ. (7.55)

The analysis for Kε,−(ρ) is very similar, finishing the proof of Lemma 7.3.

7.4 The proof of Lemma 7.4

As usual, we only consider ι = + and drop the corresponding subscript +. A straightforward
computation using (5.1), the regularity of the test function Ĝ(η, k), and (7.23) shows that we can
replace Ĝ⋆(η, k + εη/2) in (7.12) by Ĝ⋆(η, k), and δ+ε ω(k, η) by ω

′(k)η, so that

|I(3)(λ, ε) − Ĩ(3)(λ, ε)| → 0, as ε→ 0, (7.56)

where

Ĩ(3)(λ, ε) = −γλ
8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, k + εη′′/2)dkdη′dη′′

λ/2− i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
. (7.57)

We change variables k′ := k + εη′′/2 in the right side to obtain

Ĩ(3)(λ, ε) = −γλ
8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2− i{β − ω′(k − εη′′/2)(η′ + η′′)/2}

× |ν(k − εη′′/2)|2
λ/2 + i{β + ω′(k − εη′′/2)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
+ o(1) (7.58)

= −γλ
8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2− i{β − ω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
+∆ε + o(1),

with, cf (7.6),

Uε :=

[
(k, η′, η′′) : k ∈ T, |η′| ≤ δ

2100ε
, |k| ≤ 1− ε|η′|

2
, sign(k − εη′′/2) = sign

(
k + εη′/2

)]
. (7.59)
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The term o(1) in the right side of (7.58) appears because we have, once again, approximated the
arguments in Ĝ⋆ and ω′ by k in the very last factor, despite the latest change of variables. The
error ∆ε, that we now need to estimate, appears in (7.58) because we have replaced the arguments
of ω′ by k in the first two factors.

Thanks to assumption (5.1), the integration over k in (7.58) is only over the complement of the
set L(δ), see (5.3). We can write then (cf (7.46))

|∆ε| �
∫

Lc(δ)×R×B(δ,ε)×R

dε(k, η
′, η′′)ϕ(η′)

|Ĝ⋆(η, k)|
|λ+ iω′(k)η|dkdηdη

′dη′′ = ∆′
ε +∆′′

ε . (7.60)

The terms ∆′
ε and ∆′′

ε correspond to the integration in η′′ over the domains A′(δ, ε) := [|η′′| ≤ δ/(2ε)],
and A′′(δ, ε) = [|η′′| ≥ δ/(2ε)], and

dε(k, η
′, η′′) :=

∫

R

dβ

(λ/2)2 + β2

∣∣∣∣
1

λ/2− i{β − ω′(k − εη′′/2)(η′ + η′′)/2}

× |ν(k − εη′′/2)|2
λ/2 + i{β + ω′(k − εη′′/2)(η′ − η′′)/2} − 1

λ/2− i{β − ω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ω′(k)(η′ − η′′)/2}

∣∣∣∣ . (7.61)

Using (7.23) we can estimate, for (k, η′, η′′) ∈ Lc(δ) ×B(δ, ε) ×A′(δ, ε):

dε(k, η
′, η′′) � 1

1 + (η′ − η′′)2
+

1

1 + (η′ + η′′)2
. (7.62)

As dε(k, η
′, η′′) → 0 pointwise, we can apply the dominated convergence theorem in (7.60), to get

lim
ε→0

∆′
ε = 0. (7.63)

To estimate ∆′′
ε , observe that (7.23) implies

dε(k, η
′, η′′) �

∑

ι=±

(
d1,ιε (k, η′, η′′) + d2,ιε (k, η′, η′′)

)
,

with

d1,ιε (k, η′, η′′) :=
|ν(k − εη′′/2)|2

1 + [ω′(k − εη′′/2)(η′ + ιη′′)]2
, d2,ιε (k, η′, η′′) :=

|ν(k)|2
1 + [ω′(k)(η′ + ιη′′)]2

, ι ∈ {−,+}.
(7.64)

As |η′′| is larger than δ/ε on A′′(δ, ε) and |ω′(k)| is bounded away from 0 on Lc(δ), the decay
of ϕ(η′) allows us to apply the dominated convergence theorem, to obtain

lim
ε→0

∫

Lc(δ)×R×B(δ,ε)×A′′(δ,ε)
d2,ιε (k, η′, η′′)ϕ(η′)

|Ĝ⋆(η, k)|
|λ+ iω′(k)η|dkdηdη

′dη′′ = 0, ι ∈ {−,+}. (7.65)

For the terms d1,ιε , we consider only the case ι = +, as the other case can be done similarly. Note
that

B(δ, ε) ×A′′(δ, ε) ⊂ A1(δ, ε) := [(η′, η′′) ∈ R×A′′(δ, ε) : |η′ + η′′| ≥ |η′′|/2].

30



Hence,

∫

Lc(δ)×R×B(δ,ε)×A′′(δ,ε)
d1ε(k, η

′, η′′)ϕ(η′)
|Ĝ⋆(η, k)|

|λ+ iω′(k)η|dkdηdη
′dη′′

≤ Dε :=

∫

Lc(δ)×R×A1(δ,ε)
d1ε(k, η

′, η′′)ϕ(η′)
|Ĝ⋆(η, k)|

|λ+ iω′(k)η|dkdηdη
′dη′′. (7.66)

For any κ′ ∈ (0, 1) we can write

Dε �
∫

Lc(δ)×A′′(δ,ε)

|ν(k − εη′′/2)|2
1 + [ω′(k − εη′′/2)η′′]2

dkdη′′

�
∫

Lc(δ)×A′′(δ,ε)

|ν(k − εη′′/2)|2
|ω′(k − εη′′/2)| ×

dkdη′′

|ω′(k − εη′′/2)|κ′ |η′′|1+κ′ (7.67)

�
∫

Lc(δ)×A′′(δ,ε)

dkdη′′

|ω′(k − εη′′/2)|κ′ |η′′|1+κ′ �
∫

A′′(δ,ε)

dη′′

|η′′|1+κ′ � εκ
′ → 0, as ε→ 0.

We obtain from (7.65) and (7.67) and its analog for ι = − that

lim
ε→0

∆′′
ε = 0, (7.68)

which, together with (7.63) gives
lim
ε→0

∆ε = 0. (7.69)

We have shown that

Ĩ(3)(λ, ε) = −γλ
8π

∫

R×T2/ε

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2 − i{β − ω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
+ o(1).

Now, the dominated convergence theorem allows us to pass to the limit in the domains of integration
in (7.58), leading to (7.14).

7.5 The end of the proof of Lemma 6.1

As a result of Lemmas 7.1-7.4, together with (7.4), we know that

H+(λ, ε) = −γλ
8π

∑

ι=±

∫

R2

dβdη

(λ/2)2 + β2

∫

T×R2

Ŵε(η
′, ιk)dkdη′dη′′

λ/2− i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ⋆(η, k)

λ+ iω′(k)η
+ o(1), (7.70)

as ε≪ 1. Recall the elementary formula: for q± ∈ C such that Im q+ > 0 > Im q− we have
∫

R

dq

(q − q+)(q − q−)
=

2πi

q+ − q−
. (7.71)

Performing the integral in the η′′ variable in (7.70) we obtain

H+(λ, ε) = −γλ
2

∑

ι=±

∫

R2

dβdη

(λ/2)2 + β2

∫

T×R

|ν(k)|2Ŵε(η
′, ιk)dkdη′

|ω′(k)|[λ + ιiω′(k)η′]
× Ĝ⋆(η, k)

λ+ iω′(k)η
+ o(1). (7.72)
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Integrating out the β-variable we get (recall that ω̄′(k) = ω′(k)/(2π))

H+(λ, ε) = −γ
2

∑

ι=±

∫

T×R2

|ν(k)|2Ŵε(η
′, ιk)

|ω̄′(k)|[λ+ ιiω′(k)η′]
× Ĝ⋆(η, k)

λ+ iω′(k)η
dkdηdη′ + o(1). (7.73)

An analogous formula holds for H−(λ, ε). Letting ε → 0 we obtain (6.13), finishing the proof of
Lemma 6.1.

8 Proof of Lemma 5.2: the limit of Lεscat,22(λ)

We now turn to the computation that leads to (5.25) the second and final ingredient in Lemma 5.2:

lim
ε→0+

Lε
scat,22(λ) = 0. (8.1)

Observe that, as follows from (5.21) and (5.22), we have

Lε
scat,22(λ) = − iγ

2

∫

R×T

[Imd2ε (λ, k)]
[Ĝ∗(η, k + εη/2)

λ+ iδ+ε ω(k, η)
− Ĝ∗(η, k − εη/2)

λ+ iδ−ε ω(k, η)

]
dηdk (8.2)

with

d2ε(λ, k) = −γε
∫ +∞

0
e−λεtdt

{∫ t

0
eiω(k)(t−s)

〈
g ⋆ p00(s)g ⋆ p

0
0(t)

〉
µε

}
ds. (8.3)

A lengthy calculation, similar to that at the beginning of Section 6, leads to an expression

iIm d2ε(λ, k) = − iελγω(k)
4π

∫

R

β |g̃(ελ/2− iβ)|2dβ
{(ελ/2)2 + [β + ω(k)]2}{(ελ/2)2 + [β − ω(k)]2}

×
∫

T2

ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µεdℓdℓ
′

{ελ/2 − i[β − ω(ℓ)]}{ελ/2 + i[β − ω(ℓ′)]} , (8.4)

hence

Lε
scat,22(λ) =

iελγ2

8π

∫

R2×T3

[
Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
− Ĝ⋆(η, k − εη/2)

λ+ iδ−ε ω(k, η)

]
(8.5)

× ω(k)β |g̃(ελ/2 − iβ)|2
{(ελ/2)2 + [β + ω(k)]2}{(ελ/2)2 + [β − ω(k)]2}

ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µεdβdηdkdℓdℓ
′

{ελ/2 − i[β − ω(ℓ)]}{ελ/2 + i[β − ω(ℓ′)]} .

After the change of variables β′ := ε−1β, we get

Lε
scat,22(λ) = −λγ

2

8πε

∫

T

ω(k)Gε(k)dk

∫

R

β |g̃(ελ/2 − iεβ)|2dβ
{(λ/2)2 + [β + ε−1ω(k)]2}{(λ/2)2 + [β − ε−1ω(k)]2}

×
∫

T 2
ε

ε〈ψ̂(ℓ)ψ̂∗(ℓ′)〉µεdℓdℓ
′

{λ/2− i[β − ε−1ω(ℓ)]}{λ/2 + i[β − ε−1ω(ℓ′)]} , (8.6)

with

Gε(k) := −i
∫

R

[
Ĝ⋆(η, k + εη/2)

λ+ iδ+ε ω(k, η)
− Ĝ⋆(η, k − εη/2)

λ+ iδ−ε ω(k, η)

]
dη (8.7)

=

∫

R

Ĝ⋆(η, k + εη/2)[2ω(k) − ω(k + εη)− ω(k − εη)]

ε{λ2 + [δ+ε ω(k, η)]2}
dη.
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Let us first assume that ω ∈ C∞(T). Then we can estimate

|Gε(k)| � ε‖ω′′‖∞
∫

R

η2‖Ĝ⋆(η, ·)‖∞dη � ε, (8.8)

while the last integral in the right side of (8.6) is bounded by

4ε

λ2

〈[∫

T2

|ψ̂(ℓ)|dℓ
]2〉

µε

≤ 4ε

λ2

〈
‖ψ̂‖2L2(T)

〉
µε

� 1. (8.9)

Hence, we have

|Lε
scat,22(λ)| � ε

∫

T

dk

∫ +∞

0

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2} (8.10)

= ε

∫

T

dk

∫ ω(k)/ε

0

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}

+ε

∫

T

dk

∫ +∞

ω(k)/ε

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}

= ε

∫

T

dk

∫ ω(k)/ε

0

ε−1ω(k)
(
ε−1ω(k)− β

)

1 + [2ε−1ω(k)− β]2
dβ

1 + β2
+ ε

∫

T

dk

∫ +∞

0

ε−1ω(k)
(
ε−1ω(k) + β

)

1 + [β + 2ε−1ω(k)]2
dβ

1 + β2
.

Using the dominated convergence theorem, we conclude that

lim
ε→0

Lε
scat,22(λ) = 0. (8.11)

Finally, consider (8.6)-(8.7) when ω ∈ C∞(T \ {0}). Let σ > 0 be arbitrary, and take A > 0, to
be chosen later. We can write

Lε
scat,22(λ) = L

ε,1
scat,22(λ) + L

ε,2
scat,22(λ),

where the terms in the right hand side correspond to the integration over [k : |k| ≤ Aε] and its
complement. As ω is Lipschitz, we have

|Gε(k)| �
∫

R

|η|‖Ĝ⋆(η, ·)‖∞dη � 1

Using (8.9) we write

|Lε,1
scat,22(λ)| �

∫

[|k|≤Aε]
dk

∫ +∞

0

ε−1ω(k)βdβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}

≤
∫

[|k|≤Aε]
dk

∫ +∞

0

ε−1ω(k)βdβ

{1 + ε−1ω(k)β}{1 + [β − ε−1ω(k)]2} � Aε. (8.12)

Finally, we write
L
ε,2
scat,22(λ) = L

ε,21
scat,22(λ) + L

ε,22
scat,22(λ),

corresponding to the partition of the integration domain in η into [η : |η| < A/4] and its complement.
In the first case, as |k| > Aε and |η| < A/4, we can still use estimate (8.8), hence

lim
ε→0

L
ε,21
scat,22(λ) = 0.
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In the other case, we can estimate

|Lε,22
scat,22(λ)| �

∫

[|η|>A/4]
|η|‖Ĝ⋆(η, ·)‖∞dη

∫

[|k|>Aε]
dk

∫ +∞

0

ε−1ω(k)βdβ

{1 + ε−1ω(k)β}{1 + [β − ε−1ω(k)]2}

�
∫

[|η|>A/4]
|η|‖Ĝ⋆(η, ·)‖∞dη ≤ σ, (8.13)

provided that A is sufficiently large. This finishes the proof of (5.25), and that of Lemma 5.2 as
well.

9 End of proof of Theorem 2.1

In the present section we show Theorem 2.1 assuming that the Fourier-Wigner transform of the initial
data satisfies (2.18) rather than the stronger assumption (5.1). Suppose that σ > 0 and G ∈ S(R×T)
are arbitrary. Let us decompose the solution of (2.6) as

ψ̂(t, k) = ψ̂1(t, k) + ψ̂2(t, k),

where

dψ̂1(t, k) =
{
− iω(k)ψ̂1(t, k)− γ

2i

∫

T

[ψ̂1(t, k′)− (ψ̂1(t, k′))⋆]dk′
}
dt+ i

√
2γTdw(t),

ψ̂1(0, k) = ψ̂(k)χδ(k)

(9.1)

and

dψ̂2(t, k)

dt
= −iω(k)ψ̂2(t, k)− γ

2i

∫

T

[
ψ̂2(t, k′)− (ψ̂2(t, k′))⋆

]
dk′,

ψ̂2(0, k) = ψ̂(k)[1 − χδ(k)],

(9.2)

with χδ ∈ C(T) such that 0 ≤ χ ≤ 1, χδ ≡ 0 on L(δ) (see (5.3)), χδ ≡ 1 on Lc(2δ) and δ chosen so
small that

lim sup
ε→0+

εEε‖ψ̂(1− χδ)‖2L2(T) < σ. (9.3)

Let ŵε(λ, η, k) and ŵ
1
ε(λ, η, k) be the Laplace transforms of the Fourier-Wigner functions correspond-

ing to ψ̂(t, k) and ψ̂1(t, k) via (2.11). Using estimates (2.14) and (9.3) we see that

lim sup
ε→0+

sup
η∈T2/ε

∫

T

∣∣ŵε(λ, η, k) − ŵ1
ε(λ, η, k)

∣∣ dk � σ, for each λ > 0.

It follows, in particular, that

lim sup
ε→0+

∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ1
ε (λ, η, k)dηdk

∣∣∣∣ � σ. (9.4)

In addition, the initial condition for ψ̂1(t, k) satisfies assumption (I3’) in (5.1). As we have already
proved Theorem 2.1 under this hypothesis, we conclude that

lim
ε→0+

∫

R×T

Ĝ∗(η, k)ŵ1
ε (λ, η, k)dηdk =

∫

R×T

Ĝ∗(η, k)ŵ1(λ, η, k)dηdk, (9.5)
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with ŵ1(λ, η, k) given by (3.18), but with Ŵ0(η, k) replaced by χ2
δ(k)Ŵ0(η, k). Thus, for a sufficiently

small δ > 0 we have
∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵ1(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk

∣∣∣∣ < σ. (9.6)

We have thus shown that

lim sup
ε→0+

∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk

∣∣∣∣ � σ, (9.7)

which ends the proof of Theorem 2.1.

10 The properties of ν(k)

In this section, we prove relation (2.29). The function

ν(k) := lim
ε→0

g̃(ε− iω(k))

can be determined from the identity

ν(k)
(
1 + γ lim

ε→0
J̃(ε− iω(k))

)
= 1.

Recalling (2.24), we write

lim
ε→0

J̃(ε− iω(k)) = lim
ε→0

∫

T

(ε− iω(k))dℓ

(ε− iω(k))2 + ω2(ℓ)
=

1

2
lim
ε→0

∫

T

dℓ

ε− iω(k) + iω(ℓ)

+
1

2
lim
ε→0

∫

T

dℓ

ε− iω(k)− iω(ℓ)
=
i

2

∫

T

dℓ

ω(k) + ω(ℓ)
+
i

2
lim
ε→0

∫

T

dℓ

iε+ ω(k)− ω(ℓ)
.

Let us set

G(u) :=
1

2

∫

T

dℓ

u+ ω(ℓ)
=

∫ 1/2

0

dℓ

u+ ω(ℓ)
=

∫ ωmax

ωmin

dv

|ω′(ω−1
+ (v))|(u + v)

,

and

H(u) :=
1

2
lim
ε→0

∫

T

dℓ

iε+ u− ω(ℓ)
= lim

ε→0

∫ ωmax

ωmin

dv

|ω′(ω−1
+ (v))|(iε + u− v)

,

so that

ν(k) =
1

1 + iγ(G(ω(k)) +H(ω(k))
. (10.1)

In our situation, with u = ω(k) ∈ (ωmin, ωmax), we have

H(ω(k)) =
1

|ω′(k)|

{
H0(ω(k)) + lim

ε→0

∫ ωmax

ωmin

dv

iε+ ω(k)− v

}
, (10.2)

with a continuous, bounded and real-valued function H0(u). For any a, b ∈ R and c ∈ (a, b), we have

∫ b

a

dv

iε+ c− v
=

∫ (c−a)/ε

−(b−c)/ε

dv

i+ v
=

∫ (c−a)/ε

−(b−c)/ε

(v − i)dv

1 + v2
= −iπ + log

c− a

b− c
+ o(1). (10.3)

As G(u) and H0(u) are real-valued, using (10.3) in (10.1) immediately gives

Re ν(k) =
(
1 +

πγ

|ω′(k)|
)
|ν(k)|2, (10.4)

which is (2.29).
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