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Abstract Streamflow data are used for important environmental and economic decisions, such as
specifying and regulating minimum flows, managing water supplies, and planning for flood hazards.
Despite significant uncertainty in most flow data, the flow series for these applications are often
communicated and used without uncertainty information. In this commentary, we argue that proper
analysis of uncertainty in river flow data can reduce costs and promote robust conclusions in water
management applications. We substantiate our argument by providing case studies from Norway and New
Zealand where streamflow uncertainty analysis has uncovered economic costs in the hydropower industry,
improved public acceptance of a controversial water management policy, and tested the accuracy of water
quality trends. We discuss the need for practical uncertainty assessment tools that generate multiple flow
series realizations rather than simple error bounds. Although examples of such tools are in development,
considerable barriers for uncertainty analysis and communication still exist for practitioners, and future
research must aim to provide easier access and usability of uncertainty estimates. We conclude that flow
uncertainty analysis is critical for good water management decisions.

Plain Language Summary In this commentary, we show how analyzing uncertainty in river flow data
can reduce costs and promote robust conclusions in water management applications. River flow data can contain
large uncertainties but are often communicated and used without uncertainty information. We give case studies
from Norway and New Zealand where flow uncertainty analysis has uncovered economic costs in the hydropower
industry, improved public acceptance of a controversial water management policy, and tested the accuracy of
water quality trends. We conclude that flow uncertainty analysis is critical for good water management decisions.

1. Introduction

Streamflow data are used for a wide variety of water management applications. Flow magnitude data are
used to design levees, dams, and other hydraulic structures, and to delineate floodplains. Analysis of the
natural flow regime is used to specify environmental flow requirements and manage water quality, and
real-time flow data determine authorizations of water withdrawal or pollutant releases and serve as the
basis of river forecasts and flood warnings. Flow data guide commercial management of reservoirs and
dams, and thus affect economic returns.

When flow data are imprecise or inaccurate, unnecessary costs or poor ecological or societal outcomes may
follow. For example, overestimation of a design flood would lead to higher bridge building costs, whereas
underestimation would lead to higher failure risks. When extracting stream water for irrigation, the balance
between economic benefits and ecological flow requirements might be wrongly estimated if streamflow
data are uncertain. Such costs can be managed by treating flow as an uncertain variable by specifying a
measurement model, using this together with appropriate tools for decision-making under uncertainty, and
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investing in data collection to reduce uncertainty where economically justified (e.g., by collecting additional
high flow measurements or directly measuring water velocity as well as stage [Levesque and Oberg, 2012]).

Streamflow data used by commercial and governmental organizations are often treated as ‘‘error-free’’ infor-
mation. However, these data are the products of models (most often the stage-discharge rating curve) that
may be imprecise and/or biased and may thus produce inaccurate flow information even under best-
practice stage and flow measurement protocols [Petersen-Øverleir et al., 2009; Coxon et al., 2015]. Flow data
are typically provided without accompanying uncertainty estimates, or with only very general guidance
such as 1/2 uncertainty bounds or flagging of suspect data. Data users, therefore, have little opportunity
to account for flow uncertainty, apart from pragmatic approaches such as ignoring flagged data, or using a
wide safety margin. Uncertainty analysis may also be perceived as arduous and expensive, with results that
could add doubt to reported conclusions. If the imprecision and inaccuracy of the rating curve model were
better quantified, users would be able to better use the flow data in their predictions and decision making.

We argue in this commentary that including uncertainty analysis as a standard part of applied water man-
agement applications can save money and increase the robustness and perceived trustworthiness of deci-
sions. We discuss the causes and magnitude of uncertainty in flow data. Through a series of case studies,
we demonstrate the economic consequences of inaccurate flow data, and the improvements in economic,
environmental, and societal outcomes when uncertainty analyses are included. These case studies describe
previous experiences of the authors, and are in part drawn from examples presented at a Workshop on Dis-
charge Uncertainty Analysis, held at TU Vienna, Austria, April 2016. We conclude by discussing current chal-
lenges and recommendations for operational, practical flow uncertainty analysis.

2. Uncertainty Sources and Magnitudes in Flow Data

Most flow data are derived from a measured time series of river stage, and a rating curve model that
relates stage to flow. The resulting flow data are, therefore, estimates that contain uncertainties relating
to: (1) the measured stage series, (2) the measurements of stage and flow used to derive the rating curve,
(3) interpolation and extrapolation in the rating curve model, and (4) unrecognized changes in the chan-
nel cross section due to scour/fill, vegetation and ice, backwater and hysteresis effects, which cause
change in the deterministic rating curve. The commonly used term ‘‘flow data uncertainty’’ refers to these
uncertainty sources in the derived flow estimate. This uncertainty may also be understood as part of a
‘‘measurement model’’ that relates measured stage to an estimate of the true flow, and should include
both random and systematic components of uncertainty. We must acknowledge that our measurement
model will always be incomplete, and sometimes we do not have much evidence upon which to base our
measurement model.

Streamflow uncertainty analysis methods attempt to quantify the combined magnitude of the four uncer-
tainty sources outlined above. Uncertainties in measurements of stage and discharge relate to instrument
precision, fluctuations in water surface height, and estimation of average cross-section discharge from a
series of discrete measurements. Uncertainties in the rating curve combine known uncertain approxima-
tions (interpolation/extrapolation) with unknown systematic errors due to cross-section change. While the
latter could theoretically be minimized by frequent measurements and reassessments of the rating curve
model, in practice, these changes can be more frequent (and unpredictable) than limited measurement
budgets can cover. Therefore, uncertainty analysis techniques identify the magnitude of likely systematic
errors based on changes between previous measurements, and treat these systematic errors as an uncer-
tainty source in the measurement model.

McMillan et al. [2012] provide a thorough overview of uncertainty sources and their typical magnitudes in
flow data, including for alternative flow measurement techniques such as Acoustic Doppler instruments.
Typical confidence bounds for flow uncertainties when using the rating curve method were found to be
650–100% for low flows, 610–20% for medium or high (in-bank) flows, and 640% for out of bank flows.
However, the bounds for any particular rating are highly dependent on gauge construction, measurement
regime, and channel characteristics [Westerberg et al., 2016]. If flow estimates for ungauged catchments are
derived from a hydrologic model, further uncertainties in rainfall inputs, model structure, and parameters
have to be considered.
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3. Case Studies

In the following section, we describe three water management case studies where analyses of flow uncer-
tainties were critical to the accuracy and robustness of the results.

3.1. Economic and Environmental Costs of Flow Uncertainties
Case study 1: Rating curves in the Norwegian hydropower industry. In this case study, we demonstrate
high economic costs associated with errors in flow data used to maintain minimum environmental flows.

The Norwegian Water Resources and Energy Directorate legislates that hydropower companies must main-
tain hydrometric networks to monitor minimum environmental flow releases in regulated rivers, and to
monitor nearby natural rivers to assess the comparative effects of dams and abstraction. These minimum
flows mitigate the impacts of flow-regulation by preserving biological diversity and landscape quality,
accommodating the needs of other water users, diluting pollutants, and maintaining groundwater levels.
Waterfall flows are regulated to protect the majestic landscape valued by Norwegians: Vøringsfossen (Eidf-
jord, Hordaland) and Mardalsfossen (Nesset, Møre, and Romsdal) described below are protected waterfalls
managed by the hydropower company Statkraft. Governing authorities can impose penalty fees for insuffi-
cient flows resulting from reservoir management operations, but environmental consequences are difficult
to quantify using economic measures. Releasing too much water has a quantifiable economic cost for the
power producer.

The minimum flow required at Vøringsfossen is 11 m3/s during the summer holiday period 1 June–15 Sep-
tember. Most of this flow is released from a large reservoir upstream, especially during dry spells. A gauging
station just upstream of the waterfall measures the discharge and controls water releases. A typical rating
curve error of 1 m3/s, combined with plausible power prices, could result in an economic loss of e5000/d. In
2010, an error of this magnitude was suspected, caused by erosion of the hydraulic control. A new rating
curve was quickly measured, but, assuming the error had persisted throughout the season, the estimated
economic losses were approximately e500,000. The new rating curve used eight measurements in the range
7.4 to 14.2 m3/s. Rating measurements were limited to this interval because the main purpose of the gaug-
ing station is to ensure that the discharge is 11 m3/s or higher, and therefore, the accuracy of extrapolated
flows is not of great concern to the hydropower company or the regulator.

Using the Bayesian rating curve analysis of Reitan and Petersen-Øverleir [2009] with default priors, the 95%
credible interval at 11 m3/s is about 5%. Given the potential costs for the power producer of a 5% rating
error, investment in further measurements to improve the rating curve precision may have positive benefit
compared to cost. For comparison, the costs of developing a new rating curve are approximately e10,000,
consisting of one day’s work for a hydrometric consultant team to perform the discharge measurements
(fee typically around e3000) and the cost of stepped water releases over the desired flow interval (average
additional release of 3 m3/s for 10 h; cost approximately e7000).

The framework governing water releases at the second waterfall, Mardalsfossen is complicated, but an error
of 0.3 m3/s is plausible based on the rating curve quality. In the case of underestimation, this could result in
total costs for the power producer of up to e100,000 per summer season. This cost was calculated based on
a recent system average power price of 30 e/MWh in conjunction with a calculation of the energy equiva-
lent of water volume in the upstream reservoir. In the case of overestimation, a fine for insufficient summer
releases could occur such as that of 1986 when Statkraft was fined e1.5M (e3M equivalent today). The Mar-
dalsfossen rating curve is already high quality, with an estimated 95% credible interval of 3% for the regu-
lated minimum flows of 2, 2.5, and 3 m3/s; but again, it might be economically beneficial to improve the
rating curve further given the high economic costs and penalty fees involved.

3.2. Robust Conclusions in Water Management Applications
Case study 2: Determination of a catchment boundary for Lake Rotorua, New Zealand. In this case
study, we demonstrate how transparent uncertainty estimates improved public acceptance of a controversial
water management policy.

Lake Rotorua is an 80 km2 freshwater lake in the North Island of New Zealand. The local government body
intends to control land use in the lake catchment to reduce nitrogen and phosphorus inflows and improve
water quality. The management strategy will have significant economic impact on land owners within the
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catchment boundary. For example, if rules restricting nitrogen losses from land lead to a land parcel being
used for dryland sheep/beef farming rather than irrigated dairy farming, the profit per hectare could fall
from US$2900 to US$200 (estimates from New Zealand South Island) [Saunders and Saunders, 2012]. Deter-
mining an accurate catchment boundary is therefore important to the strategy’s success. While the surface
catchment boundary can be accurately mapped, the lake also has groundwater inflows originating from
outside the surface catchment.

Analysis of 13 years of recorded flow at the lake outlet and at four streams flowing into the lake was used
to quantify the size of the ‘‘missing’’ groundwater catchment area [Rutherford and Palliser, 2014a]. Annual
runoff, as a fraction of rainfall, was calculated for each flow record, along with its uncertainty (requiring esti-
mates of the uncertainty in flow, rain, and catchment area). By comparing the runoff fraction in the streams
without groundwater influence to the catchment outlet runoff fraction, the additional outlet runoff was cal-
culated and used to estimate the ‘‘missing’’ area. It was important to test whether the additional runoff
could be attributed to uncertainty in the measured flows. Flow uncertainty was calculated using two differ-
ent methods, recognizing that deviations of gaugings from the rating curve can represent systematic error
(i.e., the rating curve was incorrect or had changed with time), and/or random error in the measurements of
stage and flow used to derive the rating curve. For a worst case scenario, all error was assumed systematic,
and so average error was calculated as the mean difference between gaugings and rating curve. For a best
case scenario, errors were assumed to be a combination of systematic and random components. An empiri-
cal estimate of rating uncertainty and its autocorrelation in time was used to estimate a total uncertainty
distribution.

Even with worst-case uncertainty, there was only a 33% chance of the observed flow differences occurring
if there was no groundwater inflow. Therefore, in a second step, a catchment water balance model, together

Figure 1. Map of the minimum, best estimate, and maximum Lake Rotorua groundwater catchment boundaries in the Mamaku Plateau
area. Figure reproduced from White et al. [2014] with the permission of Bay of Plenty Regional Council.
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with local hydrogeological knowledge, was used to estimate the location of the missing area [White et al.,
2014; Rutherford and Palliser, 2014b]. Discharge uncertainty estimates in the outlet and streams were used
to provide inner and outer uncertainty limits for the location of the groundwater catchment boundary; see
Figure 1 for an example. Maps of these uncertainty limits were provided to the public and to the governing
body, demonstrating the robustness of the groundwater boundary estimate, which was essential given the
high economic impact of imposed land-use change. Public hearings on the land management rule changes
are in progress, and have not included any submissions challenging the calculated catchment boundary
positions.

Case study 3: Water quality trends in ungauged catchments, New Zealand. In this case study, we illus-
trate how information on errors in flow values was used to test the reliability of water quality trends that used
flow estimates from a hydrologic model in the absence of gauged flow data.

Water quality is of concern in many New Zealand rivers and lakes, due to increased levels of nitrogen, phos-
phorus, pathogenic micro-organisms, and other agricultural emissions. The New Zealand government there-
fore commissioned a national-scale water quality analysis to quantify current state and future pressures on
water quality. Water quality measurements from around the country were compiled and analyzed to deter-
mine state and trends in water quality variables at measurement sites.

Water quality is commonly strongly dependent on flow, and therefore a flow-adjustment procedure is pref-
erable prior to trend analysis [Hirsch et al., 1982]. Flow adjustment reduces the possibility that, if samples at
the beginning or end of the time period are biased toward high or low flows, a trend can be induced that
reflects the flow rather than a real change in the concentration. The flow adjustment procedure fits a rela-
tionship between flow and the water quality variable, such that the trend analysis is computed only on the
residuals. However, in the New Zealand case, 547 out of 785 water quality measurement sites had no flow
data available. In this case study, we investigated whether these sites could be included in the national anal-
ysis by substituting flow estimates from a hydrologic model. The alternative to using the modeled flows for
flow adjustment would be to use the ‘‘raw’’ (i.e., nonflow adjusted trends), which risks incorrectly detecting
trends as explained above.

Trend classification uncertainty due to errors in flow was analyzed by comparing the two sets of trends (i.e.,
trends calculated using the observed versus modeled flows). This allowed us to explore how error in flow
values (here due to substituting measured flow with flow estimates from a hydrologic model) affects the
reliability of subsequent analyses. Although this is not a full uncertainty analysis (e.g., quantifying the distri-
bution of total uncertainty in modeled flow), it demonstrates how information on errors in flow values can
be used to make inferences about the reliability of the final classification of trend direction.

The New Zealand national hydrologic model [McMillan et al., 2016] was used to estimate mean daily flow
for sites that lacked flow measurements. However, the national hydrologic model was originally designed
for large-scale estimates of water stores and fluxes. It was therefore important to establish whether single-
day estimates of flows at water quality measurement sites were sufficiently accurate for flow-adjustment
use. This uncertainty analysis was unusual in that error in flow magnitude (which can be large) is only an
intermediate variable, and our final aim is to detect errors in the correct classification of water quality trend
into three categories (improving/insufficient data/degrading). We therefore used the set of sites/dates
where flow data were available to quantify errors in the model prediction of flow, compared to measured
flow. The contribution of these flow errors to errors in trend classification was calculated by repeating the
full trend analysis using (a) water quality data adjusted using measured flow data, (b) water quality data
adjusted using model flow data, and (c) water quality data not adjusted for flow.

Trends were assessed in three steps. (1) Flow-adjustment: a second-order polynomial was fitted to the log
of the measured values of the water quality variable and the log of the associated flow using a generalized
additive model (GAM). (2) Trend analysis: the Seasonal Kendall Slope Estimator [Hirsch et al., 1982] was used
to determine whether the trend direction could be confidently inferred from the flow adjusted data and to
estimate the trend magnitude. This analysis was carried out for six water quality variables: clarity, ammo-
nium, nitrate, total nitrogen, dissolved reactive phosphorus, and total phosphorus.

Results of the uncertainty analysis showed that for the 20 year time period ending at the end of 2013, when
model flow data were used instead of measured flow data, the trend direction was correctly classified for
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between 82% and 95% of trends (mean 90%), depending on which water quality variable was tested. When
raw trends were used, the direction was classified correctly for a lower mean rate of 86% of trends. The error
rate in trend classification resulting from model flow uncertainty was considered sufficiently small that it
was reasonable to proceed with using model flow estimates at ungauged water quality measurement sites.
The uncertainty analysis results were presented to the New Zealand government alongside the analysis of
water quality trends [Larned et al., 2015, 2016], to allay concerns that hydrological model predictions may
not be sufficiently accurate.

4. Discussion

4.1. Wide Influences of Flow Uncertainty
We presented three case studies here, but there are numerous other water management applications that
are strongly influenced by flow uncertainty. In some cases, the lack of uncertainty assessment has led to
erroneous conclusions. For example, Lang et al. [2010] discuss a trend analysis of French floods and
droughts, at 195 gauging stations with long records and low human influences [Lang et al., 2006]. An initial
analysis showed a significant trend in the annual maximum flood series for 18% of the sites, using a likeli-
hood ratio test based on the generalized extreme value distribution. However, a more thorough analysis
showed that 49% of the significant trends were explained by errors in the flow data, such as changes
caused by revisions in the rating curve extrapolation. Analysis of the remaining 124 gauges without such
problems found fewer changes, and these were assessed as nonsignificant by Renard et al. [2008].

A further analysis of flood magnitudes in southern France by Lang et al. [2010] asked whether initial flood
estimates using data since 1980 could be constrained by including historical records. Results showed that
adding historical information without considering flow uncertainty led to biased and misleadingly small
flood discharge credible intervals. When uncertainties were included, adding manual records since 1892
reduced uncertainty, but adding historical flood estimates since 1741 increased uncertainty because rating
curve errors in old data were significantly higher.

Even in water-scarce regions such as the Southwest United States where the value of accurate streamflow
information is widely accepted, flow-record uncertainty, and the potential inefficiency that accompanies
it is under appreciated. For example, because Colorado River water is over allocated amongst the States
of California, Colorado, Nevada, and Utah, the US Supreme Court, in its 1963 Decree, required the moni-
toring of all diversions and returns of water from and to the Colorado River but the Court said nothing
about the required accuracy of the streamflow records. That oversight is a significant consideration:
streamflow records for the Colorado River at Lees Ferry, Arizona, are rated excellent—generally thought
to be within 5% of true flow 95% of the time. Even so, the cumulative annual uncertainty exceeds the
entire volume of Colorado River water appropriated to Utah (typically about 3% of the total annual flow
at Lees Ferry).

When water has high economic value, early inclusion of uncertainty analysis allows decision-making to
properly account for uncertainty in the flow data. For a review of the role of uncertainty analysis in risk-type
decision-making see Hall and Solomatine [2008]. Theories of decision-making can include both quantitative
economic and sociological perspectives [Johnson and Busemeyer, 2010], and can account for multicriteria
current and future risks [Marinoni et al., 2011]. In Norway, in addition to the minimum waterfall flows dis-
cussed in our Case Study 1, flow data are used to characterize flow regimes and hence design hydropower
systems. In these systems, inaccurate rating curves can cause large costs due to long-lasting nonoptimal
energy management. Flow data are further used to calibrate hydrologic models, which provide the fore-
casts of reservoir inflow needed by energy management models. Unrecognized data uncertainty can lead
to water use for energy production during nonoptimal periods. General economic figures on possible losses
due to forecast imprecision are difficult to quantify, but potential losses of millions of Euros are a realistic
estimate in Norway.

4.2. Challenges and Recommendations in Communicating Flow Uncertainty
Flow uncertainty analysis is critical for comparing the value of additional hydrologic data for water manage-
ment applications against the time and cost involved in collecting these data. But uncertainty analysis may
not be taken up by users unless it can be applied to the most frequently used data types (generally, real-
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time information) and is sensitive to differences in data collection costs and accuracies between sites. The
U.S. Geological Survey assessed the cost-effectiveness of its national streamgage network from 1982 to
1986 and identified optimization strategies to minimize overall uncertainty of the network annual flow esti-
mates given a stated fiscal budget [Thomas and Wahl, 1993]. However, because the optimization focused
on annual flow estimates and not real-time data, and because the analysis was insensitive to flow variation
at specific sites, the results lacked practical impact for users motivated by specific flow regimes, were not
well received, and were never fully implemented.

The efforts required for a full uncertainty analysis can be large and overwhelming for many users. Such anal-
yses require access to raw gauging data and stage records, which varies by country and recording authority,
and is usually not as straightforward as obtaining processed flow series. Readily available flow uncertainty
estimates are therefore valuable. Typically, if available at all, these are presented as bands around a best
estimate discharge, e.g., Bayesian credible intervals around the median (Figure 2a). This is problematic
because if the users are only given uncertainty information in the form of bands, they cannot infer informa-
tion on error correlation in time (typical for rating curve models that contain unknown systematic errors as
well as random errors). They therefore cannot specify whether flow data exhibit consistently high or low
bias, or a combination such as overestimation of low flows and underestimation of high flows. All this extra
information is required if flow uncertainty analysis is to be followed by further uncertainty analysis of, e.g.,
trends, hazard estimates, or economic losses, typical of the case studies in this paper.

Such further analyses usually require uncertainty estimates in the form of random samples from the distri-
bution of possible flow series, drawn from different realizations of the rating curve [Westerberg and
McMillan, 2015]. These ‘‘spaghetti plots’’ (Figure 2b) of multiple possible flow series retain the full error struc-
ture of the stage-flow rating model, and enable analyses to be repeated on each flow series, and the results
aggregated to give an uncertainty distribution of the variable of interest. As an example from dam safety,
the standard approach is to route a design flood toward a dam with some initial water level to check
whether the dam crest is overtopped. An alternative approach is to simulate several thousand possible
flood events and initial water levels from estimated probability distributions, computing the final dam water
level each time, and therefore directly assessing the probability distribution of levels [Arnaud et al., 2015].
This overcomes the arbitrary choice of an initial level by properly combining the uncertainty of both initial
condition and flood event. Similarly, in hydrologic modeling, one needs full rating curve error distributions
for streamflow in order to obtain unbiased model calibrations [McMillan et al., 2010; Engeland et al., 2016].

We therefore recommend promotion of practical, operational tools that enable straightforward generation
of multiple possible ‘‘spaghetti’’ flow series that are consistent with the measured stage series, and take into
account uncertainty in the rating curve model of the stage-flow relationship. Many such flow uncertainty
analysis methods exist [e.g., Coxon et al., 2015; Le Coz et al., 2014; Mason et al., 2016; Morlot et al., 2014;
Reitan and Petersen-Overleir, 2008; Sikorska et al., 2013; Westerberg and McMillan, 2015] and an experimental

Figure 2. Two methods of presenting flow uncertainty: (a) as bands around a best estimate discharge and (b) in the form of random
samples from the distribution of possible flow series.
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comparison project is ongoing to compare differences in assumptions and results. We encourage flow data
providers to consider integrating a software tool at the data download stage to calculate discharge realiza-
tions based on water level series and rating curve shape or parameter distributions stored for each gauging
station. Such a method would avoid large data sets associated with direct storage of multiple flow series.
The tool could also aggregate standard statistics such as monthly mean and extreme values (and their
uncertainty bounds). We know of two similar tools made available online by hydrologic researchers: BaRatin
from IRSTEA, https://forge.irstea.fr/projects/baratinage_v2/news; and HydraSub from the University of Oslo,
https://folk.uio.no/trondr/hydrasub/ratingcurve.html. Our proposal requires commitment from the hydro-
logic community to continue work alongside hydrometrists to develop generalizable and easily accessible
methods for rating curve uncertainty estimation across large numbers of rating sites.

5. Conclusion

The significant costs associated with the streamflow uncertainties presented in this paper show that estima-
tion of uncertainty as part of a water management application can reduce project costs and lead to more
robust and publicly acceptable decisions. In addition to explicit presentation of flow uncertainty bounds,
uncertainty analysis can be extended to derived variables such as flood volume, and can be used to link the
hydrologic/hydraulic uncertainties with an economic model (e.g., minimization of the expected cost, consid-
ering flow uncertainty). Rationalization and optimization of hydrometric networks can also benefit from
cost-benefit analysis accounting from flow uncertainty. Our results show that it is often economically benefi-
cial to invest in further streamflow gaugings to reduce the potential costs of rating curve error. However,
even with excellent data sets it is not possible to eliminate flow uncertainty. We recognize that the com-
plexities of uncertainty analysis (especially under data-poor conditions) and difficulties in communicating
uncertainty results can present barriers for practitioners. We therefore call for a commitment from the
hydrologic community to develop practical tools to support more widespread analysis of flow uncertainty.
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