+∞

which correspond respectively to the fundamental stable freezing rate, and excited regimes which are codimension k stable.

ON MELTING AND FREEZING FOR THE 2D RADIAL STEFAN PROBLEM

MAHIR HADŽIĆ AND PIERRE RAPHAËL Abstract. We consider the two dimensional free boundary Stefan problem describing the evolution of a spherically symmetric ice ball {r ≤ λ(t)}. We revisit the pioneering analysis of [START_REF] Herrero | On the melting of ice balls[END_REF] and prove the existence in the radial class of finite time melting regimes

λ(t) =      (T -t) 1/2 e - √ 2 2 
√ |log(T -t)|+O( 1)

(c + o(1)) (T -t) k+1 2 |log(T -t)| k+1 2k
, k ∈ N * as t → T which respectively correspond to the fundamental stable melting rate, and a sequence of codimension k ∈ N * excited regimes. Our analysis fully revisits a related construction for the harmonic heat flow in [START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF] by introducing a new and canonical functional framework for the study of type II (i.e. non self similar) blow up. We also show a deep duality between the construction of the melting regimes and the derivation of a discrete sequence of global-in-time freezing regimes λ∞λ(t) ∼

Introduction

1.1. Setting of the problem. We consider the classical two dimensional one-phase Stefan problem on an external domain. The unknowns are the moving domain Ω(t) ⊂ R2 and the temperature function u : Ω(t) → R which evolve according to:

   ∂ t u -∆u = 0 in Ω(t) ∂ n u = V ∂Ω(t) on ∂Ω(t) u = 0 on ∂Ω(t) (1.1) 
where V ∂Ω(t) stands for the normal velocity of the moving boundary ∂Ω(t) 1 . The temperature u may either be assumed to be positive initially in Ω(0), in which case the maximum principle and the Dirichlet boundary condition ensure that it will remain positive in Ω(t), or on the contrary the data may be undercooled with initially non positive temperature in some regions in space. The cavity represents a circular block of ice kept at constant temperature u = 0. If the cavity vanishes at a later time we refer to this process as melting and if it expands, we refer to it as freezing.

In many applications it is important to include the effects of surface tension into the description of melting. This is done by replacing the Dirichlet condition in (1.1) by the so-called Gibbs-Thomson correction u = σκ ∂Ω(t) on ∂Ω(t), (1.2) where σ ≥ 0 is known as the coefficient of surface tension and κ ∂Ω(t) is the mean curvature of the moving boundary ∂Ω(t). For the physical justification of the condition (1.2) we refer the reader to the monograph [START_REF] Visintin | Introduction to Stefan-Type Problems[END_REF]. When σ > 0 the model can account for phenomena such as superheating (undercooling), phase nucleation, crystal growth etc. It is therefore a small scale description of a phase transition and it adds a σ-dependent energy contribution from the phase interface, while the classical Stefan problem (corresponding to σ = 0) neglects the energy due to surface tension and represents a macroscopic description of melting [START_REF] Hadžić | Well-posedness for the classical Stefan problem and the vanishing surface tension limit[END_REF].

In this paper we shall only be interested in the description of melting and freezing within the framework of the one-phase classical Stefan problem σ = 0. While it is fundamental from the physics point of view to understand the singularity formation in both cases, the energy concentration phenomenon displays essential differences related to the type II (for σ = 0) vs type I (for σ = 0) singularity formation process as explained below.

Cauchy theory for the classical Stefan problem.

There exists a large litterature pertaining to the questions of existence, uniqueness, regularity, and wellposedness for the classical Stefan problem. Weak solutions were first defined and shown to exist in [START_REF] Kamenomostskaya | On the Stefan problem[END_REF] and their properties were further studied in many works, see [START_REF] Friedman | The Stefan problem in several space variables[END_REF][START_REF] Caffarelli | The regularity of free boundaries in higher dimensions[END_REF][START_REF] Caffarelli | Some aspects of the one-phase Stefan problem[END_REF][START_REF] Friedman | Variational Principles and Free Boundary Problems[END_REF][START_REF] Friedman | A one phase Stefan problem[END_REF][START_REF] Visintin | Introduction to Stefan-Type Problems[END_REF] and references therein. The classical Stefan problem lends itself to a different notion of a weak solution, the so-called viscosity solutions. For an overview of the seminal works on the regularity theory for such solutions we point the reader to [START_REF] Caffarelli | A Geometric Approach to Free Boundary Problems[END_REF] and references therein, and for further results on existence, uniqueness, and regularity of viscosity solutions to [START_REF] Kim | Uniqueness and Existence of Hele-Shaw and Stefan problem[END_REF][START_REF] Kim | Viscosity solutions for the two-phase Stefan problem[END_REF][START_REF] Choi | Regularity of one-phase Stefan problem near Lipschitz initial data[END_REF][START_REF] Choi | The two-phase Stefan problem: regularization near Lipschitz initial data by phase dynamics[END_REF]. In the class of classical solutions, first existence results are traced back to [START_REF] Hanzawa | Classical solution of the Stefan problem[END_REF][START_REF] Meirmanov | The Stefan Problem[END_REF]. For well-posedness results in energy-based Sobolev-type spaces see [START_REF] Hadžić | Well-posedness for the classical Stefan problem and the vanishing surface tension limit[END_REF][START_REF] Hadžić | Stability and decay in the classical Stefan problem[END_REF] and in L p -type spaces [START_REF] Frolova | Lp-theory for the Stefan problem[END_REF][START_REF] Prüss | Existence of analytic solutions for the classical Stefan problem[END_REF].

In this article, we work in a radially symmetric situation and therefore the Cauchy theory is simpler. The domain Ω(t) is given by Ω(t) = {x ∈ R2 ; |x| ≥ λ(t)}, and the Cauchy problem (1.1) becomes:

       u t -u rr -1 r u r = 0 in Ω(t) u r (t, λ(t)) = -λ(t) u(t, λ(t)) = 0 u(0, •) = u 0 , λ(0) = λ 0 . (1.3)
It is well posed in H 2 : for all (u 0 , λ 0 ) ∈ H 2 × R * + with u 0 radially symmetric, there exists a unique solution (u(t), λ(t)) ∈ C([0, T ), H 2 (Ω)) × C 1 ([0, T ), R * + ) to (1.3), and

T < +∞ implies lim t→T u(t) H 2 (Ω(t)) = +∞ or lim t→T λ(t) = 0 .
We recall the classical proof 2 in Appendix D. A simple integration by parts using the boundary conditions (1.3), see (D.4), ensures the uniform control of the Dirichlet energy:

|x|≥λ(t) |∇u(t, x)| 2 dx ≤ |x|≥λ(0) |∇u 0 (x)| 2 dx (1.4)
in the melting regime λ < 0.

1.3. Previous results on melting. The first description of melting regimes is given in the pioneering work by Herrero-Velasquez [START_REF] Herrero | On the melting of ice balls[END_REF] which predicts the existence of a discrete sequence of melting rates 3 . :

λ(t) ∼      (T -t) 1/2 e - √ 2 2 √ |log(T -t)| (T -t) k+1 2 |log(T -t)| k+1 2k
, k ∈ N * .

Their analysis adapts the methodology developped in [START_REF] Herrero | Explosion de solutions des equations paraboliques semilinéaires supercritiques[END_REF][START_REF] Herrero | Singularity patterns in a chemotaxis model[END_REF] for the construction of non self similar type II blow up bubbles. Following in particular the chemotactic approach [START_REF] Herrero | Singularity patterns in a chemotaxis model[END_REF], the authors first consider a change variable related to some partial mass, and analyse the problem as a connection problem between a soliton like behavior near the origin, and a far out tail connection. As mentioned by the authors themselves [START_REF] Herraiz | A note on the dissolution of spherical crystals[END_REF][START_REF] Velázquez | Singular solutions of partial differential equations modelling chemotactic aggregation[END_REF], the matched asympotics approach cannot as such address the question of stability of the corresponding regimes, and the analysis is as described restricted to radial data.

There has been for the past twenty years an immense activity in the field of construction of type II blow up bubbles, in both parabolic and dispersive problems, see for example [START_REF] Perelman | On the blow-up phenomenon for the critical nonlinear Schrödinger equation in 1D[END_REF][START_REF] Merle | Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF][START_REF] Raphaël | Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems[END_REF][START_REF] Merle | Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map[END_REF][START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | Quantized slow blow up dynamics for the corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF][START_REF] Martel | Blow up for the critical generalized Korteweg-de Vries equation. I: Dynamics near the soliton[END_REF]. The general approach is to split the energy concentration problem into a finite dimensional part which contains the leading order dynamics 4 , and an infinite dimensional part which is controlled using purely energy methods. In other words, the matching procedure is replaced by the derivation of the leading order finite dimensional system driving the concentration mechanism, and the full flow is closed using adapted robust energy estimates. This scheme allows both for the description of local manifolds of constructed solutions [START_REF] Collot | Type II blow up manifolds for the energy supercritical wave equation[END_REF][START_REF] Martel | Codimension one threshold manifold for the critical gKdV equation[END_REF], in particular the stability of the fundamental mode, which is an essential step for the complete description of the flow near the solitary wave [START_REF] Martel | Blow up for the critical generalized Korteweg-de Vries equation. I: Dynamics near the soliton[END_REF][START_REF] Nakanishi | Invariant manifolds and dispersive Hamiltonian evolution equations[END_REF], and it is not in principle restricted to radial data [START_REF] Martel | Blow up for the critical generalized Korteweg-de Vries equation. I: Dynamics near the soliton[END_REF][START_REF] Merle | Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Collot | Non radial type II blow up for the energy supercritical semilinear heat equation[END_REF] or scalar problems [START_REF] Merle | Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map[END_REF]. 1.4. Main results. The main result of this paper is the existence and stability of a discrete sequence of melting rates with k nonlinear instability directions, k ∈ N, which revisits and completes the pioneering construction of [START_REF] Herrero | On the melting of ice balls[END_REF].

Theorem 1.1. [Melting dynamics]

There exists a set of data (u 0 , λ 0 ) in H 2 × R * + , with u 0 arbitrarily small in Ḣ1 , such that the corresponding solution (u, λ) ∈ C([0, T ), H 2 ) × C 1 ([0, T ), R + ) to the exterior Stefan problem (1.3) melts in finite time 0 ≤ T = T (u 0 , λ 0 ) < ∞ with the following asymptotics: 1. Stable regime: the fundamental rate is given by

λ(t) = (T -t) 1/2 e - √ 2 2 √ |log(T -t)|+O t→T (1) 
(1.5)

and is stable by small radial perturbations in H 2 ; this regime corresponds to positive data u 0 > 0.

3 A different version of (1.5) is computed in [START_REF] Herrero | On the melting of ice balls[END_REF], but a correction is suggested in [START_REF] Herraiz | A note on the dissolution of spherical crystals[END_REF]. A similar problem occurs in [START_REF] Herrero | Singularity patterns in a chemotaxis model[END_REF], see the correct law in [START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF]. 4 see (1.20) in the strategy of the proof below.

2. Excited regimes: the excited melting rates are given by λ(t) = (c * (u 0 , λ 0 ) + o t→T (1)) (T -t)

k+1 2 |log(T -t)| k+1 2k , k ∈ N * , (1.6) 
for some c * (u 0 , λ 0 ) > 0; it corresponds to undercooled initial data lying on a locally Lipchitz H 2 manifold of codimension k.

3. Non concentration of energy: In all cases, there exists u * ∈ Ḣ1 such that lim t→T ∇uχ {|x|≥λ(t)} -∇u * L 2 (R 2 ) = 0.

(1.7)

Comments on the result.

1. Role of the dimension. This paper deals with the case d = 2, which is the energy critical case, but the higher dimensions d ≥ 3 could be treated by an entirely analogous approach. In fact, the case d = 2 is the most complicated case, displaying small logarithmic gains only and strong coupling between the various components of the solution 5 .

Stefan problem with Gibbs-Thomson correction.

As already mentioned in Section 1.1, the Stefan problem with Gibbs-Thomson correction (1.2) ( as a replacement of the classical Dirichlet boundary condition u| ∂Ω(t) = 0) is an important phase transition model taking surface tension effects into account (which are non-negligible at a certain microscopic spatial scale). Existence (without uniqueness) of global-intime weak solutions was shown in deep works [START_REF] Luckhaus | Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature[END_REF][START_REF] Almgren | Mathematical existence of crystal growth with Gibbs-Thomson curvature effects[END_REF] relying on the gradient-flow structure of the problem. In the realm of classical solutions, local well-posedness results as well as global-in-time stability results can be found in [START_REF] Radkevich | Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem[END_REF][START_REF] Escher | Analytic solutions for a Stefan problem with Gibbs-Thomson correction[END_REF][START_REF] Hadžić | Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension[END_REF][START_REF] Hadžić | Stability in the Stefan problem with surface tension (I)[END_REF][START_REF] Prüss | Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension[END_REF].

In the context of melting for the one-phase Stefan problem with surface tension, to the best of our knowledge the only available result is an important theorem of Herraiz, Herrero, & Velazquez [START_REF] Herraiz | A note on the dissolution of spherical crystals[END_REF]. The authors show that radius λ GT of radiallysymmetric melting solutions in the presence of surface tension in dimensions d = 2 and d = 3 obeys the asymptotic law λ GT (t) ∼ t→T (3σ(T -t))

1 3 .

(1.8)

The rate (1.8) thus exhibits a very different qualitative behavior from the Type II rates observed in [START_REF] Herrero | On the melting of ice balls[END_REF] (in dimensions d ≥ 2) and in our Theorems 1.1 and 1.2 (in dimension d = 2). In fact, rate (1.8) honors the self-similar scaling invariance of the related Hele-Shaw problem with surface tension and it is dimension-independent see [START_REF] Herraiz | A note on the dissolution of spherical crystals[END_REF], and hence belongs to the setting of type I blow up. This stands in contrast to the melting rates for the classical Stefan problem in higher dimensions. It is an important open problem to understand whether the rates (1.8) are stable outside the class of radially-symmetric solutions.

A second important open problem, even in the class of radial solutions, is to prove the existence and describe melting rates in the context of the physically important two-phase Stefan problem with Gibbs-Thomson correction.

Theorem 1.1 lies in the continuation of the methodology developed for the construction of type II blow up bubbles for both parabolic and dispersive problems [START_REF] Merle | Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map[END_REF][START_REF] Raphaël | Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems[END_REF][START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | Quantized slow blow up dynamics for the corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF][START_REF] Collot | Type II blow up manifolds for the energy supercritical wave equation[END_REF]. The strategy consists of two steps: construction of a high order approximate solution based on the expansion of the blow up/melting solution with respect to a well chosen small parameter, and development of an energy like method to control the remaining infinite dimensional part. The main novelty of the proof of Theorem 1.1 with respect to these previous works however is the derivation of a new and sharp functional setting for the construction of type II, i.e. non self similar blow up bubbles, here applied to a melting problem, which we expect is universal and robust both with respect to the extension to the non radial case and the full classification of type II scenarios. Our analysis relies on new weighted energy bounds with a degenerate Gaussian weight based on the spectral decomposition of the leading order linear operator after a suitable renormalization, see the strategy of the proof below. This is conceptually a continuation of the Giga-Kohn approach [START_REF] Giga | Asymptotically self-similar blow-up of semilinear heat equations[END_REF] to the type I blow up in the energy subcritical range. Our new set of estimates simplifies both the derivation of the approximate solution and the closure of the nonlinear energy bounds by using in an optimal way the dissipative structure of the problem, see in particular (3.48). The existence of a degenerate resonance leading the blow up rate is reminiscent of the derivation of the celebrated "log-log law" for the mass critical nonlinear Schrödinger equation, see [START_REF] Landman | Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension[END_REF][START_REF] Perelman | On the blow-up phenomenon for the critical nonlinear Schrödinger equation in 1D[END_REF][START_REF] Merle | Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF]. A recent series of works by Merle and Zaag [START_REF] Merle | On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations[END_REF][START_REF] Merle | Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation[END_REF][START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF] suggest that this approach may be of great interest for dispersive wave-like problems as well.

Moreover, our approach applies equally well to the construction of freezing solutions (i.e. λ > 0) that asymptotically converge to a steady state (u = 0, λ = const > 0). The proof exploits a deep underlying duality between the derivation of the melting and the freezing rates.

Theorem 1.2. [Freezing dynamics] There exists a set of data

(u 0 , λ 0 ) in H 2 × R * + , arbitrarily small in Ḣ1 , such that the corresponding solution (u, λ) ∈ C([0, T ), H 2 ) × C 1 ([0, T ), R + ) to the exterior Stefan problem (1.
3) exists globally-in-time. Furthermore the solution freezes asymptotically

lim t→+∞ λ(t) = λ ∞ > 0,
where

λ ∞ = λ 2 0 - 1 π Ω 0 u 0 (x) dx, (1.9) 
and it has the following asymptotic behavior: 1. Stable regime: the fundamental freezing rate is given by

λ ∞ -λ(t) = c(u 0 , λ 0 )(1 + o t→+∞ (1)) log t (1.10)
for some c(u 0 , λ 0 ) > 0; it is stable with respect to small well localized smooth radial perturbations; this regime contains negative data u 0 < 0.

2. Excited regimes: excited melting rates are given by

λ ∞ -λ(t) = c k (u 0 , λ 0 )(1 + o t→+∞ (1)) t k (log t) 2 , k ∈ N * , (1.11)
for some c k (u 0 , λ 0 ) > 0 and correspond to superheated well localized initial data lying on a locally Lipchitz manifold of codimension k in some well localized norm.

3. Energy asymptotics: in all cases, the Dirichlet energy dissipates at the rate

∇u(t) L 2 (Ω(t)) = d k (u 0 , λ 0 )(1 + o t→+∞ (1)) t k+1 log t , k ∈ N, (1.12) 
for some d k (u 0 , λ 0 ) > 0.

Comments on the result.

1. More melting regimes. In the setting of the Stefan and Hele-Shaw problems, the authors consider in [START_REF] Quirós | Asymptotic convergence of the Stefan problem to Hele-Shaw[END_REF] a melting scenario for the one-phase Stefan problem outside a fixed domain containing the origin and kept at a pre-fixed non-negative and nontrivial temperature, acting as an effective heat source. The liquid thus expands to infinity for positive initial data and an asymptotic rate of expansion for the freeboundary radius is obtained. Note that this situation is quite different from our setting as there is no such heat source in our case, and the freezing/melting process is driven entirely by the choice of initial conditions.

Solitary wave regimes.

A non trivial global-in-time dynamics with convergence to the solitary wave similar to that described by theorem 1.2 has been derived in other critical settings, see for example [START_REF] Gustafson | Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on R 2[END_REF], [START_REF] Martel | Blow up for the critical generalized Korteweg-de Vries equation. I: Dynamics near the soliton[END_REF], [START_REF] Martel | Codimension one threshold manifold for the critical gKdV equation[END_REF]. The quantized convergence rates with logarithmic corrections are reminiscent of some classical nonlinear dynamical systems scenarios, see for example [START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF].

The first main open problem following this work is the understanding of the full non radial stability of the free boundary problem in the stable melting regime k = 0 which should be amenable to our approach. Let us mention that a related problem in the context of evaporating drops was recently studied and solved in the setting of a self-similar collapse in the very nice work [START_REF] Fontelos | A stable self-similar singularity of evaporating drops: ellipsoidal collapse to a point[END_REF]. The second main open problem is to give a complete description of the flow for small initial data, and here we expect that the constructions and underlying functional framework of Theorem 1.1 and Theorem 1.2 are essential steps.
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Notations. We denote the ball of radius K by

B K (R d ) := {x ∈ R d , |x| ≤ K}

and set

Λ := y∂ y . For any α ≥ 0 we denote the external domain:

Ω α := {x ∈ R 2 |x| ≥ α}.
When α = 1, we shall simply write Ω 1 = Ω. We define the weight 

ρ ± (z) := e ± |z| 2
u L 2 ρ,b,± = ∞ √ b u 2 ρ ± zdz 1 2 , u H 1 ρ,b,± = ∂ z u 2 L 2 ρ,b,± + u 2 L 2 ρ,b,± 1 2
and

u H 2 ρ,b,± = ∆u L 2 ρ,b,± + ∂ z u 2 L 2 ρ,b,± + u 2 L 2 ρ,b,± 1 2 . 
We define for b > 0 the Hilbert space

H 1 ρ,b,± = {u : Ω √ b → R, u radial with u H 1 ρ,b,± < +∞ and u( √ b) = 0} (1.13)
equipped with the scalar product •, • b,± , and for b = 0: 6 with the scalar product •, • 0 . Similarily, we define the renormalized quantities:

H 1 ρ,0,± = {u : R 2 → R, u radial with u H 1 ρ,0,± < +∞} equipped
(f, g) b,± = ∞ 1 f gρ b,± ydy, ρ b,± = e ± b|y| 2 2
and the norms

v b,± = ∞ 1 v 2 ρ b,± ydy 1 2 , v H 1 b,± = v b,± + ∂ y v b,± , v H 2 b,± = v H 1 b,± + ∆v b,± ,
and the Hilbert space

H 1 b,± = {v : Ω → R, v radial with v H 1 b,± < +∞ and v(1) = 0}. (1.14)
We define the sequence of numbers:

α 0 := 0, α j := j-1 i=0 1 j -i for j ≥ 1. (1.15) 
Throughout the paper, summations over 0 ≤ j ≤ k -1 are empty for k = 0. and the scaling leaves the Dirichlet energy 7 unchanged. We therefore renormalize the flow

u(t, r) = v(s, y), ds dt = 1 λ 2 (t) , y = x λ(t) , (1.17) 
and obtain the renormalized equation with a fixed boundary:

   ∂ s v -λs λ Λv -∆v = 0, y > 1; v(s, 1) = 0 v y (s, 1) = -λs λ (1.18)
step 1 Perturbative spectral analysis. We start with the description of melting regimes. Let in a first approximation

b = - λ s λ , 0 < b ≪ 1,
then for any given b the linear operator driving (1.18) is

H b = -∆ + bΛ, v(1) = 0.
Our first new input is to diagonalize this operator in a suitable Hilbert space. Indeed, H b is self adjoint with respect to the measure e -b|y| 2 2 dy, and has up to a shift compact resolvent in the Hilbert space H 1 b,-(see (1.14)) and hence discrete 6 Observe that u( √ b) = 0 ensures that H 1 ρ,b can be isometrically embedded into H 1 ρ,0 by considering the map u → u1 z≥ √ b . 7 which is dissipated from (1.4) in the melting regime. spectrum. However, the limit b → 0 is singular in the sense that the limiting operator is the Laplacian with resonant eigenmodes and continuous spectrum. After a renormalization (i.e. rescaling the space variable by a multiple of √ b) , we may equivalently consider

H b = -∆ + Λ, v( √ b) = 0,
which formally is a deformation of the standard harmonic oscillator, but with a Dirichlet boundary condition. We claim that in these renormalized variables, the operator H b can be diagonalized using a perturbative Lyapounov-Schmidt type argument in the weighted Hilbert space H 1 ρ,b,-. The first k eigenvalues are given for

0 < b < b * (k) by λ b,k = 2k + 2 |logb| + o 1 |logb| , k ∈ N
with a corresponding asymptotic expansion of the eigenmodes, see Proposition 2.3.

Unwinding the above renormalization, we obtain a family of eigenvectors for the operator H b :

H b η b,k = bλ b,k η b,k , η b,k (1) = 0.
step 2 Approximate solution and modulation equations. We now fix

- λ s λ = a, 0 < a ≪ 1 (1.19)
and rewrite the renormalized flow

∂ s v + H b v + (a -b)Λv = 0, v(s, 1) = 0, ∂ y v(s, 1) = a
for a parameter b which will be chosen later. We look for an approximate solution of the form

Q β (s, y) = k j=0 b j (s)η b(s),j (y).
After projection onto each eigenmode, we obtain the leading order dynamical system:

(b j ) s + bb j λ b,k + 2(a-b)b j | log b| + jb j b Φ = 0, 0 ≤ j ≤ k Φ = b s + 2b(a -b). (1.20)
This sytem is complemented by the renormalized nonlinear free boundary conditon ∂ y v(1) = a which forces the leading order relationship

a = k j=0 b j 1 + 2α j | log b|
+ lower order terms with (α j ) 0≤j≤k given by (1.15). It remains to chose b(a) which is done through the choice Φ = 0 (1.21) which will be motivated below. If b k dominates over the remaining b j -s, j = 0, . . . , k -1, the integration of the dynamical system

           (b k ) s + 2k + 2 | log b| bb k + 2(a-b)b k | log b| = 0 b s + 2b(a -b) = 0 a = b k 1 + 2α k | log b| ds dt = 1 λ 2 , -λs λ = a (1.22)
leads to finite time melting with the rate (1.5) for k = 0 and (1.6) for k ≥ 1, which as solutions to (1.22) possess k unstable directions.

step 3 Energy estimate. We now construct a solution of the form

v(s, y) = k j=0 b j (s)η b(s),j (y) + ε(s, y) with (ε, η b,j ) = 0, 1 ≤ j ≤ k (1.23)
and close an energy estimate for the remainder ε. Here we note that for a solution to the linear problem

∂ s ε + H b ε + (a -b)Λε = 0,
the time dependance of b(s) yields a modified energy identity

1 2 d ds ε 2 e -b|y| 2 2 dy = -(H b ε, ε) + (b s + 2b(a -b)) =Φ |y| 2 ε 2 e -b|y| 2 2 dy
and hence the choice of b (1.21) to cancel the second term in the energy identity 8 .

To the leading order, thanks to the orthogonality conditions (1.23) and the spectral gap estimate in weighted spaces associated to the knowledge of the kernel of H b , we obtain the fundamental energy estimate:

1 2 d ds ε 2 e -b|y| 2 2 dy = -(H b ε, ε) ≤ -(2k + 2)b ε 2 e -b|y| 2 2
dy.

An integration-in-time will produce the necessary decay to close the bound on the radiative part of the solution, i.e. ε. The situation is however more complicated since the problem cannot close at the level of H 1 Sobolev regularity, and instead forces us to take one more derivative. However, at the H 2 level the corresponding energy identity produces dangerous boundary terms. These come with a particular structure and may beautifully enough be handled through time integration 9 , see Proposition 3.10. This part of the analysis is a replacement for the polynomially weighted estimates in [START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF], and uses in an optimal way the dissipative structure of the equation 10 and the nonlinear algebra induced by the free boundary. The construction of the manifold of initial data to avoid the codimension k instabilities of the system of ODE's (1.20) is finally performed using a now classical Brouwer type argument as in [START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF][START_REF] Collot | Type II blow up manifolds for the energy supercritical wave equation[END_REF][START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF][START_REF] Merle | Type II blow up for the energy super critical NLS, to appear in Cambridge Math. Jour[END_REF].

step 4
Freezing. These regimes correspond to an expansion of the circular ice block, reflected in a change of sign in (1.18), (1.19):

λ s λ = A > 0.
This causes a modification in the spectrum of the operator

H B = -∆ -BΛ, v( √ B) = 0, B > 0,
8 which involves a different type of norm for which the spectral gap constant is not explicit and would thus lead to severe difficulties. 9 This is reminiscent of similar essential issues in [START_REF] Merle | Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF]. 10 whereas the energy method in [START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems[END_REF][START_REF] Merle | Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map[END_REF] works in both the dissipative and dispersive settings, but barely uses the dissipative terms in the energy estimates.

which admits the eigenvalues:

λ B,k = 2k + 2 + 2 |logB| + o 1 |logB| , k ∈ N.
Computations parallel to the melting case lead to the dynamical system

           (B k ) s + 2k + 2 | log b| BB k + 2(B-A)B k | log B| = 0 B s + 2B(B -A) = 0 A = B k 1 + 2α k | log B| ds dt = 1
λ 2 , λs λ = A which after integration-in-time produces the global-in-time freezing regimes (1.10). The energy method is run along similar lines for very well localized initial data, since the energy spaces are naturally weighted with the confining measure e By 2 2 dy, B > 0. The analysis is slightly simpler thanks to the better decay of the B k mode which induces a stronger decoupling from the remaining modes.

1.6. Plan of the paper. In section 2, we use a Lyapounov-Schmidt like argument to compute the bound state of H b and the associated spectral gap in weighted norms in both the melting regime λs λ < 0, Lemma 2.6, and the freezing regime λs λ > 0, Lemma 2.8. In section 3, we construct the melting regimes. We introduce the nonlinear decomposition of the flow, section 3.1, compute the modulation equations using the free boundary geometry, sections 3.2 and 3.3, and close the key energy bound, Proposition 3.2. The proof of Theorem 1.1 now follows from a classical shooting argument à la Brouwer detailed in section 3.6. In section 4, we deliberately follow a parallel plan for the construction of the global-in-time freezing regimes.

Spectral analysis in weighted spaces

We compute in this section the k first eigenvalues of the linear operator To ease notations, we fix

± = -, H b = H b,-, ρ = ρ -= e -|z| 2 2 , b > 0, in sections 2.2, 2.3, 2.4 (2.1)
and we omit thesubscript for the sake of simplicity. The case b < 0 with the ρ + weight and the operator H b,+ is addressed in section 2.5.

2.1.

Coercivity for the harmonic oscillator. We recall in this section without proof the classical estimates for the harmonic oscillator.

Melting case: consider -∆ + Λ on (H 1 ρ -,0 , •, • 0 ). This operator is self adjoint for the •, • 0,-scalar product as is easily seen by writing

-∆ + Λ = - 1 ρ -z ∂ z (ρ -z∂ z ) . (2.
2)

The normalized Laguerre polynomials [START_REF] Szegö | Orthogonal Polynomials[END_REF] L

k (x) = e x k! d k dx k (e -x x k ), k ∈ N, (2.3) 
solve

XL ′′ k + (1 -X)L ′ k + kL k = 0 and hence P k (r) = L k r 2 2 (2.4)
diagonalizes the harmonic oscillator:

(-∆ + Λ)P k = 2kP k , P n , P m ρ,0 = 1. (2.5)
Moreover, they satisfy the double normalization condition:

+∞ 0 L n L m e -x dx = δ nm , L n (0) = 1 or equivalently P j , P k 0,-= δ jk , P k (0) = 1, (2.6) 
and the classical induction formula

ΛP k = 2k(P k -P k-1 ), k ≥ 1. (2.7) 
An extensive overview of Laguerre polynomials can be found in [START_REF] Szegö | Orthogonal Polynomials[END_REF]. We recall the standard sharp Poincaré inequality for the harmonic oscillator: ∀u ∈ H 1 ρ -,0 with u, P j 0,-= 0, 0 ≤ j ≤ k, there holds:

∂ z u L 2 ρ -,0 ≥ (2k + 2) u 2 L 2 ρ -,0 . 
(2.8)

Freezing case: Consider -∆ -Λ on (H 1 ρ + ,0 , •, • 0 ). Then the map

L 2 0,+ → L 2 0,- v → w = e |z| 2
2 v is an isometry and integrating by parts:

|∇v| 2 e |z| 2 2 ρ + dz = |∇w| 2 ρ -dz + 2B |w| 2 ρ B,-dz (2.9) 
or equivalently:

(-∆ -Λ)v = (-∆w + Λw + 2w) e -|z| 2 2 .
(2.10)

Hence the family of eigenvectors

Pj = P j e -|z| 2 2
diagonalizes the operator, and there holds the spectral gap estimate: ∀u ∈ H 1 ρ + ,0 with u, Pj 0,+ = 0, 0 ≤ j ≤ k, there holds:

∂ z u L 2 ρ + ,0 ≥ (2k + 4) u 2 L 2 ρ + ,0 . 
(2.11)

Remark 2.1. The shift 2 = d in (2.11), where d stands for the dimension of the ambient space, will be crucial for the computation of the freezing rates. ρ,b given by (1.13). We claim a near invertibility property of H b which is the starting point of the Lyapounov Schmidt argument.

Before stating the lemma, we introduce some notations. We first fix a frequency size K ∈ N and a sufficiently small parameter

0 < b < b * (K) ≪ 1.
Universal constants in the sequel may depend on K, but are uniform in b ∈ (0, b * (K)). We define the Gramm matrix

M b,k = ( P i , P j b ) 0≤i,j≤k , k ≤ K. (2.12)
Observe from (2.5) that

P i , P j b = P i , P j 0 + O( |z|≤ √ b zdz) = δ ij + O(b) (2.13) 
and hence

M b,k = Id + O(b) is invertible (2.14)
for 0 ≤ b < b * (k) small enough. We introduce the vector:

P k = (P j ) 0≤j≤k
and consider the function

m k (b, z) = (M -1 b,k P k ( √ b), P k (z)), (2.15) 
which by (2.3) and (2.14) satisfies:

m k (b, z) = k j=0 [1 + O(b)] P j (z). (2.16) 
We now claim:

Lemma 2.2 (Near inversion of H b -2k). Let k ∈ N and 0 < b < b * (k) small enough. Then for all f ∈ L 2 ρ,b with f, P j b = 0, 0 ≤ j ≤ k, (2.17)
there is a unique solution u ∈ H 1 ρ,b to:

Hb,k u = f where Hb,k u = (H b -2k)u - √ bm k (b, z)∂ z u( √ b) u, P j b = 0, 0 ≤ j ≤ k.
(2.18) 

Moreover, ∆u L 2 ρ,b + ∂ z u L 2 ρ,b + Λu L 2 ρ,b + u L 2 ρ,b + |logb| √ b∂ z u( √ b) f L 2 ρ,b . (2 
C := {u ∈ H 1
ρ,b u, P j b = 0, 0 ≤ j ≤ k}. We consider the problem of minimizing the functional F : H 1 ρ,b → R :

F(u) = z≥ √ b |∂ z u| 2 ρzdz -2k z≥ √ b u 2 ρzdz -f, u b over the constraint set u ∈ C. Let I b = inf u∈C F(u).
We recall from the standard Poincaré inequality for the harmonic oscillator (2.8) and the compactness estimate (A.1) that for spherically symmetric v ∈ H 1 ρ,0 with v, P j 0 = 0, 0 ≤ j ≤ k, there holds: 

|∂ z v| 2 ρzdz -2k v 2 ρzdz (1 + |z| 2 )|v| 2 ρzdz. ( 2 
u n ⇀ u in H 1 ρ,b , u n → u in L 2 ρ,b .
In particular, using the local compactness of the embedding

H 1 (R) ⊂ L ∞ (R), this implies u( √ b) = 0, u, P j b = 0, 0 ≤ j ≤ k
and u is a minimizer of F over C. By a standard variational argument, there exist Lagrange multipliers λ j ∈ R such that

H b u = f - k j=0 λ j P j .
(2.21)

Hence from standard regularity argument, u ∈ H 2 loc (r ≥ √ b). We may then take the scalar product with P i and compute:

H b u, P i b = - z≥ √ b 1 zρ ∂ z (zρ∂ z u)P i ρzdz = √ be -b/2 P j ( √ b)∂ z u( √ b) + u, H b P i b = √ be -b/2 P i ( √ b)∂ z u( √ b) + 2i u, P i b = √ be -b/2 P i ( √ b)∂ z u( √ b).
We conclude from (2.21), (2.17), (2.12) that

√ be -b/2 ∂ z u( √ b) P i ( √ b) 0≤i≤k = -M b,k (λ i ) 0≤i≤k
or equivalently

(λ i ) 0≤i≤k = - √ be -b/2 ∂ z u( √ b)M -1 b,k P k ( √ b)
and hence u solves (2.18) from the definition (2.15) and (2.21). We now observe that u ∈ C ensures m k (b, •), u b = 0 and hence taking the scalar product of (2.18) with u, using (2.20) with v = u1 z≥ √ b , and the identity

H b u, u b = ∂ z u 2 L 2 ρ,b yields: u 2 L 2 ρ,b ∂ z u 2 L 2 ρ,b -2k u 2 L 2 ρ,b = f, u b and hence u L 2 ρ,b + ∂ z u L 2 ρ,b f L 2 ρ,b . (2.22)
We now integrate by parts to compute:

H b u, logz b = u, 1 b - 1 2 |logb| √ be -b/2 ∂ z u( √ b). (2.23)
We estimate from (2.16)

m k (b, •) L 2 ρ,b 1 (2.24)
and hence (2.23), (2.18) ensure

√ b∂ z u( √ b) 1 |logb| H b u L 2 ρ,b + u L 2 ρ,b 1 |logb| f L 2 ρ,b + √ b∂ z u( √ b)|
which together with (2.22) yields

∂ z u L 2 ρ,b + u L 2 ρ,b + |logb| √ b∂ z u( √ b) f L 2 ρ,b
.

We now use the equation (2.18) again and teh bound (2.24) which yield

H b u L 2 f L 2 ρ,b
.

We then use a Pohozaev type integration by parts to compute:

z≥ √ b z∂ z u(H b u)zρdz = - z≥ √ b ∂ z (zρ∂ z u)zρ∂ z u dz ρ = - 1 2 z 2 ρ 2 (∂ z u) 2 1 ρ +∞ √ b - 1 2 z≥ √ b z 2 ρ 2 (∂ z u) 2 ∂ z ρ ρ 2 dz = 1 2 be -b/2 |∂ z u( √ b)| 2 + 1 2 z≥ √ b (Λu) 2 zρdz = O f 2 L 2 ρ,b + 1 2 z≥ √ b (Λu) 2 zρdz.
which after a simple application of the Cauchy-Schwarz inequality yields

Λu L 2 ρ,b f L 2 ρ,b and (2.19) is proven. 2.3. Partial diagonalization of H b . We are now in position to diagonalize H b for frequencies 0 ≤ k ≤ K under the smallness 0 < b < b * (K). Proposition 2.3 (Eigenvalues for H b ). Let K ∈ N. Then for all 0 < b < b * (K) small enough, H b admits a sequence of eigenvalues H b ψ b,k = λ b,k ψ b,k , ψ b,k ∈ H 1 ρ,b , 0 ≤ k ≤ K, (2.25) 
such that for each 0 ≤ k ≤ K, the following properties hold: (i) Expansion of eigenvalues: there holds the expansion of the eigenvalue

λ b,k = 2k + 2 |logb| + λb,k , λb,k = O 1 |logb| 2 , |∂ b λ b,k | 1 b|logb| 2 .
(2.26)

(ii) Expansion of eigenvectors: there holds the expansion

ψ b,k = T b,k (z) + ψb,k (z) T b,k (z) = P k (z) logz -log( √ b) + k-1 j=0 µ b,jk P j (z) logz -log( √ b) (2.27) with µ b,jk = 2 (k -j)|logb| + μb,jk , μb,jk = O 1 |logb| 2 , b∂ b μb,jk = O 1 |logb| 3 (2.28) and ∆ ψb,k L 2 ρ,b + z 2 ψb,k L 2 ρ,b + ψb,k H 1 ρ,b + Λ ψb,k L 2 ρ,b + b∂ b ψb,k L 2 ρ,b + |logb| √ b∂ z ψb,k ( √ b) 1 |logb| , (2.29) 
∂ b ψ b,k H 1 ρ,b + |logb|| √ b∂ b ∂ z ψ b,k ( √ b)| 1 b , (2.30 
)

and Λψ b,k L 2 ρ,b + z 2 ψ b,k L 2 ρ,b |logb|. (2.31) (iii) Spectral gap estimate: let u ∈ H 1 ρ,b with u, ψ b,j b = 0, 0 ≤ j ≤ k, then ∂ z u 2 L 2 ρ,b ≥ 2k + 2 + O 1 |logb| u 2 L 2 ρ,b . (2.32)
Moreover,

λ b,0 = inf u∈H 1 ρ,b ∂ z u 2 L 2 ρ,b u 2 L 2 ρ,b (2.33 
)

and ψ b,0 (z) > 0 for z > √ b.
(2.34) (iv) Further identities: there hold the algebraic identities for 0 ≤ j ≤ k:

ψ b,k , ψ b,k b = |logb| 2 4 1 + O 1 |logb| . (2.35) b∂ b ψ b,j , ψ b,k b ψ b,k , ψ b,k b = - 1 |logb| δ jk + O 1 |logb| 2 ,
(2.36) Then

Moreover, Λψ b,k -2k(ψ b,k -ψ b,k-1 ) H 2 ρ,b 1, (2.37) b∂ b ψ b,k + 1 |logb| ψ b,k H 2 ρ,b 1 |logb| , (2.38) 
z 2 ψ b,k + (2k + 2)ψ b,k+1 -(4k + 2)ψ b,k + 2kψ b,k-1 H 2 ρ,b 1 
(H b -2k)T k (z) = Q k (z) + k-1 j=0 µ jk [2(j -k)T b (z)P j (z) + Q j ] Q j = -2 P ′ j (z)
z + P j (z).

(2.40)

Observe from (2.4) that Q j = Qj (r 2 ) with deg Qj ≤ j -1 and hence

∀0 ≤ j ≤ k, Q j ∈ Span(P j ) 0≤j≤k . (2.41)
We solve the eigenvalue problem

(H b -2k)ψ = µ k ψ, (2.42) 
by representing ψ in the form

ψ = T k + ψ. (2.43)
and hence (2.42), (2.43) give an equation for ψ :

(H b -2k) ψ = -(H b -2k)T k + µ k (T k + ψ) = -Q k (z) - k-1 j=0 µ jk [2(j -k)T b (z)P j (z) + Q j ] + µ k (T k + ψ) =: f ( ψ). (2.44) 
We define (µ j ( ψ)) 0≤j≤k by imposing the relations:

f ( ψ), P i b P i , P i b = √ b∂ z ψ( √ b) M -1 b,k P k ( √ b) i , i = 0, . . . , k, (2.45) 
which is proved below to correspond to an invertible linear system on

((µ j,k ) 0≤j≤k-1 , µ k ).
Observe that (2.45) allows us to rewrite (2.44) as:

Hb,k ψ = f - k j=0 f, P j b P j 2 L 2 ρ,b P j = F ( ψ) (2.46)
with Hb,k given by (2.18). Thus to find ψ, by Lemma 2.2 we are left with solving the fixed point equation

ψ = H-1 b,k F ( ψ).
and we indeed claim that the operator H-1 b,k • F is a strict contraction from the closed ball

B α := ψ ∈ H 1 ρ,b ∆ ψ L 2 ρ,b + √ b|∂ z ψ( √ b)| + ψ H 1 ρ,b ≤ α |logb| , ψ( √ b) = 0, ψ, P j b = 0, 0 ≤ j ≤ k , (2.47) 
to itself for α universal large enough.

Computation of µ jk , µ k : We invert (2.45). Indeed, we rewrite

f ( ψ) = -Q k + |logb| 2 µ k P k 1 + 2logz |logb| + µ k ψ - k-1 j=0 |logb| 2 µ jk [2(j -k) -µ k ] P j 1 + 2logz |logb| + 2Q j |logb| . Let µ = (µ 0k , . . . , µ (k-1)k , µ k ) and | µ| ∞ := max{|µ jk | 0≤j≤k-1 , |µ k |}.
Using the almost orthogonality (2.13) and the •, • b -orthogonality of ψ and P j , j = 0, . . . k, we obtain:

f ( ψ), P j b P j , P j b = (k -j)|logb|µ jk -Q k , P j 0 + (C µ) j + µ k k-1 ℓ=0 µ ℓk P j , P ℓ T b b + O(|b|), (2.48) 
f ( ψ), P k b P k , P k b = µ k |logb| 2 -Q k , P k 0 + µ k k-1 ℓ=0 µ ℓk P k , P ℓ T b b + (C µ) k + O(|b|), (2.49) 
where

C = (C ij ) i,j=0,...k = O(1)
, is a (k + 1) × (k + 1)-matrix with bounded entries in the regime where b is small and

(C µ) i = k-1 ℓ=0 C iℓ µ ℓk + C ik µ k
is the i-th entry of the vector C µ, i = 0, . . . , k. The above system contains quadratic terms and it can be solved for µ by the following simple iteration argument. Given μ = (μ 0k , . . . .μ (k-1)k , μk ), consider the system

f ( ψ), P j b P j , P j b = (k -j)|logb|µ j,k -Q k , P j 0 + ( C µ) j + O(|b|), f ( ψ), P k b P k , P k b = µ k |logb| 2 -Q k , P k 0 + ( C µ) k + O(|b|),
where 1) and we can invert the above system to obtain

Cij = C ij + δ ik k-1 ℓ=0 μik P j , P ℓ T b b , j = 0, . . . k -1. Assuming that | μ| ∞ ≤ 1, we have C = O(
µ jk = Q k , P j 0 (k -j)|logb| + O 1 |logb| 2 + √ b|∂ z ψ( √ b)| |logb| , 0 ≤ j ≤ k -1, (2.50) µ k = 2 Q k , P k 0 |logb| + O 1 |logb| 2 + √ b|∂ z ψ( √ b)| |logb| (2.51)
and therefore | µ| ∞ 1 |logb| ≤ 1 for b < b * sufficienty small, where we used (2.47). Contractive property follows easily in a similar manner and for a given ψ ∈ B α we obtain the unique solution µ. We may moreover integrate by parts and use (2.6) to compute:

Q k , P k 0 = -2 P ′ k z + P k , P k 0 = P 2 k (0) = 1.
Similarily for j ≤ k -1:

Q k , P j 0 = -2 P ′ k z , P j 0 = 2 + P ′ j z , P k 0 = 2 since P ′ j z is a polynomial of r 2 of degree ≤ j -1 < k.
Note that by (2.50) and (2.51) we additionally have the bound

| µ| ∞ 1 |logb| + √ b|∂ z ψ( √ b)| |logb| . ( 2 

.52)

Estimating F ( ψ): Let us introduce the approximate projection operator:

P k f := k j=0 f, P j b P j 2 L 2 ρ,b P j .
Observe that (I -P k )P j = O(b) and by (2.41) (I -P k )Q j = O(b) for any j ∈ {0, 1, . . . , k} and the almost orthogonality relation (2.13). From (2.47) we have that (I -P k ) ψ = ψ. Thus, from (2.44) and (2.46) we obtain that

F ( ψ) = µ k (I -P k ) P k logz + P k |logb| 2 + µ k ψ + k-1 j=0 µ j,k [2(k -j) + µ k ] (I -P k ) P j logz + P j |logb| 2 + O(b(1 + | µ| ∞ )) = µ k (I -P k ) [P k logz] + µ k ψ + k-1 j=0 µ j,k [2(k -j) + µ k ] (I -P k ) [P j logz] + O (b(1 + | µ| ∞ ) + b|logb|| µ| ∞ ) .
Therefore

F ( ψ) L 2 ρ,b | µ| ∞ 1 + ψ L 2 ρ,b + O (b(1 + | µ| ∞ ) + b|logb|| µ| ∞ ) ≤ C 1 + √ b|∂ z ψ( √ b)| |logb| 1 + α |logb| , (2.53) 
for 0 < b < b * with b * sufficiently small and a universal constant C > 0. Applying Lemma 2.2 and using (2.53) we conclude from (2.46)

∆ ψ L 2 ρ,b + ψ H 1 ρ,b + |logb|| √ b∂ z ψ( √ b)| F ( ψ) L 2 ρ,b ≤ C 1 + √ b|∂ z ψ( √ b)| |logb| 1 + α |logb| and hence ∆ ψ L 2 ρ,b + ψ H 1 ρ,b + |logb|| √ b∂ z ψ( √ b)| + F ( ψ) L 2 ρ,b ≤ α |logb| and ψ ∈ B α for α > 0 universal large enough and 0 < b < b * (k) small enough. Therefore ψ ∈ B α .
Contractive property: To show the contractive property, note that for any φ 1 , φ 2 ∈ B α by (2.44) we have that

f (φ 1 ) -f (φ 2 ) = |logb| 2 (µ k (φ 1 ) -µ k (φ 2 )) P k 1 + 2logz |logb| + (µ k (φ 1 ) -µ k (φ 2 )) φ 1 + µ k (φ 2 ) (φ 1 -φ 2 ) - k-1 j=0 |logb| 2 (µ jk (φ 1 ) -µ jk (φ 2 )) [2(j -k) -µ k ] P j 1 + 2logz |logb| + 2Q j |logb| .
By a calculation analogous to (2.48) and (2.49), we can evaluate the •, • b -inner product of f (φ 1 ) -f (φ 2 ) with P j , j = 0, 1, . . . , k and thereby estimate |µ jk (φ 1 ) -

µ jk (φ 2 )|, |µ k (φ 1 ) -µ k (φ 2 )|. Using (2.47), we arrive at f (φ 1 ) -f (φ 2 ) L 2 ρ,b 1 |logb| φ 1 -φ 2 L 2 ρ,b
,

which together with F = (Id -P k )f gives F (φ 1 ) -F (φ 2 ) L 2 ρ,b 1 |logb| φ 1 -φ 2 L 2 ρ,b
.

The operator H-1 b is continuous by Lemma 2. (2.54)

We may now apply (A.1) to zψ b and (2.31) follows from (2.54).

step 3 Spectral gap estimate. Let u ∈ H 1 ρ,b satisfy u, ψ b,j b = 0, 0 ≤ j ≤ k. Let v = u1 z≥ √ b - k j=0 u, P j b P j L 2 ρ,0 P j ∈ H 1 ρ,0
then by the Poincaré inequality (2.8):

∂ z v 2 L 2 ρ,b ≥ (2k + 2) v 2 L 2 ρ,b . (2.55) 
We now compute from (2.27) for 0 ≤ j ≤ k:

0 = u, ψ j b = u, P j (z)T b (z) + j-1 i=0 µ i P i (z) -P i ( √ b) + ψb,k b
and hence using (2.28), (2.29):

| u, P j b | 1 |logb| u L 2 ρ,b , 0 ≤ j ≤ k from which u -v H 1 ρ,b u L 2 ρ,b |logb| .
Injecting this into (2.55) implies

∂ z u 2 L 2 ρ,b ≥ 2k + 2 + O 1 |logb| u 2 L 2 ρ,b . (2.56) 
To prove (2.33), (2.34), let

µ b = inf u∈C b ∂ z u 2 L 2 ρ,b u 2 L 2 ρ,b
.

Then any minimizing sequence normalized by 

u n L 2 ρ,b = 1 is bounded in H 1 loc (r ≥ √ b).
µ b = ∂ z φ b 2 L 2 ρ,b 1. Note that λ b,0 = ∂zψ b 2 L 2 ρ,b ψ b 2 L 2 ρ,
H b ∂ b ψ b,k = ∂ b λ b,k ψ b,k + λ b,k ∂ b ψ b,k .
(2.57)

Evaluating the •, • b inner product of (2.57) with ψ b,k and integrating by parts we obtain

∂ b λ b,k ψ b,k 2 L 2 ρ,b + λ b,k ∂ b ψ b,k , ψ b,k b = H b ∂ b ψ b,k , ψ b,k b = ∂ b ψ b,k , H b ψ b,k b -∂ b ψ b,k ( √ b)∂ z ψ b,k ( √ b)ρ( √ b) √ b = λ b,k ∂ b ψ b,k , ψ b,k b -∂ b ψ b,k ( √ b)∂ z ψ b,k ( √ b)ρ( √ b) √ b.
Therefore

∂ b λ b,k = - ∂ b ψ b,k ( √ b)∂ z ψ b,k ( √ b)ρ( √ b) √ b ψ b,k 2 L 2 ρ,b . (2.58) From ψ b,k ( √ b) = 0 it follows that ∂ b ψ b,k ( √ b) = -1 2 √ b ∂ z ψ b,k ( √ b) and therefore from (2.58) ∂ b λ b,k = |∂ z ψ b,k ( √ b)| 2 ρ( √ b) 2 ψ b,k 2 L 2 ρ,b
.

(2.59)

In particular, since 

|∂ z ψ b,k ( √ b)| = O(
|∂ b λ b,k | 1 b|logb| 2 .
(2.60) which is the last claim of (2.26). 

step 5 Estimate for |∂ b µ b,ik |, i = 0, . . . , k -1. From (2.27) we obtain ∂ b T b,k = - 1 2b P k + k-1 j=0 ∂ b µ b,jk P j T b - 1 2b k-1 j=0 µ b,jk P j . ( 2 
H b ∂ b ψb,k = F k + λ b,k ∂ b ψb,k , (2.62) 
where

F k = -H b ∂ b T b,k + ∂ b (λ b,k T b,k ) + ∂ b λ b,k ψb,k . (2.63) Rewriting (2.62) in the form H b ∂ b ψ b,k = (∂ b λ b,k ψb,k + λ b,k ∂ b ψb,k ) + λ b,k ∂ b T b,k
and evaluating the •, • b -inner product with P j , j = 0, . . . , k -1, we obtain

H b ∂ b ψ b,k , P j b = λ b,k ∂ b T b,k , P j b (2.64)
since ψb,k , P j b = ∂ b ψb,k , P j b = 0. On the other hand, from (2.61) we have that

∂ b T b,k , P j b = - 1 2b M jk + k-1 i=0 ∂ b µ b,ik M ji |logb| 2 + P i logz, P j b - 1 2b k-1 i=0 µ b,ik M ji = |logb| 2 ∂ b µ b,ik δ ji + k-1 i=0 c ji ∂ b µ b,ik + O( 1 b|logb| ), (2.65) 
where (c ij ) i,j=0,...,k-1 = O(1) and we used M ji = δ ji + O(b) for j = 0, . . . , k -1 and the first two claims of (2.28) which have already been proven above. On the other hand, observe that by integration-by-parts and the orthogonality ∂ b ψb,k , P j b = 0 we have

H b ∂ b T b,k , P j b = ρ( √ b) √ b ∂ z ∂ b T b,k ( √ b)P j ( √ b) -∂ b T b,k ( √ b)∂ z P j ( √ b) . (2.66) By (2.61) |∂ b T b,k ( √ b)| 1/b and ∂ z ∂ b T b,k = - 1 2b   ∂ z P k ( √ b) + k-1 j=0 µ b,jk ∂ z P j ( √ b)   + 1 √ b k-1 j=0 ∂ b µ b,jk P j ( √ b),
which together with (2.66) leads to

H b ∂ b T b,k , P j b = ρ( √ b) k-1 j=0 ∂ b µ b,jk P j ( √ b) + O(1), (2.67) 
where we note that

∂ z P k ( √ b) = √ bL ′ k ( b 2 ) = O( √ b) implying 1 √ b max j=0,...,k |∂ z P k ( √ b)| = O(1). To see that L ′ k ( b 2 ) = O(1)
observe that by the definition (2.3) of the k-th Laguerre polynomial, it follows that L ′ k is a polynomial of degree k-1. From (2.64), (2.65), and (2.67) we conclude that

|logb| 2 ∂ b µ b,ik δ ji + c * ji ∂ b µ b,ik = O( 1 b|logb| ), c * ji = O(1), i, j = 0, . . . , k -1. (2.68)
The system (2.68) is invertible for 0 ≤ b ≤ b * sufficiently small, and as a consequence

sup i=0,...,k-1 |∂ b µ b,ik | 1 b|logb| 2 , (2.69)
which completes the proof of (2.28). 

step 5 Estimate for ∂ b ψb,k b . Recalling that ψb,k , P j b = 0, j = 0, 1, . . . k, by the construction of ψb,k , we conclude that ∂ b ψb,k , P j b = 0 since ψb,k ( √ b) = 0. Moreover, the spectral gap estimate (2.8) with u = ∂ b ψb,k 1 z≥ √ b +∂ b ψb,k ( √ b)1 0≤z< √ b together with the bound λ b,k = 2k + λb,k imply λ b,k ∂ b ψ b,k 2 L 2 ρ,b 2k + O( 1 |logb| ) 2k + 2 + O( 1 |logb| ) ∂ z ∂ b ψ b,k 2 L 2 ρ,b + C|∂ b ψb,k ( √ b)| 2 . ( 2 
∂ z ∂ b ψb,k 2 L 2 ρ,b F k 2 L 2 ρ,b + √ b|∂ z ∂ b ψb,k ( √ b)∂ b ψb,k ( √ b)| + |∂ b ψb,k ( √ b)| 2 . (2.71) From ψb,k ( √ b) = 0 it follows after differentiating with respect to b that |∂ b ψb,k ( √ b)| 1 √ b |∂ z ψb,k ( √ b)| 1 b|logb| 2 .
(2.72)

To estimate √ b|∂ z ∂ b ψb,k ( √ b)| we note that 0 = ∂ b ψb,k , 1 b = ∂ b ψb,k , H b logz b = H b ∂ b ψb,k , logz b + e -b/2 ∂ b ψb,k ( √ b) + 1 2 |logb| √ b∂ z ∂ b ψb,k ( √ b)e -b/2 . Therefore √ b∂ z ∂ b ψb,k ( √ b) 1 |logb| F k L 2 ρ,b + |λ b,k | ∂ b ψb,k L 2 ρ,b + 1 b|logb| 2 1 |logb| F k L 2 ρ,b + 1 |logb| ∂ z ∂ b ψb,k L 2 ρ,b + 1 b|logb| 3 ,
where we used (2.62) in the first estimate and the Poincaré inequality (2.70) in the last. Using the Cauchy-Schwarz inequality and plugging this bound and (2.72) into (2.71) we obtain

∂ z ∂ b ψb,k L 2 ρ,b F k L 2 ρ,b + 1 b|logb| 2 .
(2.73)

From (2.61) and (2.69) we conclude that T b,k L 2 ρ,b 1 b . To estimate F k L 2 ρ,b
note that from (2.40) we have the identity:

H b ∂ b T b,k = 2k∂ b T b,k + k-1 j=0 ∂ b µ b,jk [2(j -k)T b P j + Q j ] + 1 b k-1 j=0
µ b,jk (k -j)P j and therefore using (2.61) and (2.26) we have

-H b ∂ b T b,k + λ b,k ∂ b T b,k = O( 1 |logb| )∂ b T b,k + k-1 j=0 ∂ b µ b,jk [2(j -k)T b P j + Q j ] + 1 b k-1 j=0 µ b,jk (k -j)P j .
Hence, using (2.69) and (2.28):

-

H b ∂ b T b,k + λ b,k ∂ b T b,k L 2 ρ,b 1 b|logb| .
Thus, using the definition (2.63) of F k , bounds (2.60), (2.29), and the previous bound we obtain

F k L 2 ρ,b 1 b|logb| + |∂ b λ b,k | T b,k L 2 ρ,b + ψb,k L 2 ρ,b 1 b + 1 b|logb| 2 |logb| + 1 |logb| 1 b|logb| .
Plugging this back into (2.73) we get 

∂ z ∂ b ψb,k L 2 ρ,b
b∂ b ψ b,j , ψ b,k b ψ b,k , ψ b,k b = 4 (logb) 2 1 + O 1 logb - P k 2 , ψ b,j b + O(1) = 4 (logb) 2 - 1 4 |logb| P j , P k b + O(1) = - 1 |logb| + O 1 |logb| 2 ,
this is (2.36). Proof of (2.37): We compute from (2.27), (2.7): 

Λψ b,k = ΛP k T b + P k + k-1 j=0 µ b,jk Λ(P j T b ) + Λ ψb,k = 2k[P k -P k-1 ]T b + P k + k-1 j=0 µ b,jk Λ(P j T b ) + Λ ψb,k = 2k(ψ b,k -ψ b,k-1 ) + E b,
P k = 2 |logb| ψ b,k -ψb,k -P k logz - k-1 i=0 µ b,jk P j T b and therefore b∂ b ψ b,k + 1 |logb| ψ b,k H 2 ρ,b b∂ b ψ b,k + 1 2 P k H 2 ρ,b + 1 |logb| ψb,k + P k logz + k-1 i=0 µ b,jk P j T b H 2 ρ,b 1 |logb| ,
where we used (2.75) and (2.28), (2.29). This concludes the proof of (2.38).

Proof of (2.39). We have from (2.27), (2.29):

z 2 ψ b,k - | log b| 2 z 2 P k H 1 b 1.
Let Φ k = z 2 P k , then

(-∆ + Λ)Φ k = (2k + 2)Φ k -4P k -4ΛP k = (2k + 2)Φ k -4P k -8k(P k -P k-1 )
and hence the relation

2k Φ k , P k 0 = (2k + 2) Φ k , P k 0 -4 -8k ie Φ k , P k 0 = 2 + 4k (2k -2) Φ j , P k-1 0 = (2k + 2) Φ K , P k-1 0 + 8k ie Φ k , P k 0 = -2k Φ k , P j 0 = 0, 0 ≤ j ≤ k -2.
Since P k is a polynomial we conclude that there exists a c k ∈ R such that

z 2 P k = c k P k+1 + (4k + 2)P k -2kP k-1 .
Since P k (0) = 1, we obtain by plugging in z = 0 into the above relationship:

z 2 P k = -2(k + 1)P k+1 + (4k + 2)P k -2kP k-1 ,
which yields (2.39). (2.80)

H b η b,k = bλ b,k η b,k , 0 ≤ k ≤ K, (2.76 
Moreover: Λη b,k -2k(η b,k -η b,k-1 ) b + 1 √ b ∂ y [Λη b,k -2k(η b,k -η b,k-1 )] b + 1 b H b [Λη b,k -2k(η b,k -η b,k-1 )] b 1 √ b (2.81) and 
2b∂ b η b,j -Λη b,j + 2 |logb| η b,j b + 1 √ b ∂ y [2b∂ b η b,j -Λη b,j + 2 |logb| η b,j b + 1 b H b 2b∂ b η b,j -Λη b,j + 2 |logb| η b,j b 1 √ b|logb| .
(2.82) (iii) Normalization: 

(η b,k , η b,k ) b = |logb| 2 4b 1 + O 1 |logb| . ( 2 
b∂ b η b,k -k(η b,k -η b,k-1 ) b + 1 √ b ∂ y [b∂ b η b,k -k(η b,k -η b,k-1 )] b + 1 b H b [b∂ b η b,k -k(η b,k -η b,k-1 )] b 1 √ b . (2.84) Proof of Lemma 2.6. Given u : Ω → R, let v(y) = u( √ by), it is straightforward to check that H b v = b(H b u)( √ by), ∂ ℓ y v b = b ℓ-1 2 ∂ ℓ z u L 2 ρ,b
, ℓ ∈ N.

(2.85)

We therefore let 

η b,k (y) = ψ b,k (z), z = y √ b. ( 2 
zψ b,k L 2 ρ,b + z 2 ψ b,k L 2 ρ,b |logb|.
Directly from the definition (2.86), we compute:

b∂ b η b,k = Λψ b,k 2 + b∂ b ψ b,k ( √ by), (2.87) 
which together with (2.30), (2.31) yields:

b∂ b η b,k b |logb| √ b ,
thus proving (2.80). From (2.87):

2b∂ b η b,k -Λη b,k = 2 [b∂ b ψ b,k ] ( √ by)
and hence from (2.38):

2b∂ b η b,k -Λη b,k + 2 |logb| η b,k b 1 √ b b∂ b ψ b,k + 1 |logb| ψ b,k L 2 ρ b 1 |logb|
√ b and similarly for higher derivatives. 

ηB,k = e -B|y| 2 2 η B,k , H B ηB,k = B λB,K ηB,k , λB,k = λ B,k + 2, 0 ≤ k ≤ K, (2.89)
with η B,k , λ B,k given by Lemma 2.6. Furthermore, there hold the following properties: (i) Structure of the eigenmodes: there holds the expansion

ηB,k = S B,k (y)e -B|y| 2 2 + η S B,k (y) = P k ( √ By)logy + k-1 j=0 µ B,jk P j ( √ By)logy (2.90) with ∆ ηB,k L 2 B √ B + ∂ y ηB,k B + √ B ηB,k B + √ B Λ ηB,k B + | log B||∂ y ηB,k (1)| 1 |logB| , (2.91) 
(ii) Further estimates on the eigenvector: there holds

y ηB,k b |logB| B , y 2 ηB,k B |logB| B √ B (2.92) B∂ B ηB,k b |logB| √ B .
(2.93)

Moreover:

B∂ B ηB,k -(k + 1)[η B,k+1 -ηB,k ] B + 1 √ B ∂ y [B∂ B ηB,k -(k + 1)[η B,k+1 -ηB,k ] B + 1 B H B [B∂ B ηB,k -(k + 1)[η B,k+1 -ηB,k ]] B 1 √ B (2.94)
and

2B∂ B ηB,j -Λη B,j + 2 |logB| ηB,j b + 1 √ B ∂ y [2B∂ B ηB,j -Λη B,j + 2 |logB| ηB,j B + 1 B H B 2B∂ B ηB,j -Λη B,j + 2 |logB| ηB,j B 1 √ B|logB| . (2.95) 
(iii) Normalization:

(η B,k , ηB,k ) B = | log B| 2 4B 1 + O 1 | log B| . ( 2 

.96)

Proof of Lemma 2.97. This is a direct consequence of Lemma 2.6. Indeed, the map

L 2 B,+ → L 2 B,- v → w = e B|y| 2 2
v is an isometry (2.97) and integrating by parts:

|∇v| 2 e B|y| 2 2 ρ B,+ dy = |∇w| 2 ρ B,-dy + 2B |w| 2 ρ B,-dy (2.98)
or equivalently:

H B v = (-∆w + BΛw + 2Bw) e -B|y| 2 2 .
Together with Lemma 2.6, this yields (2.89). We now renormalize (A.1) which yields:

B k+1 2 
y k w B,- ∂ y w B,-+ √ B w B,-.
(2.99)

The isometric relation (2.98) and (2.99) imply the following comparison of norms:

∂ y v B,+ ∂ y w B,-+ √ B w B,+ (2.100 
) 

Λv B,+ = Λw -By 2 w B,- Λw B,-+ 1 √ B ∂ y w B,-+ w B,- (2.101) 
y k v B,+ y k w B,-. (2 
B|y| 2 η B,k = z 2 ψ B,k = -(2k+2)η B,k+1 +(4k+2)η B,k -2kη B,k-1 +F k , F k B
1 √ B and hence using (2.84):

B∂ B η B,k -B |y| 2 2 η B,k = k(η B,k -η B,k-1 ) - 1 2 [-(2k + 2)η B,k+1 + (4k + 2)η B,k -2kη B,k-1 ] + Fk = (k + 1) [η B,k+1 -η B,k ] + Fk with Fk B 1 √ B
and similarily for higher derivatives, and (2.94) is proved.

Finite time melting regimes

This section is devoted to the existence and stability of the melting process. In all the section, we let ± = -, ρ = ρ -, b > 0.

3.1. Renormalized equations and initialization. We start with the classical modulated nonlinear decomposition of the flow. We let

u(t, x) = v(s, y), y = r λ(t) , λ(0) = 1, (3.1) 
where λ(0) = 1 is assumed without loss of generality thanks to the scaling symmetry (1.16). We define the renormalized time

s(t) = s 0 + t 0 dτ λ 2 (τ ) , s 0 ≫ 1, (3.2) 
and obtain the renormalized flow:

∂ s v + H a v = 0, a = -λs λ , v(s, 1) = 0, ∂ y v(s, 1) = a. (3.3) 
We now prepare our initial data in the following way:

case k = 0: We first claim that given 0 < b * ≪ 1 and ε * with

ε * 2 b * b * | log b * | 2 ,
there exists a locally unique decomposition

b * η b * ,0 + ε * = bη b,0 + ε with (ε, η b,0 ) b = 0, |b -b * | b * | log b * | 2 .
(3.4) Indeed, we define the map 

F (b, ε * ) = (b * η b * ,0 -bη b,0 + ε * , η b,0 ) b which satisfies F (b * , 0) = 0 and ∂ b F (b * , 0) = -(η b * ,0 + b * (∂ b η b,0 )| b=b * , η b * ,0 ) b * = - | log b * | 2 4b * 1 + O 1 | log b * | < 0 from (2.
|b -b * | | log b * | 2 4b * 1 + O 1 | log b * | ε * b * η b * ,0 b * ε * b * | log b * | 2 √ b * and hence |b -b * | √ b * | log b| * √ b * | log b| * which concludes the proof of (3.4).
We therefore pick an initial datum which makes sense as long as ε(s, y) is small enough in the L 2 weighted sense. We let

v * 0 = b * 0 η b * 0 + ε * 0 , ε * 0 2 b * b * | log b * | 2
ε 2 = H b ε (3.6)
and define the energy E := H b ε 2 b , which is a coercive norm thanks to the orthogonality condition (3.5), see Appendix A. We assume the initial smallness slogs , b e j = 0, 0

E(0) ≤ b 3 (0) |logb(0)| 2 . (3.7) case k ≥ 1: Let c k,1 = - k + 1 2k 2 , c k,2 = c k,1 - (k + 1)α k k . ( 3 
≤ j ≤ k -1, (3.10) 
where the index "e" stands for exact.

Remark 3.1.

Letting

a e = k + 1 2ks + c k,1 slogs , (3.11) then (a e , b, b e k ) satisfy          (b e k ) s + bb e k 2k + 2 | log b| + 2(a e -b)b e k | log b| = O 1 s 2 (logs) 2 b s + 2b(a e -b) = O 1 s 2 (logs) 2 a e -b e k 1 + 2α k | log b| = O 1 s(log s) 2 .
(3.12)

We define

Q β (y) = k j=0 b j η b,j (y) (3.13)
and introduce the dynamical decomposition

v(s, y) = Q β(s) + ε(s, y), (η b,j (s), ε) b = 0, 0 ≤ j ≤ k. (3.14)
We let again

ε 2 = H b ε, E := H b ε 2 b
, which due to the orthogonality conditions (3.14) is a coercive norm, see Appendix A. We assume the initial smallness

E(0) ≤ b 3 (0) |logb(0)| . (3.15) 
For k ≥ 1, the set of initial data will be built as a codimension k manifold. To this end and in order to prepare the data, we consider the decomposition b j (s) = b e j (s) + bj (s), bj (s) =

V j (s) s(logs) 3 2 
, j = 0, . . . , k.

(3.16)

Let the (2 × 2)-matrix A k be given by

A k := -1 -1 1 1 + d k , d k := 1 k(k + 1)
.

(3.17)

The matrix A k is diagonalizable with one strictly positive µ k 1 > 0 and one strictly negative eigenvalue µ k 2 < 0. Let P k be an orthogonal matrix diagonalizing A k , i.e.

A k = P -1 k Λ k P k , Λ k := µ k 1 0 0 µ k 2 . We define the new unknowns W k , W k-1 by setting W k W k-1 := P k V k V k-1 (3.18)
and now assume the initial bound

|W k (0)| ≤ 1 (3.19) |W k-1 (0)| 2 + k-2 j=0 V j (0) δ 2 ≤ K 2 (3.20)
for some universal constants K > 0, 0 < δ(k) ≪ 1 to be chosen later. We then consider the bootstrap bounds

E ≤ Db 3 |logb| 2 for k = 0, Db 3 |logb| for k ≥ 1 (3.21)
for some large enough universal D = D(k) to be chosen later, and From now on and for the rest of this section, we study the flow in the boostrap regime s ∈ [s 0 , s * ). Note in particular the rough bounds

• for k = 0 0 < b 0 (s) < b * (3.22) • for k ≥ 1, |W k (s)| ≤ K (3.23) and |W k-1 (s)| 2 + k-2 j=0 V j (s) δ 2 ≤ K 2 (3.
|b k | b, |b j | b |logb| , 0 ≤ j ≤ k -1 and E ≤ b 3 |logb| (3.25)
for s 0 ≥ s 0 (K) large enough.

3.2. Extraction of the leading order ODE's driving the melting. We derive in this section the main dynamical constraint on the parameters (a, b, (b j ) 0≤j≤k ) which lead to the leading order modulation equations, and are a combination of the linear diagonalization of the H b operator and the nonlinear boundary conditions.

We start with the constraint induced by the boundary conditions.

Lemma 3.5 (Boundary conditions).

There holds:

a = k j=0 b j 1 + 2α j |logb| + O b |logb| 2 + √ E |logb| √ b , (3.26) 
ε 2 (1) = -a(a -b), (3.27) 
∂ y ε 2 (1) = -a s - k j=0 λ b,j bb j 1 + 2α j |logb| + O b 2 |logb| 2 .
(3.28)

Proof of Lemma 3.5. We compute from (2.77), (2.78), (2.28) and recalling the definition (1.15):

∂ y η b,j (1) = 1 + j-1 i=0 2 (j -i)|logb| + O 1 |logb| 2 = 1 + 2α j |logb| + O 1 |logb| 2 . (3.29)
This implies that

∂ y Q β (1) = k j=0 b j ∂ y η b,j (1) = k j=0 b j 1 + 2α j |logb| + O b |logb| 2 . Since v = Q β + ε, it follows that ε y y=1 = v y y=1 -∂ y Q β y=1 = - λ s λ -∂ y Q β (1) = a - k j=0 b j 1 + 2α j |logb| + O b |logb| 2 ,
which together with (A.10) yields (3.26). From (3.3), v(s, 1) = 0 and ∂ y v(s, 1) = -λs λ = a:

0 = H a v(1) = (H b v + (a -b)Λv)(1) = ε 2 (1) + a(a -b), this is (3.27). Now from ∂ y v(s, 1) = a, we have ∂ s ∂ y v(s, 1) = a s .
On the other hand, taking ∂ y of (3.3), we have:

0 = ∂ s ∂ y v + ∂ y (H b v + (a -b)Λv) = ∂ s ∂ y v + ∂ y ε 2 + ∂ y H b Q β + (a -b)y∆v.
We evaluate the above identity at y = 1. From (3.3) and ∂ s v(s, 1) = 0, ∂ y v(s, 1) = a:

∆v(1) = aΛv(1) = a 2 .

By construction,

∂ y H b Q β = k j=0 λ b,j bb j ∂ y η b,j ,
and hence:

a s + ∂ y ε 2 (1) + k j=0 λ b,j bb j 1 + 2α j |logb| + a 2 (a -b) = O b 2 |logb| 2 .
We inject into the estimate the rough bound We now show how Q β is prepared to generate an approximate solution to (3.3) with the suitable leading order dynamical system for (β, λ) induced by the spectral diagonalization of H b .

Proposition 3.6 (Leading order modulation equations). Under the a priori bounds of Proposition 3.2, there holds

∂ s Q β + H a Q β = Mod + Ψ (3.31)
where we defined the modulation vector

Mod := (b k ) s + bb k λ b,k + 2(a -b)b k |logb| + kb k b Φ η b,k (3.32) 
+ k-1 j=0 (b j ) s + bb j λ b,j + 2(a -b)b j |logb| + jb j -(j + 1)b j+1 b Φ η b,j , the deviation Φ := b s + 2b(a -b), (3.33) 
and the remaining error satisfies the bound:

Ψ b + 1 √ b ∂ y Ψ b + 1 b H b Ψ b b 3 2 |logb| + |Φ| √ b . (3.34)
Proof of Proposition 3.6. By definition

H a = H b + (a -b)Λ
and we therefore compute from (3.13):

∂ s Q β(s) (y) + H a Q β = k j=0 (b j ) s η b,j + b s b j b b∂ b η b,j + bb j λ b,j η b,j + (a -b)b j Λη b,j = k j=0 [(b j ) s + bb j λ b,j ]η b,j + (a -b)b j [Λη b,j -2b∂ b η b,j ] + b j b b∂ b η b,j Φ = k j=0 (b j ) s + bb j λ b,j + 2(a -b)b j |logb| η b,j + jb j Φ b [η b,j -η b,j-1 ] + (a -b)b j [Λη b,j -2b∂ b η b,j - 2 |logb| η b,j ] + b j b Φ [b∂ b η b,j -j(η b,j -η b,j-1 )] .
The bounds (2.82), (2.84), (3.25), (3.30) now yield (3.34).

Remark 3.7. The presence of the |logb| in the denominator on the right-hand side of (3.34) makes it a true error term with respect to our bootstrap regime, and this term is one of the leading order errors when closing the energy estimates in sections 3.3 and 3.4. (3.37)

2. k ≥ 1: the modulation dynamical system for the vector ( bj ) 0≤j≤k is given by

( bk ) s + 1 s  b k + (k + 1) k j=0 bj   + ( bk-1 ) s + 1 s   k -1 k bk-1 -(k + 1) k j=0 bj   + k-2 j=0 ( bj ) s + j ks bj b 2 |logb| 2 + √ b √ E | log b| . (3.38)
Remark 3.9. The constants in Lemma 3.8 are independent of D, K, see also Remark 3.13. We need to keep track of the coupling between the modes in (3.38) in order to study the linearized system close to b j e and close the shooting argument, see (3.59).

Proof of Lemma 3.8. This lemma follows from the orthogonality conditions (3.14) and the boundary conditions of lemma 3.5.

step 1 Computation of Mod. The Mod estimate follows from the sharp choice of orthogonality conditions (3.14). Indeed, for any 0 ≤ j ≤ k, we take the scalar product of (3.35) with η b,j and use the orthogonality condition (3.14) to compute:

-(ε, ∂ s η b,j ) b + b s 2 (ε, |y| 2 η b,j ) b = (F, η b,j ) -(a -b)(Λε, η b,j ).
We now intergrate by parts and use (3.14) again to compute:

-(ε, ∂ s η b,j ) b + b s 2 (ε, |y| 2 η b,j ) b + (a -b)(Λε, η b,j ) = (ε, - b s b b∂ b η b,j + b s 2 |y| 2 η b,j + (a -b)[-Λη b,j + by 2 η b,j ]) = (ε, Φ b -b∂ b η b,j + by 2 2 η b,j + (a -b)[2b∂ b η b,j -Λη b,j ])
We evaluate all terms in the above expression. From (2.79), (2.80), (A.10):

|(ε, Φ b -b∂ b η b,j + by 2 √ b .
We now estimate the F terms given by (3.36). From (3.34), (2.83):

|(Ψ, η b,j ) b | Ψ b η b,j b b 3 2 |logb| + |Φ| √ b |logb| √ b b + |Φ||logb| b .
The collection of above bounds together with (2.83) and (3.36) yields

|(Mod, η b,j ) b | (η b,j , η b,j ) b b |logb| 2 b + |Φ||logb| b + 1 + |Φ|| log b| b 2 √ E √ b . (3.39) 
We now argue differently depending on k. 

Φ = (b 0 ) s + 2b 0 (a -b 0 ) = b s + O b 2 | log b| 2 + √ b √ E | log b| .
This together with (3.25) implies the bound: 

|Φ| b 2 | log b| + |b s | (3.
|b s + b 2 λ b,0 | b 2 |logb| 2 + |b s | |logb| + 1 + |b s || log b| b 2 √ b √ E |logb| 2 .
(3.41)

Using the rough bound (3.25), this gives:

b s 1 + O 1 |logb| + 2b 2 |logb| 1 + O 1 |logb| b 2 |logb| 2 (3.42)
and (3.37) follows.

step 3 Case k ≥ 1. In this case, we have from (3.9):

|b s | b 2
and we therefore need to estimate Φ:

Φ = b s + 2b(a -b) = b s + 2b   a - k j=0 b j 1 + 2α j |logb|   + 2b k j=0 (b j -b e j ) 1 + 2α j |logb| + 2b b e k 1 + 2α j |logb| -b = 2b k j=0 bj + O b 2 |logb| 2 + √ b √ E | log b| (3.43)
where we used (3.26), (3.12) and the bootstrap bounds (3.23), (4.13) in the last step. This implies in particular the rough bound

|Φ| ≤ b 2 | log b| (3.44) 
From (3.39) it follows that:

|(Mod, η b,j ) b | (η b,j , η b,j ) b b 2 |logb| 2 + √ b √ E |logb| 2 b 2 | log b| 2 .
(3.45)

We now recall (3.11) and compute from (3.26), (3.12):

a = k j=0 (b e j + bj ) 1 + 2α j | log b| + O b | log b| 2 + √ E | log b| √ b = a e + k j=0 bj + O b | log b| 2 + √ E | log b| √ b . (3.46) 
We now use (3.43), (3.12), (3.46) to compute explicitly:

(b k ) s + bb k λ b,k + 2(a -b)b k | log b| + kb k b Φ = (b e k + bk ) s + b(b e k + bk ) 2k + 2 | log b| + O 1 | log b| 2 + 2(a e -b)(b e k + bk ) | log b| + 2(a -a e )b k | log b| + k(b e k + bk )   2 k j=0 bj + O b |logb| 2 + √ E √ b| log b|   = ( bk ) s + 1 s  b k + (k + 1) k j=0 bj   + O b 2 |logb| 2 + √ b √ E |logb| .
Similarily for j = k -1:

(b k-1 ) s + bb k-1 λ b,k-1 + 2(a -b)b k-1 |logb| + (k -1)b k-1 -kb k b Φ = ( bk-1 ) s + b bk-1 2(k -1) + 2 | log b| + O 1 | log b| 2 + 2(a e -b) bk-1 |logb| + 2(a -a e ) bk-1 |logb| + (k -1) bk-1 -k(b e k + bk )   2 k j=0 bj + O b |logb| 2 + √ E √ b| log b|   = ( bk-1 ) s + 1 s   k -1 k bk-1 -(k + 1) k j=0 bj   + O b 2 |logb| 2 + √ b √ E |logb| .
Finally for 0 ≤ j ≤ k -2:

(b j ) s + bb j λ b,j + 2(a -b)b j |logb| + jb j -(j + 1)b j+1 b Φ = ( bj ) s + j ks bj + O b 2 |logb| 2 + √ b √ E |logb| .
Injecting the above bounds into (3.45) yields (3.38).

Energy bound.

We now arrive at the second main feature of the analysis which is the derivation of suitable energy bounds for ε. The key here is the dissipation embedded in the problem and its geometry which feeds back into the energy estimates through the boundary conditions. A careful analysis of this interaction will allow us to close the energy estimates.

Proposition 3.10 (Energy bound).

There holds the pointwise control:

1. for k = 0: 1 2

d ds E + O b 3 |logb| 2 + cbE b 4 |logb| 2 ;
(3.47)

2. for k ≥ 1:

1 2 d ds E + O b 3 |logb| 5/4 + [3k + c] bE Kb 4 |logb| (3.48)
for some universal constant c > 0.

Remark 3.11. The sharp coercivity constant 3k in (3.48) which follows from the sharp Poincaré estimate (A.3) is essential to close the energy bound, see (3.58).

Proof of Proposition 3.10. We compute the energy identity for E and estimate all terms.

step 1 Algebraic energy identity. Recalling from (3.6) that ε 2 = H b ε, it follows from (3.35):

∂ s ε 2 + H a ε 2 = [∂ s , H b ]ε + [H a , H b ]ε + H b F. To compute the commutators [∂ s , H b ], [H a , H b ] we use [∆, Λ] = 2∆ (3.49)
which yields:

[∂ s , H b ]ε + [H a , H b ]ε = b s Λε + [H b + (a -b)Λ, H b ]ε = b s Λε + (a -b)[Λ, -∆] = b s Λε + 2(a -b)∆ε = (b s + 2b(a -b))Λε -2(a -b)[-∆ε + bΛε] = ΦΛε + 2(b -a)ε 2 .
Hence the ε 2 equation:

∂ s ε 2 + H a ε 2 = ΦΛε + 2(b -a)ε 2 + H b F.
(3.50)

We now compute the modified energy identity:

1 2 d ds E = 1 2 d ds y≥1 ε 2 2 e -by 2 2 ydy = - b s 4 y≥1 y 2 |ε 2 | 2 e -b|y| 2 2 ydy + (∂ s ε 2 , ε 2 ) b = - b s 4 yε 2 2 b + (ΦΛε + 2(b -a)ε 2 + H b F -H a ε 2 , ε 2 ) b .
We carefully integrate by parts to compute:

- y≥1 ε 2 H a ε 2 e -by 2 2 ydy = - y≥1 ε 2 [H b ε 2 + (a -b)Λε 2 ]e -by 2 2 ydy = y≥1 ∂ y (ρ b y∂ y ε 2 )ε 2 dy + (b -a) ε 2 y∂ y ε 2 e -by 2 2 ydy = -ρ b (1)ε 2 (1)∂ y ε 2 (1) - y≥1 |∂ y ε 2 | 2 e -by 2 2 ydy - b -a 2 ρ b (1)ε 2 2 (1) - b -a 2 y≥1 ε 2 2 2 -by 2 e -by 2 2 ydy = -∂ y ε 2 2 b + (a -b) ε 2 2 2 - b(a -b) 2 yε 2 2 b -ρ b (1)ε 2 (1) ∂ y ε 2 + b -a 2 ε 2 (1).
This yields the algebraic energy identity:

1 2 d ds E = -∂ y ε 2 2 b -(a -b) ε 2 2 2 - Φ 4 yε 2 2 b -ρ b ε 2 ∂ y ε 2 + b -a 2 ε 2 (1) + Φ(Λε, ε 2 ) b + (H b F, ε 2 ) b . (3.51)
We now estimate all terms in the right-hand side of (3.51).

step 2 Nonlinear estimates. From (A.10), (3.44), (3.25):

|Φ||(Λε, ε 2 ) b | b 2 |logb| √ E b √ E b E |logb| .
Moreover from (3.14) (H b Mod, ε 2 ) b = 0, and from (3.34), (3.44):

|(H b Ψ, ε 2 ) b b √ E b 3 2
|logb| .

We now estimate from (A.12), (3.44), (3.27), (3.30):

|Φ yε 2 2 b b 2 |logb| ∂ y ε 2 2 b b 2 + b 3 ∂ y ε 2 2 b |logb| + b 4 |logb| 2 .
It now remains to treat the boundary term in (3.51) and we argue differently depending on k. step 3 Conclusion for k = 0. We compute from (3.28), (3.37):

∂ y ε 2 (1) = -a s - 2b 2 |logb| + O b 2 |logb| 2 = -(a -b) s -(b s + 2b 2 |logb| ) + O b 2 |logb| 2 = -(a -b) s + O √ b √ E |logb| + b 2 |logb| 2
and hence using (3.27):

ρ b (1)ε 2 (1) ∂ y ε 2 + b -a 2 ε 2 (1) = e -b 2 a(a -b) -(a -b) s + a(a -b) 2 2 + O √ b √ E |logb| + b 2 |logb| 2 = e -b 2 -(a -b) 2 (a -b) s -b(a -b)(a -b) s + O b b 3 2 √ E |logb| + b 4 |logb| 2 = - d ds e -b 2 (a -b) 3 6 + e -b 2 b(a -b) 2 2 - b s e -b 2 2 (a -b) 3 6 +e -b 2 b(a -b) 2 2 - b s 2 + b s b + O b b 3 2 √ E |logb| + b 4 |logb| 2 = - d ds e -b 2 (a -b) 3 6 + e -b 2 b(a -b) 2 + O b b 3 2 √ E |logb| + b 4 |logb| 2 + b 2 (a -b) 2 |logb| .
We now observe from (3.26), (3.25) that

|a -b| b |logb| , (3.52) 
and hence the collection of above bounds yields the control:

1 2 d ds E + O b 3 |logb| 2 = -∂ y ε 2 2 b + O ∂ y ε 2 2 b + ε 2 2 b |logb| + b b 3 2 √ E |logb| + b 4 |logb| 2 .
We now inject (3.27), (A.11) with k = 0 and (3.47) follows. 

2α k | log b| s + 1 + 2α k | log b| [(b e k ) s + λ b,j bb e k ] + O b 2 | log b| 2 + O Kb 2 |logb| 3/2 + √ b √ E |logb| = -2 (a e -b)b k e | log b| + O Kb 2 |logb| 3/2 + √ b √ E |logb| = - k + 1 2ks 2 | log s| + O Kb 2 |logb| 3/2 + √ b √ E |logb| .
We therefore estimate using Lemma 3.5:

-ρ b ε 2 ∂ y ε 2 + b -a 2 ε 2 (1) = -e -b 2 a(a -b)   a s + k j=0 λ b,j bb j 1 + 2α j |logb| + O b 2 |logb| 2   = -e -b 2 a(a -b) (a -ã) s - k + 1 2ks 2 logs + O Kb 2 |logb| 3/2 + √ b √ E |logb| = -e -b 2 a(a -b)(a -ã) s + e -b 2 a(a -b) k + 1 2ks 2 logs + O Kb 4 |logb| 3/2 + bb 3 2 √ E |logb| = -e -b 2 (a -ã) s (a -ã) 2 + (a -ã)(2ã -b) + ã(ã -b) +O( b 4 |logb| ) + O Kb 4 |logb| 3/2 + bb 3 2 √ E |logb| = - d ds -e -b 2 (a -ã) 3 3 + (a -ã) 2 2 (2ã -b) + (a -ã)ã(ã -b) +O b 4 |logb| + Kb 4 |logb| 3/2 + bb 3 2 √ E |logb| + b 3 |a -ã| .
We have the bound from (3.46):

a -ã = O b |logb| + √ E |logb| √ b .
Injecting the above bounds into (3.51) and using the rough bound (3.25) we obtain the bound:

1 2 d ds E + O b 3 |logb| = -∂ y ε 2 2 b -(a -b) ε 2 2 2 + O ∂ y ε 2 2 b + ε 2 2 b |logb| + b b 3 2 √ E |logb| + b 4 |logb| .
We now estimate from (3.46): 

a -b = 1 2s + O b |logb| = kb + O b |logb| (3.
From (3.52), λ s λ + b = b -a = O b |logb| (3.54)
and hence:

logλ(s) = - s 0 b 1 + O 1 |logb| dσ < +∞ implies λ(s) > 0. (3.55) 
We now rewrite (3.48) (with k = 0) as d ds

1 2 E + O b 3 |logb| 2 + bc E + O b 3 |logb| 2 b 4 |logb| 2
with c > 0. Using (3.54) we obtain:

d ds 1 λ c 1 2 E + O b 3 |logb| 2 b 4 λ c |logb| 2 .
(3.56)

We now integrate in time. To evaluate the right hand side, we integrate by parts using (3.37):

s 0 b 4 λ c |logb| 2 dσ = s 0 - λ s λ b 3 λ c |logb| 2 + O b 4 |logb| 3 dσ = 1 c b 3 λ c |logb| 2 s 0 - 1 c s 0 b s λ c 3b 2 |logb| 2 + 2b 2 |logb| 3 dσ + s 0 O b 4 λ c |logb| 3 dσ.
Using the smallness of b we get:

s 0 b 4 λ c |logb| 2 dσ b 3 λ c |logb| 2 (s).
Hence (3.1), (3.15) and the time integration of (3.56) ensure:

E(s) b 3 |logb| 2 (s) + λ c (s) E(0) + b 3 0 |logb 0 | 2 b 3 |logb| 2 (s) + λ c (s) b 3 0 |logb 0 | 2 . (3.57)
We moreover estimate from (3.37):

d ds b 3 λ c |logb| 2 = b 3 λ c |logb| 2 3b s b + 2b s b|logb| -c λ s λ = b 3 λ c |logb| 2 cb + O b |logb| 2
> 0 and hence using (3.1) again:

λ c (s) b 3 0 |logb 0 | 2 ≤ λ c (s 0 ) b 3 |logb| 2 (s)
which together with (3.55) implies b(s) > 0 and closes the bound (3.22). Injecting this into (3.57) improves the energy bound (3.21) for D universal large enough, which concludes the proof of Proposition 3.2 for k = 0. k ≥ 1. This case requires a shooting argument to build the nonlinear manifold of perturbations (V j ) 0≤j≤k-1 . We first rewrite (3.48) using (3.9):

d ds E + O b 3 |logb| + 3 + c k 1 s E K s 4 |logs| .
Using (3.15), an integration-in-time yields:

E(s) ≤ s 3+ c k 0 s 3+ c k E 0 + b 3 0 | log b 0 | + b 3 | log b| + 1 s 3+ c k s s 0 Kσ 3+ c k σ 4 |logσ| dσ K s 3 (logs) K b 3 |logb| . (3.58)
This means that there exists a C > 0 universal large enough such that if D = CK, the bound (3.21) gets improved, and we assume it now. We inject this relation into (3.38) and conclude:

( bk ) s + 1 s  b k + (k + 1) k j=0 bj   + ( bk-1 ) s + 1 s   k -1 k bk-1 -(k + 1) k j=0 bj   + k-2 j=0 ( bj ) s + j ks bj √ Kb 2 |logb| 3/2 √ K s 2 (logs) 3/2 .
Equivalently using the change of variables (3.16):

(V k ) s + (k + 1) k j=0 V j s + (V k-1 ) s + 1 s   - 1 k V k-1 -(k + 1) k j=0 V j   + k-2 j=0 (V j ) s + j -k ks V j √ K s . (3.59)
The bootstrap bound (4.13) implies that |V j | ≤ δK, j = 0, . . . k -2. Therefore, from the first two bounds in (3.59) we conclude that for a sufficiently large K the following bound holds

(V k ) s + (k + 1) s (V k + V k-1 ) + (V k-1 ) s - k + 1 s (V k + (1 + d k )V k-1 ) δK s ,
where we remind the reader that d k = 1 k(k+1) . Recalling the definition (3.17) of the matrix A k , the above inequalities can be succinctly rewritten in the form

∂ s V k V k-1 = k + 1 s A k V k V k-1 + O δK s ,
which in turn leads to

(W k ) s + (k + 1)µ k 1 s W k + (W k-1 ) s + (k + 1)µ k 2 s W k-1 δK s , (3.60) 
where W k , W k-1 are defined in (3.18) and µ k 2 < 0 < µ k 1 are the eingenvalues of A k . This first yields the control of the stable direction W k , since after integrating-in-time the first bound in (3.60), we arrive at

|W k (s)| ≤ |W k (0)| s (k+1)µ k 1 0 s (k+1)µ k 2 + 1 s (k+1)µ k 1 s s 0 δKσ (k+1)µ k 1 σ dσ ≤ 1 + CδK,
where we used (3.19) and the positivity of µ k 1 . This improves (3.23) for K sufficiently large and δ < 1 2C . We now argue by contradiction and assume that for all

( V 0 δ , . . . , V k-2 δ , W k-1 ) ∈ B K (R d-1
), the boostrap time s * is finite, so that from (4.13):

|W k-1 (s * )| 2 + k-2 j=0 V j (s * ) δ 2 = K 2 . (3.61) 
We claim that this contradicts the Brouwer fixed point theorem. Indeed, using (3.59), (3.60), and the strict negativity of µ k 2 :

1 2

d ds    |W k-1 (s)| 2 + k-2 j=0 V j (s) δ 2    (s * ) = 1 s *   |µ k 2 |(k + 1)W 2 k-1 (s * ) + k-2 j=0 k -j δ 2 k V 2 j (s * ) + O δK 2 + K 3/2   ≥ c s * K 2 -CδK 2 , for some universal constants c, C > 0. Hence d ds    |W k-1 (s * )| 2 + k-2 j=0 V j (s * ) δ 2    (s * ) > 0 (3.62)
for 0 < δ ≪ 1 universal small enough in (4.13). Let

Ṽ = ( V 0 δ , . . . , V k-2 δ , W k-1 ),
then this implies from standard from standard argument that the map

B K (R d-1 ) ∋ Ṽ (0) → s * Ṽ (0)
is continuous, and hence the map

B K (R d-1 ) → B K (R d-1 ) Ṽ (0) → Ṽ s * ( Ṽ (0))
is continuous and the identity on the boundary sphere S d-1 (K), a contradiction to Brouwer's fixed point theorem. This concludes the proof of Proposition 3.2 for k ≥ 1.

Remark 3.12. Note that (V 0 (ε 0 ), . . . .V k-2 (ε 0 ), W k-1 (ε 0 )) are by construction lying on a nonlinear codimension k manifold of initial data. The fact that the set of such initial data forms a Lipschitz manifold in the H 2 topology reduces to a local uniqueness problem in the class of solutions satisfying the a priori bounds of Proposition 3.2. Such a uniqueness problem has been recently solved in a related framework in the more complicated case of the wave equation [START_REF] Collot | Type II blow up manifolds for the energy supercritical wave equation[END_REF] and the KdV equation [START_REF] Martel | Codimension one threshold manifold for the critical gKdV equation[END_REF], see also [START_REF] Donninger | Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space[END_REF][START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], and a completely analogous approach can be applied here. We therefore omit the details.

Remark 3.13. Note that the presence of √ K on the right-hand side of (3.59) is essential to the closure of the estimates. It originates from the bound (3.38), where we carefully tracked the constants and proved that only √ E appears on the right-hand side of (3.38).

step 2 Global H 2 control. From Proposition 3.2, the solution remains in the bootstrap regime of Proposition 3.2 as long as it exists in H 2 which requires: ∀s ≥ 0,

u(s) L 2 (|x|≥λ(s)) + ∇u(s) L 2 (|x|≥λ(s)) + ∆u(s) L 2 (|x|≥λ(s)) < +∞ (3.63) and λ(s) > 0. (3.64) 
In the case k = 0, the positivity of λ follows from the time integration of (3.37) which implies

|logλ(s)| s 0 b 1 + O( 1 |logb| 
) dσ < +∞, while in the case k ≥ 1 we use a = -λ s /λ and the estimate (3.53), which implies the above bound again. The global L 2 -bound follows from the basic dissipation law satisfied by the solutions of (1.1):

1 2 d dt u 2 L 2 (Ω(t)) + ∇u 2 L 2 (Ω(t)) = 0, which immediately implies that u(s) L 2 (|x|≥λ(s)) < ∞.
The global Ḣ1 -bound follows directly from the dissipation of the Dirichlet energy (1.4). For the global Ḣ2 -bound, we take a cut off function χ = 0 for r ≤ 1 and r = 1 for r ≥ 2, then the weighted control (3.21) ensures ∆u(s) L 2 (λ(s)≤r≤2) < C(s) < +∞ for s ≥ 0 since the exponential weight is uniformly bounded from below and above in λ(s) ≤ r ≤ 2. To obtain the bound in the region r ≥ 2 we compute:

1 2 d dt χ|∆u| 2 = χ∆∂ t u∆u = χ∆ 2 u∆u = -χ|∇∆u| 2 + 1 2 ∆χ|∆u| 2 (3.65) 
and hence

χ|∆u| 2 (s) χ∆u(0) 2 L 2 + s 0 1 λ 2 (σ) ∆u(s) 2 L 2 (λ(σ)≤r≤2) dσ < +∞.
Hence s * = +∞ which concludes the proof of Proposition 3.2.

3.6. Proof of Theorem 1.1. We are now in position to conclude the proof of Theorem 1.1.

step 1 Finite time melting. We claim that the solution melts in finite time with the law (1.5), (1.6) as a consequence of the time integration of the modulation equations. case k = 0: From (3.37), (3.21), we obtain the following pointwise differential inequality for b :

b s + 2b 2 |logb| = O b 2 |logb| 2 .
(3.66)

We now follow [START_REF] Raphaël | Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems[END_REF][START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF] to derive the melting speed of λ and sketch the proof for the sake of clarity. Multiplying Hence: 

b = - 1 + logb 2s 1 + O 1 s s 0 1 |logb| dτ = - 1 + logb 2s 1 + O 1 |logb| (3.
= - λ s λ + O b |logb| 2 , (3.70) 
we conclude that

-(logλ) s = logs 2s - loglogs 2s + O( 1 s ),
which gives

-logλ = 1 4 (logs) 2 - 1 2 logsloglogs + O(logs),
which in turn gives

-2log(λ 2 ) = (logs) 2 1 -2 loglogs logs + O 1 logs .
This leads to 1) and hence from (3.70), (3.69):

-2log(λ 2 ) = logs 1 - loglogs logs + O 1 logs = logs -loglogs + O(1) (3.71) from which e √ -2log(λ 2 ) = s logs e O(
-λλ t = - λ s λ = b + O 1 slogs = logs 2s e O(1) = e - √ 2|logλ 2 |+O(1) .
This yields the pointwise ode:

-e √ 2|logλ 2 |+O(1) (λ 2 ) t = 1
which integration in time yields:

λ 2 (t) = (T -t)e - √ 2|log(T -t)|+O(1) (3.72) 
and (1.5) is proved.

case k ≥ 1: We estimate from (3.21), (3.8):

- λ s λ = a = k + 1 2ks - k + 1 2k 2 slogs + O 1 s(logs) 3/2 (3.73)
and hence there exists

c * = c * (u 0 ) such that -logλ(s) = k + 1 2k logs - k + 1 2k 2 loglogs + c * + o s→+∞ (1) or equivalently: λ(s) = c(u 0 )(1 + o(1)) (logs) k+1 2k 2 s k+1 2k , c(u 0 ) > 0. (3.74) 
We conclude that

T = +∞ 0 λ 2 (s)ds < +∞ and 
T -t = +∞ s λ 2 (σ) dσ = +∞ s (c 2 + o(1)) (logσ) k+1 k 2 σ k+1 k dσ = (kc 2 + o(1)) (logs) k+1 k 2 s 1 k . This implies 1 s = (T -t) k |log(T -t)| k+1 k (c + o(1)) (3.75) 
which together with (3.74) yields the melting law:

λ(t) = (c * (u 0 ) + o t→T (1)) (T -t) k+1 2 |log(T -t)| k+1 2k , this is (1.6).
step 2 Non concentration of the energy. Pick R > 0 and a cut-off function

χ R (x) = χ x R = 0 for x ≤ R 1 for x ≥ 2R.
Then for t sufficiently close to the melting time T :

1 2 d dt χ R |∇u| 2 dx = χ R ∇u • ∇∂ t u dx = χ R ∇u • ∇∆u dx = -∆u [χ R ∆u + ∇χ R • ∇u] dx = -χ R |∆u| 2 + 1 2 |∇u| 2 r ∂ ∂r χ ′ R r dx (3.76) 
and hence the uniform bound on the Dirichet energy ensures:

∀R > 0, T 0 χ R |∆u| 2 dx < +∞.
Hence for all 0

< τ < T -t, χ R |∇u(t + τ ) -∇u(t)| 2 dx = χ R t+τ t (∂ t ∇u)(σ, x)dσ 2 dx τ T 0 χ R |∂ t ∇u| 2 dx τ T 0 χ R |∇∆u| 2 dx ≤ C(R)τ,
where the last estimate follows by integrating-in-t equation (3.65) with χ = χ R and using (3.76). Hence for all R > 0, ∇u(t, x) is a Cauchy sequence in L 2 (|x| ≥ 2R) as t → T . We conclude from a simple diagonal extraction argument that there exists

u * ∈ Ḣ1 (R 2 ) such that ∀R > 0, ∇u(t) → ∇u * in L 2 (|x| ≥ 2R) as t → T. (3.77) 
Moreover, the uniform bound on the Dirichlet energy (1.4) ensures

∇u * ∈ L 2 , ∇u(t) ⇀ ∇u * weakly in L 2 as t → T. (3.78) 
Pick now

R(t) = λ(t)B(t), B 2 (t)b(t) = 1 2 |logb(t)| for k = 0 λ(t)B(t), B 2 (t)a(t) = λ(t)|loga(t)| for k ≥ 1. (3.79) 
Note that in both cases we have B(t) ≫ 1. Then from (3.76):

d dτ χ R(t) |∇u(τ )| 2 dx 1 R 2 (t) |∇u(τ )| 2 dx + χ R(t) |∆u(τ )| 2 dx
and hence integrating over [t, T ) and using (3.77), (3.79), (1.4):

χ R(t) |∇u(τ )| 2 dx -χ R(t) |∇u * | 2 dx T -t R 2 (t) + T t r≥λ(t) |∆u(τ )| 2 dxdτ.
If k = 0, we use (1.5) to estimate

T -t R 2 (t) = 2b(t)(T -t) λ 2 (t) 1 |logb(t)| -→ 0 as t → T.
The above limit holds since by (3.72)

2b(t)(T -t) λ 2 (t) 1 |logb(t)| b(t)e √ 2|log(T -t)| |logb(t)| b(t)e 2 √ |λ(t)| |logb(t)| 1 |logb(t)| → 0, as t → T,
where the last bound follows from (3.68) and (3.71

). If k ≥ 1, then T -t R 2 (t) = a(t)(T -t) λ 2 (t) 1 c|loga(t)| -→ 0 as t → T.
The above limit holds since by (3.72)

a(t)(T -t) λ 2 (t) 1 |loga(t)| (T -t) k |log(T -t)| k+1 k (T -t) (T -t) k+1 |log(T -t)| k+1 k |loga(t)| 1 |loga(t)| → 0, as t → T,
where we used (3.73) and (3.75). Letting t → T , we conclude:

|∇u * | 2 = lim t→T χ R(t) |∇u(τ )| 2 dx. (3.80) 
We now claim that

lim t→T {|x|≥λ(t)} (1 -χ R(t) )|∇u(τ )| 2 dx = 0 (3.81)
which together with (3.80), (3.78) concludes the proof of (1.7). Indeed, in the case k = 0, from (2.78), (A.10), (3.21), and (3.79) we obtain:

{|x|≥λ(t)} (1 -χ R(t) )|∇u(t)| 2 dx ≤ λ(t)≤|x|≤2R(t) |∇u(t)| 2 dx = 1≤|y|≤2B(t) |∇v(t, y)| 2 dy e 2bB 2 (t) 1≤y≤2B(t) |b∂ y η b 0 | 2 ρ b ydy + ∂ y ε 2 b = e 2bB 2 (t) b 2 |logb| 2 + b 2 |logb| b|logb| 2 → 0 as t → T,
and (3.81) is proved. A similar algebra holds for k ≥ 1. This concludes the proof of Theorem 1.1.

Infinite time freezing regimes

This section is devoted to the existence and stability of the freezing process emerging from strongly localized initial data. Throughout the section, we let

± = +, ρ = ρ + , B > 0.
4.1. Renormalized equations and initialization. We let

u(t, x) = v(s, y), y = r λ(t) , λ(0) = 1, (4.1) 
with the renormalized time

s(t) = s 0 + t 0 dτ λ 2 (τ ) , s 0 ≫ 1, (4.2) 
and obtain the renormalized equation:

∂ s v + H A v = 0, A = λs λ , v(s, 1) = 0, ∂ y v(s, 1) = -A. (4.3) 
We now prepare our initial data in the following way. We let We let again For k ≥ 1, we also let

B(s) = 1 2s , B e k = 1 s k+1 (log s) 2
ε 2 = H B ε, E := H B ε 2 B ,
B j (s) = V j (s) s k+1 (log s) 5 2 
, j = 0, . . . , k -1. (4.12)

and assume

k-1 j=0 |V j (s)| 2 ≤ K 2 . (4.13) 
We define s * = sup s≥s 0 {(4.9), (4.11)hold on [s 0 , s]} for k = 0, sup s≥s 0 {(4.9), (4.11), (4.13) hold on [s 0 , s]} for k ≥ 1.

The main ingredient of the proof of Theorem 1.2 is the following: Proposition 4.1 (Bootstrap estimates on B and ε). The following statements hold: 1. Stable regime: for k = 0, s * = +∞.

2. Unstable regime: for k ≥ 1, there exist constants K, δ = δ(K) ≪ 1 and (V 0 (0), . . . , V k-2 (0), V k-1 (0)) depending on ε(0) such that s * = +∞.

From now on and for the rest of this section, we study the flow in the boostrap regime s ∈ [s 0 , s * ). Note in particular the rough bounds

|B j | |B e k |, 0 ≤ j ≤ k and E ≤ B(B e k ) 2 |logB| (4.14)
for s 0 ≥ s 0 (K) large enough.

4.2.

Extraction of the leading order ODE's driving the freezing. We start with the constraint induced by the boundary conditions:

Lemma 4.2 (Boundary conditions). There holds:

A = k j=0 B j 1 + 2α j |logB| + O 1 |logB| 2 + O √ E |logB| √ B , (4.15) 
ε 2 (1) = A(B -A), (4.16 
) This implies that

∂ y ε 2 (1) = A s -A 2 (B -A) + k j=0
∂ y Q β (1) = - k j=0 B j ∂ y η B,j (1) = - k j=0 B j 1 + 2α j |logB| + O 1 |logB| 2 . Since v = Q β + ε, it follows that ε y y=1 = v y y=1 -∂ y Q β y=1 = - λ s λ -∂ y Q β (1) = -A + k j=0 B j 1 + 2α j |logB| + O 1 |logB| 2 ,
which together with (B.2) yields (4.15). From (4.3), v(s, 1) = 0 and ∂ y v(s, 1) = -λs λ = -A:

0 = H A v(1) = (H B v + (B -A)Λv)(1) = ε 2 (1) + A(A -B),
this is (4.16). Now from ∂ y v(s, 1) = -A, we have

∂ s ∂ y v(s, 1) = -A s .
On the other hand, taking ∂ y of (4.3), we have:

0 = ∂ s ∂ y v + ∂ y (H B v + (B -A)Λv) = ∂ s ∂ y v + ∂ y ε 2 + ∂ y H B Q β + (B -A)y∆v.
We evaluate the above identity at y = 1. From (4.3) and ∂ s v(s, 1) = 0, ∂ y v(s, 1) = -A:

∆v(1) = -AΛv(1) = A 2 . By construction, ∂ y H b Q β = - k j=0
λB,j BB j ∂ y ηB,j , and hence:

-A s + ∂ y ε 2 (1) - k j=0 λB,j BB j 1 + 2α j |logB| + O 1 | log B| 2 + A 2 (B -A) = 0.
We now compute the leading order modulation equations. 

∂ s Q β + H A Q β = Mod + Ψ (4.20)
where we defined the modulation vector

Mod := - k j=0 (B j ) s + BB j λB,j + 2(B -A)B j |logB| ηB,j , (4.21) 
and the remaining error satisfies the bound:

Ψ b + 1 √ B ∂ y Ψ B + 1 B H B Ψ B √ BB e k | log B| . (4.22)
Proof of Proposition 3.6. Let the deviation

Φ := B s + 2B(B -A).
By definition

H A = H B + (B -A)Λ
and we therefore compute from (4.6): 

-∂ s Q β(s) (y) -H A Q β = k j=0 (B j ) s ηB,j + B s B j B B∂ B ηB,j + BB j λB,j ηB,j + (B -A)B j Λη B,j = k j=0 [(B j ) s + BB j λb,j ]η B,j + (B -A)B j [Λη B,j -2B∂ B ηB,j ] + B j B B∂ B ηB,j Φ = k j=0 (B j ) s + BB j λB,j + 2(B -A)B j | log B| ηB,j + (B -A)B j Λη B,j -2B∂ B ηB
∂ s ε + H A ε = F, F = -Mod -Ψ (4.24)
and we now compute the exact modulation equations.

Lemma 4.5 (Modulation equations for B j ). There holds for 0 ≤ j ≤ k:

(B j ) s + B j B 2j + 2 + 4 | log B| BB e k | log B| 2 .
(4.25)

Proof of Lemma 4.5. Let 0 ≤ j ≤ k and take the scalar product of (4.24) with ηB,j and use the orthogonality condition (4.7) to compute:

-(ε, ∂ s ηB,j ) B -B s (ε, |y| 2 2 ηB,j ) B = (F, ηB,j ) + (A -B)(Λε, ηB,j ).
We integrate by parts unsing (4.7):

-(ε, ∂ s ηB,j ) B -B s (ε, |y| 2 2 ηB,j ) B + (B -A)(Λε, ηB,j ) B = -(ε, ∂ s ηB,j ) B -B s (ε, |y| 2 2 ηB,j ) B -(B -A)(ε, B|y| 2 ηB,j + Λη B,j ) B = -(ε, 1 2 (B s + 2B(B -A))|y| 2 ηB,j ) B -(ε, B s + 2B(B -A) B B∂ B ηB,j ) B +(B -A)(ε, 2B∂ B ηB,j -Λη B,j ) B = -(ε, Φ B [ 1 2 B|y| 2 ηB,j + B∂ B ηB,j ]) B + (B -A)(ε, 2B∂ B ηB,j -Λη B,j ) B .
We now estimate from (B.2), (2.92), (2.93), (4.23):

-(ε, Φ B [ 1 2 B|y| 2 ηB,j + B∂ B ηB,j ]) B ε B |Φ| B | log B| √ B √ E | log B| √ B
and using (2.95) and (4.7):

|(B -A)(ε, 2B∂ B ηB,j -Λη B,j ) B | B √ B ε B √ E | log B| √ B .
We now estimate the F terms given by (4.24). From (4.22):

|(Ψ, ηB,j ) B | Ψ B ηB,j B √ BB e k | log B| | log B| √ B B e k .
The 

(B j ) s + B j B 2j + 2 + 4 | log B| + O 1 | log B| 2 BB e k | log B| 2 ,
this is (4.25). 4.4. Energy bound. We now derive the energy estimate in the freezing regime Proposition 4.6 (Energy bound for freezing). There holds the pointwise control

1 2 d ds E + O B(B e k ) 2 | log B| + B(2k + 4 + c) ε 2 2 B B B(B e k ) 2 | log B| (4.27)
for some universal constant c > 0.

Proof of Proposition 4.6. We compute the energy identity for E and estimate all terms.

step 1 Algebraic energy identity. Recall ε 2 = H B ε. We compute from (4.24):

∂ s ε 2 + H A ε 2 = [∂ s , H B ]ε + [H A , H B ]ε + H B F.
and hence using (3.49):

[∂ s , H B ]ε + [H A , H B ]ε = -B s Λε + [H B + (B -A)Λ, H B ]ε = -B s Λε + (B -A)[Λ, -∆] = -B s Λε + 2(B -A)∆ε = -(B s + 2B(B -A))Λε -2(B -A)[-∆ε -BΛε] = -ΦΛε -2(B -A)ε 2 .
Hence the ε 2 equation:

∂ s ε 2 + H A ε 2 = -ΦΛε -2(B -A)ε 2 + H B F. (4.28) 
We now compute the modified energy identity:

1 2 d ds E = 1 2 d ds y≥1 ε 2 2 e By 2 2 ydy = B s 4 y≥1 y 2 |ε 2 | 2 e B|y| 2 2 ydy + (∂ s ε 2 , ε 2 ) B = B s 4 yε 2 2 B + (-ΦΛε -2(B -A)ε 2 + H B F -H A ε 2 , ε 2 ) B .
We carefully integrate by parts to compute:

- y≥1 ε 2 H A ε 2 e By 2 2 ydy = - y≥1 ε 2 [H B ε 2 + (B -A)Λε 2 ]e By 2 2 ydy = y≥1 ∂ y (ρ B y∂ y ε 2 )ε 2 dy -(B -A) y≥1 ε 2 y∂ y ε 2 e By 2 2 ydy = -ρ B (1)ε 2 (1)∂ y ε 2 (1) - y≥1 |∂ y ε 2 | 2 e By 2 2 ydy + B -A 2 ρ B (1)ε 2 2 (1) + B -A 2 y≥1 ε 2 2 2 + By 2 e By 2 2 ydy = -∂ y ε 2 2 B + (B -A) ε 2 2 2 + B(B -A) 2 yε 2 2 B -ρ B (1)ε 2 (1) ∂ y ε 2 - B -A 2 ε 2 (1).
This yields the algebraic energy identity:

1 2 d ds E = -∂ y ε 2 2 B -(B -A) ε 2 2 2 + Φ 4 yε 2 2 B -ρ B ε 2 ∂ y ε 2 - B -A 2 ε 2 (1) -Φ(Λε, ε 2 ) B + (H B F, ε 2 ) B . (4.29) 
We now estimate all terms in the right-hand side of (4.29 We now rewrite (4.17) using (4.25), (4.18), (4.26):

|Φ yε 2 2 B BB e k ∂ y ε 2 2 B B 2 + ε 2 2 (1) B ∂ y ε 2 2 B | log B| + B 3 A 2 | log B| ∂ y ε 2 2 B | log B| + B 3 | log B| (B e k ) 2 + E B|logB| 2 ∂ y ε 2 2 B | log B| + B B(B e k ) 2 | log B| 2 .
∂ y ε 2 (1) = A -Ã s + k j=0 1 + 2α j | log B| (B j ) s + λB,j BB j + O BB e k | log B| 2 = (A -Ã) s + O BB e k | log B| from which: ρ B (1)ε 2 (1) ∂ y ε 2 - B -A 2 ε 2 (1) = ρ B (1)A(B -A) (A -Ã) s + O BB e k | log B| + B 2 B e k = O B B(B e k ) 2 | log B| + ρ B (1)A(B -A)(A -Ã) s .
We now compute using (4.30):

-ρ B (1)A(B -A)(A -Ã) s = ρ B (1)(A -Ã) s (A -Ã) 2 + (A -Ã)( Ã -B) -Ã(B -A) = - d ds ρ B (1) (A -Ã) 3 3 + (A -Ã) 2 ( Ã -B) 2 -(A -Ã)red Ã(B -A) - B s 2 ρ B (1) (A -Ã) 3 3 + (A -Ã) 2 ( Ã -B) 2 -(A -Ã) Ã(B -A) +ρ B (1) (A -Ã) 2 2 ( Ãs -B s ) -(A -Ã)( Ãs (B -A) + (B s -A s ) Ã) = d ds O B(B k e ) 2 | log B| 2 + O B 2 (B e k ) 2 | log B|
Injecting the collection of above bounds into (4.29) yields:

1 2 d ds E + O B(B 2 k ) 2 | log B| = -∂ y ε 2 2 B -(B -A) ε 2 2 B + O ∂ y ε 2 2 B | log B| + B B(B e k ) 2 | log B|
and hence using the coercivity (B.13), (4.16), (4.4) and (4.18): 

1 2 d ds E + O B(B 2 k ) 2 | log B| + B 2k + 5 + O 1 | log B| ε 2 2 B B(B e k )
E(s) ≤ s 0 s 2k+3+c E(0) + C B(s)(B e k (s)) 2 | log s| + C 1 s 2k+3+c s s 0 B 2 (B e k ) 2 | log B| σ 2k+3+c dσ ≤ s 0 s 2k+3+c E(0) + C B(s)(B e k (s)) 2 | log s| B(s)(B e k (s)) 2 | log s| .
Hereby we used the explicit formulas (4.4) to infer that

1 s 2k+3+c s 0 B 2 (B e k ) 2 | log B| σ 2k+3+c dσ B(s)(B e k (s)) 2 | log s|
and in the last inequality the initial data assumption (4.8). This closes the energy bound (4.9). step 2 Control of B j . We estimate from (4.25):

(B k ) s + BB k 2k + 2 + 4 | log B| BB e k | log B| 2 from which d ds (s k+1 (log s) 2 B k ) 1 s(log s) 2 .
An integration-in-time yields:

B k (s) = 1 s k+1 (log s) 2 B k (s 0 ) B e k (s 0 ) + O 1 log s 0 (4.31)
and the initial data assumption (4.10) now improves (4.11).

For k ≥ 1, we now argue by contradiction and assume that for all (V j ) 0≤j≤k-1 with

k-1 j=0 |V j (0)| 2 ≤ K 2 , there holds s * < +∞ i.e. k-1 j=0 |V j (s * )| 2 = K 2 .
We estimate using the variables (4.12) and (4.25):

(V j ) s - k -j s V j 1 s √ log s , j = 1, . . . , k -1.
Hence at the exit time:

1 2 d ds   k-1 j=0 |V j | 2   (s * ) 1 s * k-1 j=0 |V j (s * )| 2 > 0
and a contradiction follows as in the melting case using Brouwer fixed point theorem. This concludes the proof of Proposition 4.1. 

B k (s) = c(u 0 )(1 + o(1)) s k+1 (log s) 2
for some universal constant c = c(u 0 ). We conclude from (4.15): for some universal constant c k > 0. Note that we used (2.27). Hence using (B.2):

λ s λ = A = c(u 0 )(1 + o(1)) s k+1 (log s) 2 from which there exists λ ∞ ≥ λ ∞ (u 0 ) > 0 with λ ∞ -λ(s) = c(u 0 )(1+o s→+∞ (1)) log s if k = 0, c(u 0 )(1+o s→+∞ (1)) s k (log s) 2 if k ≥ 1. Since for large s ≫ 1 we have ds dt ∼ 1 λ 2 ∞ , (1 
|∇(v -B k ηB,k )| 2 | log B| 2 k-1 j=0 B 2 j + ∇ε 2 L 2 (B e k ) 2 .
Therefore, since the self-similar rescaling preserves the Dirichlet energy, it follows that

Ω(t) |∇u| 2 = |y|≥1 |∇v| 2 = B 2 k |y|≥1 |∇η B,k | 2 + O((B e k ) 2 )
which yields (1.12). To prove (1.9), note that by integrating (1.1) and using the Stokes theorem, we arrive at the following conservation law:

d dt Ω(t) u(t, x) dx -πλ 2 (t) = 0, (4.32) 
which holds as long as u ∈ L 1 (Ω(t)). To see this and evaluate lim t→∞ u L 1 (Ω(t)) first observe that v satisfies

v L 1 (Ω) = y≥1 |v| ydy ≤ v B y≥1 e -By 2 2 ydy 1/2 1 √ B v B . and zH b u 2 L 2 ρ,b ∂ z H b u 2 L 2 ρ,b + b|H b u( √ b)| 2 . (A.4)
Proof of Lemma A.2. This lemma is a simple perturbative consequence of the harmonic oscillator estimate (2.8), (2.32), and a careful integration by parts to track the boundary term in (A.2).

step 1 Proof of (A.2). Pick a small constant δ > 0, then from u( √ b) = 0, we may integrate by parts and compute:

(H b -δ)u 2 L 2 ρ,b = (H b -δ)u, (H b -δ)u b = H b u 2 L 2 ρ,b -2δ H b u, u b + δ 2 u 2 L 2 ρ,b
.

We may now use the spectral gap bound (2.32) with (A.1) and conclude that for δ small enough:

H b u 2 L 2 ρ,b ∂ z u 2 L 2 ρ,b + (1 + z)u 2 L 2 ρ,b + (H b -δ)u 2 L 2 ρ,b . (A.5)
We integrate by parts using the general formula

∂ z u, v b = - √ bu( √ b)v( √ b)ρ( √ b) -u, ∂ z v b -u, v z b + u, zv b (A.6)
to compute:

H b u 2 L 2 ρ,b = ∆u 2 L 2 ρ,b -2 u zz + ∂ z u z , z∂ z u b + Λu 2 L 2 ρ,b = ∆u 2 L 2 ρ,b -∂ z (∂ z u) 2 , z b -2 ∂ z u 2 L 2 ρ,b + Λu 2 L 2 ρ,b = ∆u 2 L 2 ρ,b + b(∂ z u) 2 ( √ b)ρ( √ b) + (∂ z u) 2 , 1 b + (∂ z u) 2 , 1 b -Λu 2 L 2 ρ,b -2 ∂ z u 2 L 2 ρ,b + Λu 2 L 2 ρ,b = ∆u 2 L 2 ρ,b + b(∂ z u) 2 ( √ b)ρ( √ b). (A.7)
On the other hand, integrating by parts:

H b u, logz b = u, 1 b + √ b∂ z u( √ b)log( √ b)
and thus:

b|∂ z u( √ b)| 2 1 |logb| 2 H b u 2 L 2 ρ,b + u 2 L 2 ρ,b 1 |logb| 2 H b u 2 L 2 ρ,b
, where we used (A.5). Together with (A.7), (A.5), claim (A.2) follows.

step 2 Proof of (A.3), (A.4). Define the radially symmetric function

v(z) = H b u( √ b) for 0 ≤ z ≤ √ b H b u(z) for z ≥ √ b (A.8)
and note that v ∈ H 1 ρ,0 . Consider

w := v - k j=0
v, P j 0 P j , P j 0 P j .

Then from (2.8):

z≥0 |∂ z w| 2 e -z 2 2 zdz ≥ (2k + 2) z≥0 |w| 2 e -z 2 2 zdz ≥ (2k + 2) z≥ √ b
|w| 2 e -z 2 2 zdz.

(A.9)

On the other hand, from (2.27):

P k - 2 |logb| ψ b,k H 2 ρ,b 1 |logb| from which for 0 ≤ j ≤ k: v, P j 0 = H b u( √ b) 0≤z≤ √ b P j e -z 2 2 zdz + H b u, 2 |logb| ψ b,j b + O H b u L 2 ρ,b |logb| = 2 |logb| u, λ b,j ψ b,j b + O b|H b u( √ b)| + H b u L 2 ρ,b |logb| = O b|H b u( √ b)| + H b u L 2 ρ,b
|logb| ,

where we used the orthogonality u, ψ b,j b = 0, 0 ≤ j ≤ k. Therefore

v -w H 1 ρ,b b|H b u( √ b)| + v L 2 ρ,b
|logb| .

Injecting this into (A.9) yields (A.3). We now apply (A.1) to v and conclude from (A.3), (A.8):

zH b u 2 L 2 ρ,b zv 2 L 2 ρ,0 + b 2 |H b u( √ b)| 2 ∂ z v 2 L 2 ρ,0 + v 2 L 2 ρ,0 + b 2 |H b u( √ b)| 2 ∂ z H b u 2 L 2 ρ,b + H b u 2 L 2 ρ,b + b|H b u( √ b)| 2 ∂ z Hu 2 L 2 ρ,b + b|H b u( √ b)| 2
and (A.4) is proved.

We now renormalize Lemma A.2 by letting ε(y) = u( √ by) which yields exactly:

Lemma A.3 (Coercivity of H b ). Let k ∈ N and 0 < b < b * (k) small enough. If ε ∈ H 3 ρ b (y ≥ 1) satisfies ε(1) = 0, (ε, η b,j ) b = 0 for 0 ≤ j ≤ k, then H b ε 2 b ∆ε 2 b + b ∂ y ε 2 b + b 2 Λε 2 b (A.10) + b 2 (1 + √ by)ε 2 b + b|logb| 2 (∂ y ε) 2 (1). Moreover, ∂ y H b ε 2 L 2 ρ,b ≥ 2k + 2 + O 1 |logb| b H b ε 2 b -c k b 2 |H b ε(1)| 2 (A.11) and b yH b ε 2 b 1 b ∂ y H b ε 2 b + |H b ε(1)| 2 . (A.12) Lemma B.1 (Coercivity of H B ). Let k ∈ N and 0 < B < B * (k) small enough. Let ψB,j = ψ B,j e -B|y| 2 2 (B.1) and u ∈ H 3 ρ (r ≥ √ B) satisfy u( √ B) = 0, u, ψB,j B = 0, 0 ≤ j ≤ k,
then the following inequality holds:

H B u 2 L 2 ρ,B ∆u 2 L 2 ρ,B + (1 + z)∂ z u 2 L 2 ρ,B (B.2) + (1 + z)u 2 L 2 ρ,B + B|logB| 2 (∂ z u) 2 ( √ B).
Moreover, there exists a constant c k > 0 such that

∂ z H b u 2 L 2 ρ,B ≥ 2k + 4 + O 1 |logb| H B u 2 L 2 ρ,B -c k B 2 |H b u( √ B)| 2 (B.3) and zH B u 2 L 2 ρ,B ∂ z H B u 2 L 2 ρ,B + B|H B u( √ B)| 2 . (B.4)
Proof. We follow the proof of Lemma (A.3).

step 1 Proof of (A.2). Pick a small constant δ > 0, then from u( √ B) = 0, we may integrate by parts and compute:

(H B -δ)u 2 L 2 ρ,b = (H B -δ)u, (H B -δ)u B = H B u 2 L 2 ρ,B -2δ H B u, u B +δ 2 u 2 L 2 ρ,B
.

We now use the isometry (2.97) and (2.9). We first obtain from (2.32) the spectral gap:

∀u with u, ψ B,j B = 0, 0 ≤ j ≤ k, then

H B u, u B ≥ 2k + 4 + O 1 | log B| u 2 L 2 ρ,B , (B.5)
and similarly from (A.1):

z 2 u 2 zρdz (∂ z u) 2 ρzdz + u 2 zρdz. (B.6)
We therefore conclude that for δ small enough:

H B u 2 L 2 ρ,B ∂ z u 2 L 2 ρ,B + (1 + z)u 2 L 2 ρ,B . (B.7)
We integrate by parts using the general formula

∂ z u, v B = - √ Bu( √ b)v( √ B)ρ( √ B) -u, ∂ z v B -u, v z B -u, zv B (B.8)
to compute:

H B u 2 L 2 ρ,B = ∆u 2 L 2 ρ,B + 2 u zz + ∂ z u z , z∂ z u B + Λu 2 L 2 ρ,B = ∆u 2 L 2 ρ,B + ∂ z (∂ z u) 2 , z B + 2 ∂ z u 2 L 2 ρ,B + Λu 2 L 2 ρ,B = ∆u 2 L 2 ρ,B -B(∂ z u) 2 ( √ b)ρ( √ b) -(∂ z u) 2 , 1 B -(∂ z u) 2 , 1 b -Λu 2 L 2 ρ,B + 2 ∂ z u 2 L 2 ρ,B + Λu 2 L 2 ρ,B = ∆u 2 L 2 ρ,B -B(∂ z u) 2 ( √ B)ρ( √ B). (B.9)
On the other hand, let

χ(z) = 1 for √ B ≤ z ≤ 1 0 for z ≥ 2
then integrating by parts:

H B u, χ(z)logz B = -u, H B (χ(z) log z) B + √ B∂ z u( √ B)log( √ B)
and thus:

B|∂ z u( √ B)| 2 1 |logB| 2 H B u 2 L 2 ρ,B + u 2 L 2 ρ,B 1 | log B| 2 H B u 2 L 2 ρ,B
, where we used (B.7). Together with (B.9), (B.7), claim (B.2) follows.

step 2 Proof of (B.3), (B.4). Define the radially symmetric function where we used the fact that w t (t, 1) = 0, ∆w = 1 y ∂ y Λw, and Λw y=1 = w y y=1 = -λ λ. Note also that ∂ n w| y=1 = -∂ y w| y=1 .This proves (D.4). To prove (D.5) we apply ∇ to (D.2), multiply by -∇∆w and integrate-by-parts. We obtain Let us define the energy-like quantities To bound the error term -2π 3 λ(t) 3 λ(t) 3 we need a more refined estimate than (D.16) due to the absence of the integral-in-time. Note that by the trace inequality and the interpolation between fractional Sobolev spaces, we have where p and q are increasing polynomial functions of their arguments. Plugging this bound back into (D.15), using (D.17), and the definition of E(t) we conclude that By the choice of T, we also have the bound λ(t) ≥ 3 4 λ 0 > 1 2 λ 0 for t ∈ [0, T ] and this concludes the proof of the lemma. Proof. The proof of existence follows a standard iteration argument for the sequence of approximations (λ n (t), w n (t)), n ∈ N. For a given λ n (•) we define w n+1 by solving

v(z) = H B u( √ B) for 0 ≤ z ≤ √ B H B u(z) for z ≥ √ B (B.
+ B 2 |H B u( √ B)| 2 ∂ z v 2 L 2 ρ,0 + v 2 L 2 ρ,0 + B 2 |H B u( √ B)| 2 ∂ z H B u 2 L 2 ρ,B + H B u 2 L 2 ρ,B + B|H B u( √ B)| 2 ∂ z H B u 2
E(t) =
∂ t w n+1 - ∂ t λ n λ n Λw n+1 - 1 λ 2 n ∆w n+1 = 0 in Ω ; (D.22a)
w n+1 (t, 1) = 0.

We then update λ n+1 (•) by solving ∂ y w n+1 (t, 1) = -∂ t λ n+1 (t)λ n (t).

Estimates analogous to the a priori estimates of Lemma D.4 can be used to obtain uniform bounds on E(w n , λ n ) + t 0 D(w n , λ n ) ds, where E and D are defined by (D.11) and (D.12) respectively. Note that we can also get uniform bounds on ∂ t w n L ∞ ([0,T ],L 2 (Ω)) + ∂ t w n L 2 ([0,T ],H 1 (Ω)) as the latter norms are controlled by E(w n , λ n ) + t 0 D(w n , λ n ) ds from (D.22a). Upon passing to the limit, we obtain a solution to which the energy estimate of Lemma D.4 applies. The proof of uniqueness is standard. The breakdown criterion is a simple consequence of (D.11), and (D.16).

Proof of Theorem D.1. Let w be the solution to (D.2) as given by Theorem D.5. It is easy to check that w(t, •) H 2 (Ω) E(t), t ∈ [0, T ). Theorem D.1 now follows from the change of variables u(t, r) = w(t, r λ(t) ) and Theorem D.5.
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 2 

H

  b,± = -∆ ∓ bΛ with boundary condition u(1) = 0 and the associated spectral gap estimate in the perturbative regime 0 < b < b * (k), b * (k) ≪ 1 . The proof relies on a Lyapounov Schmidt type bifurcation argument at b = 0 performed in weighted Sobolev spaces.

2. 2 .

 2 Almost invertibility of the renormalized operator. Recall the notational convention (2.1). We consider the renormalized operator H b = -∆ + Λ with boundary condition u( √ b) = 0 in the radial sector and for 0 < b < b * small enough. Thanks to the boundary condition u( √ b) = 0 and (2.2), H b is self adjoint for the scalar product •, • b on the Hilbert space H 1

. ( 2 . 39 ) 2 . 4 .Remark 2 . 5 .step 1

 23924251 Remark From standard Sturm Liouville oscillation argument, ψ b,k vanishes k times on z > √ b, and hence only the ground state ψ b,0 is nonnegative. Constants in Lemma 2.3 depend on the frequency K but are uniform in 0 < b < b * (K). Proof of Proposition 2.3. The argument is of Lyapounov-Schmidt type. We remove the b subscript as much as possible to simplify notations. The Lyapunov-Schmidt argument. Let T k (z) ∈ H 1 ρ,b be given by (2.27), and introduce the universal profile T b (z) := logz -log( √ b).

  2 and therefore for a sufficiently small 0 < b < b * the operator H-1 b • F is a strict contraction. By the Banach fixed point theorem, there exists a unique ψ b,k ∈ H 1 ρ,b satisfying (2.25). The Fréchet differentiability of ψ b with respect to b at any fixed b > 0 follows similarly, the classical details are left to the reader. step 2 Proof of (2.31). We estimate from (2.28), (2.27): ΛT b,k L 2 ρ,b |logb| and (2.29) now implies Λψ b,k L 2 ρ,b|logb|.

  By the compactness of radial Sobolev and trace embeddings and (A.1) it strongly converges in L 2 ρ,b . Hence the infimum is attained and from Lagrange multiplier theory: H b φ b = µ b φ b . Moreover, since |φ b | is also an infimum, we may assume φ b ≥ 0. If µ b = λ b , then φ b , ψ b,0 b = 0 and hence from (2.32):

  b ≥ µ b by the definition of µ b . Together with (2.26) this contradicts the definition of µ b for 0 < b < b * small enough. Hence λ b,0 = µ b is the bound state. The simplicity of the first eigenvalue follows from a classical argument [13]-and hence ψ b ≡ φ b ≥ 0. Note that ψ b > 0 for z > √ b by the strong maximum principle. step 4 Estimate for ∂ b λ b,k . Applying ∂ b to (2.25), we obtain

  .70) Evaluating the •, • b inner product of (2.62) with ∂ b ψb,k , integrating-by-parts, using Cauchy-Schwarz, and the Poincaré-type inequality (2.70) we obtain

2. 4 .

 4 Diagonalization of H b . We are now position to derive the bound state and the spectral gap estimate for the operator H b . Lemma 2.6 (Renormalized eigenfunction). Let K ∈ N. Then for all 0 < b < b * (K) small enough, the renormalized operator H b = -∆ + bΛ with boundary value u(1) = 0 has a family of eigenstates η b,k satisfying:

  ) with the following properties: (i) Structure of the eigenmodes: there holds the expansion η b,k = S b,k (y) + ηb,k (y) S b,k (y) = P k ( √ by)logy + k-1 j=0 µ b,jk P j ( √ by)logy (2.77) with ∆η b,k L 2 b √ b + ∂ y ηb,k b + √ b ηb,k b + √ b Λη b,k b + |logb||∂ y ηb,k (1)| 1 |logb| , (2.78) (ii) Further estimates on the eigenvector: there holds yη b,k b |logb| b , y 2 η b,k b |logb| b √ b (2.79) b∂ b η b,k b |logb| √ b .

2. 5 .

 5 Diagonalization of H B . We now change sign and consider the operator for B > 0 H B = -∆ -BΛ with boundary value u(1) = 0, (2.88) which is a self adjoint operator on H 1 B,+ given by (1.14). Lemma 2.8 (Renormalized eigenfunction). Let K ∈ N. Then for all 0 < B < B * (K) small enough, the renormalized operator H B = -∆ -BΛ with boundary value u(1) = 0 has a family of eigenstates

  83) and the degeneracy (2.84) for k = 0. The claim then follows from a standard application of the implicit function theorem. A Taylor expansion of F about (b, ε * ) ≡ (b * , 0) yields the bound

  and decompose the solution v(s, y) = b 0 (s)η b 0 (s),0 + ε(s, y) with b(s) = b 0 (s) and (ε, η b,0 ) b = 0 (3.5)

1 .Remark 3 . 3 .Remark 3 . 4 .

 13334 sup s≥s 0 {(3.21), (3.22) hold on [s 0 , s]} for k = 0, sup s≥s 0 {(3.21), (3.23), (4.13) hold on [s 0 , s]} for k ≥The main ingredient of the proof of theorem 1.1 is the following: Proposition 3.2 (Bootstrap estimates on b and ε). The following statements hold: 1. Stable regime: for k = 0, s * = +∞. 2. Unstable regime: for k ≥ 1, there exist constants K, δ = δ(K) ≪ 1 and (V 0 (0), . . . , V k-2 (0), W k-1 (0)) depending on ε(0) satisfying (3.15),(3.19) and (3.20), such that s * = +∞. Let us observe that our set of initial data is non empty and contains compactly supported arbitrarily small data in Ḣ1 , see Appendix C. The proof of the Proposition 3.2 is presented in section 3.5.

  from (3.25), (3.26) and (3.28) is proved.

3. 3 .

 3 Modulation equations. From (3.3), (3.31) we obtain the equation satisfied by the perturbation ε : ∂ s ε + H a ε = F (3.35) where F = -Mod -Ψ. (3.36) The nonlinear decomposition and the orthogonality conditions (3.14) generate a differential equation for the modulation vector β = (b j ) 0≤j≤k in the setting of the bootstrap lemma 3.2 which we now compute exactly. Lemma 3.8 (Modulation equations for b j ). 1. k = 0: the b law is given by:

step 2

 2 Case k = 0. In this case, b = b 0 and thus from (3.26):

40 )

 40 and thus (3.39),(3.32), and (3.26) imply:

step 4

 4 Conclusion for k ≥ 1. Let ã = a e + k j=0 bj be the leading order part of a, see (3.46). Then from (3.38), (4.13), (3.12):

3 . 5 .step 1

 351 [START_REF] Prüss | Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension[END_REF] and(3.48) now follows from (A.11) with(3.27). Proof of Proposition 3.2. We are now in position to give a sharp description of the singularity formation for our set of initial data. The key is to close the bootstrap bounds of Proposition 3.2. We distinguish the cases k = 0 and k ≥ 1. Closing the bootstrap bounds. Our goal is to show that the bounds (3.21),(3.22) improve in the case k = 0 and similarly for the bounds (3.21), (3.23), (4.13) in the case k ≥ 1. The improvement of the energy bound (3.21) will follow from proposition 3.10, while the bounds (3.23), (4.13) will be improved for a suitable set of initial data constructed via a topological argument. k = 0. First observe that (3.37) ensures b s < 0 and hence b(s) < b 0 ≤ b * .

( 3 .66) by logb b 2 we obtain b s logb b 2 = 2

 322 

  67) Taking the log yields logb = -log2 -logs + log(-logb) + O 1 |logb| which reinjected into (3.67) ensures: loglogs -log2 -logs + O loglogs logs . (3.68) Injecting this into (3.67) again yields: b = --logs + loglogs -log2 + 1 + O

(4. 4 )

 4 so that with A e = B e : introduce the dynamical decomposition v(s, y) = Q β(s) + ε(s, y), (η B,j (s), ε) B = 0, 0 ≤ j ≤ k.(4.7)

Proposition 4 . 4 (

 44 Leading order modulation equations). Under the a priori bounds of Proposition 4.1, there holds

step 3

 3 Boundary term and conclusion. It now remains to treat the boundary term in (4.29). First from (4.16), (4.17), (4.18): |B -A||ε 2 (1)| 2 |B|(AB) 2 B 3 (B e k )

= |logB| 2

 2 .10) and (1.11) follow. Finally, recalling that ηB,j = e -By 2 2 η B,j we estimate: |y|≥1 |∇(η B,j )| 2 = y≥1 |∂ y η B,j -Byη B,j | 2 e -By 2 y dy = z≥ √ B |∂ z ψ B,j -zψ B,j | 2 e -z 2 z dz -zP j | 2 e -z 2 z dz = c k [1 + o(1)] | log B| 2

+|∂ y η b 0 | 2 +B 0 ≤y≤2B 0 |η b 0 | 2 B 2 b 2 0 e b 0 B 2 / 2 ∂ y η b 0 2 1 . 2 0λ 2 b 0 η b 0 2 b 0 + b 2 0|∂ y η b 0 | 2 y 2 + η 2 b 0 y 4 2 0 y≥B |b 0 λ b η b 0 | 2 ρ b 0 ydy b 4 4 ,λ 2 b 0 η b 0 2 b 0 b 3 0|logb 0 | 8 . 2 0|∂ y η b 0 | 2 y 2 ρ b 0 y dy b 2 01 y 4 ρ b 0 y dy + b 2 0 4 , 2 0η 2 b 0 y 4 ρ b 0 y dy b 2 0|logy| 2 y 4 ρ b 0 y dy + b 2 0η 2 b 0 , 1 y 4 ρ b 0 y dy b 2 0 B -4 |logB| 2 B≤y≤2Bρ b 0 y dy + b 2 0 B -4 η b 0 , 1 2 b 0 b 3 0 3 0|logb 0 | 6 b 3 0 3 0|logb 0 | 6 b 3 0|logb 0 | 6 A∆w 2 L 2 (Ω) + π λ5 λ 3 . (D. 5 ) 1 y 2 λ 2 ∇w 2 L 2 λ 2 ∇w 2 L 2 + 1 λ 2 ∆w 2 L 2 ∇w 2 L 2 (∞ 1 Λw∂ y Λw dy + 1 λ 2 ∆w 2 L 2 ∇w 2 L 2

 202222212022042443822242202221222133336362235122222222212222 B|H B u( √ B)| 2 and (B.4) is proved.where we used (C.2) and (2.78). Consider the initial datau(0) = v(0) = b 0 αχ B η b 0 .Note that by (C.2) we have the bound |α| 1. Then using (2.77), (2.78):On the other hand, we have by definitionε(0) = -(1-αχ B )b 0 η b 0 = -(1-α)b 0 η b 0α(1 -χ B )b 0 η b 0 and hence: H b 0 ε(0) 2 b b y≥B |b 0 λ b 0 η b 0 | 2 ρ b 0 y dy + |1 -α| 2 b 4 0 B≤y≤2B + b 2 0 η 2 b 0 ρ b 0 y dy.Using (C.2) we can estimate the first term: b For the second term we use (C.3) and (2.78) and readily obtain |1 -α| 2 b 4 0Similarily using the decomposition (2.77) (with k = 0), we haveb B≤y≤2B B≤y≤2B B≤y≤2B |∂ y η b 0 ,1 | 2 y 2 ρ b 0 y dy b 2 0 B -4 e -b 0 B 2 /2 + b 2 0 B -2 ∂ y η b 0where we used (2.78) in the last line. In a similar fashionb B≤y≤2B B≤y≤2B B≤y≤2B |logb 0 | 2 e -b 0 B 2 /2 + b |logb 0 | 2 e -|logb 0 |/4 +b simple application of the chain rule gives the following system of equations for w :w y (t, 1) = -λ(t)λ(t); (D.2b) w(t, 1) = 0, (D.2c) w(0, •) = w 0 , λ(0) = λ 0 . (D.2d) Lemma D.3 (Energy identities). Assume that (w, λ) is a smooth solution to the Stefan problem (D.2) on some interval [0, T ]. Assume that λ(0) > 0, w 0 y=1 = 0, and that w(t, •) ∈ H 2 (Ω) for t ∈ [0, T ]. Then on the interval [0, T ] the following energy identities hold: Proof. Multiply (D.2a) by w and integrate over Ω. We obtain ∂ y (w 2 ) dy + 1 (Ω) , which is precisely (D.3). Multiply (D.2a) by -∆w and integrate by parts. We obtain 0 = Ω ∇w • ∇w t dy -2π(∂ n ww t ) y=1 + λ λ Ω Λw∆w dy Ω) + 2π(w y w t ) y=1 + 2π λ λ (Ω) -πλ λ3 + 1 λ 2 ∆w 2 L 2 (Ω) ,

3 d dt λ λ 3 . (D. 8 )

 338 2 dy + 2π(∂ y w t ∆w) y=1 -λλ Ω ∆Λw • ∆w dy -2π λ λ (∂ y Λw∆w) y=1 + 1 λ 2 ∇∆w 2 L 2 (Ω) . (D.6)From (D.2b) it follows that∂ y w t y=1 = -∂ t (λ λ) Restricting (D.2a) to y = 1 we conclude thatλ λ w y y=1 -1 λ 2 (∆w) y=1 = 0. Using (D.2b) this implies that (∆w) y=1 = λ 2 λ2 . (D.7)The previous two boundary identities imply that2π(∂ y w t ∆w) y=1 = -2πNote that ∂ y Λw = w y + yw yy and therefore, when restricted to y = 1 we conclude that (∂ y Λw) y=1 = (∆w) y=1 . From (D.7) we infer that(∂ y Λw) y=1 = λ 2 λ2 . Λw∆w) y=1 = -2πλ 3 λ5 . (D.9)It remains to evaluate the termλ λ Ω ∆Λw • ∆w dy. A direct calculation yields ∆Λw = Λ∆w + 2∆w.Thereforeλλ Ω ∆Λw • ∆w dy = -.8), (D.9), and (D.10) into (D.6), we obtain (D.5).

2 L 2 (Ω) ∇w 1 / 2 H 1 ( 2 L 2 (Ω) ∇w 3 / 2 H 1 (Ω) ≤ δ ∇w 2 H 1 (Ω) + C δ ∇w 6 L 2 2 L 2 (Ω) ≤ ∇w 0 2 L 2 (Ω) + π t 0 λ

 2212122321216222220 Ω) . Therefore, upon using the Young inequality|λ λ| 3 ∇w 3/(Ω) ≤ δE + C δ ∇w 6 L 2 (Ω) . (D.18)Integrating (D.4) over [0, t], we havesup 0≤s≤t ∇w (s)| λ(s)| 3 ds ≤ E 0 + C * tE 3/2 (t) sup 0≤s≤t 1 λ 2 (s).Therefore, we obtain from (D.18) that|λ λ| 3 ≤ C 0 + δE + Ctp(E)q( sup 0≤s≤t 1 λ 2 (s))

E(t) + t 0 D 0 D 1 λ≤ λ 0 16 √

 00116 (s) ds ≤ C 0 + Ctp(E(t))q( C 0 = C 0 (E(0), λ 0 ). Since λ(t) = λ(0) + t 0 λ(s) ds, it follows that λ(t) ≥ λ 0 -t sup 0≤s≤t | λ(s)| ≥ λ 0 -Ct λ E 1/2 (t). Let T ′ = sup{t ≥ 0 E(t) ≤ 4E(0), λ(t) > λ 0 /2}.By the continuity of E(•) and λ(•) it follows that T ′ > 0. On [0, T ′ ] we therefore haveE(t) + t (s) ds ≤ C 0 + Ctp(E(t))q( continuity argument, there exists a sufficiently small T = T (E(0), λ 0 ), T CE(0) 1/2 such that E(t) ≤ 2C 0 , t ∈ [0, T ].

Theorem D. 5 (

 5 Local well-posedness). Let w 0 ∈ H 2 (Ω), λ 0 > 0, and w 0 y=1 = 0. Then there exists a time T = T ( w 0 H 2 (Ω) , λ(0)) > 0 and a solution (w, λ) to the Stefan problem (D.2) on the time interval [0, T ] such thatw ∈ C([0, T ], H 2 (Ω)) ∩ L 2 ([0, T ], H 3 (Ω)), w t ∈ C((0, T ], L 2 (Ω)) ∩ L 2 ([0, T ], H 1 (Ω)), λ ∈ C 1 ([0, T ], R), (D.21)satisfying the energy estimateE(t) ≤ C 0 = C 0 (E(0)), t ∈ [0, T ]and the lower boundλ(t) > λ(0) 2 t ∈ [0, T ],where the energy E(•) is defined by (D.11). Moreover, if T the maximal time of existence of a solution (w, λ) satisfying (D.21), then either lim t→T - w(t, •) H 2 (Ω) = ∞ or lim t→T - λ(t) = 0.

  .83) Remark 2.7. Observe that (2.81), (2.82), (2.83) imply the bound:

  .86) and (2.76) follows. The estimate (2.81) follows by rescaling (2.37), and (2.83) by rescaling (2.35). The decomposition (2.77) follows from (2.27), and (2.29) implies (2.78). The bounds (2.79) follow by rescaling the bounds:

  + B w B,-+ B Λw B,-+ B 2 y 2 w B,- ∆w B,-+ B w B,-+ B Λw B,-+ √ B ∂ y w B,-. (2.103) 2B∂ B ηB,j = (Λη B,j -2B∂ B η B,j ) e -B|y| 2 2, and hence (2.95) follows from (2.82). Moreover from (2.39):

	Using (2.99):		
	∆v B,+ ∆w B,-We also observe that		
	|∂ y w(1)| |∂ y v(1)| if w(1) = 0. Using the above bounds together with (2.89), (2.90), (2.78), (2.79), and (2.83) yields
	(2.91), (2.92), and (2.96). Moreover,		
	∂ B ηB,k = ∂ B η B,k -	|y| 2 2	η B,k e -By 2 2 .
	Hence (2.93) follows from (2.80), (2.79). We now observe the fundamental conjuga-
	tion		
	Λη B,j -		
			.102)

  collection of above bounds together with (2.96) and (4.24) yields

	|(Mod, ηB,j ) B | (η B,j , ηB,j ) B	B |logB| 2	√ | log B| E √ B	+ B e k =	BB e k | log B| 2
	or equivalently:				
	k j=0	(B j ) s + BB j λB,j +	2(B -A)B j | log B|	BB e k | log B| 2 .	(4.26)
	We conclude from (4.26), (4.18), (2.89):		

  ).

	step 2 Nonlinear estimates. From (B.12), (4.23):
	|Φ||(Λε, ε 2 ) B | BB e k Moreover from (4.7), (4.21), (H B Mod, ε 2 ) b = 0, and from (4.22), (4.14): E B B E . |logB| |(H B Ψ, ε 2 ) B B √ E √ BB e k | log B| B B(B e k ) 2 . | log B| We now estimate from (B.14), (4.23), (4.16), (4.18):

  Proof of Proposition 4.1 and Theorem 1.2. We may now close the bootstrap estimates of Proposition 4.1. step 1 Closing the energy bound. First observe λs λ = |A| B and thus |logλ(s)| C(s) implies λ(s) > 0 on [0, s * ]. The control of the E norm easily implies the H 2 control u(s) H 2 C(s) and hence the solution is well defined from the point of view of the H 2 Cauchy theory on [0, s * ]. We now integrate in time the bound (4.27) and obtain for some c > 0

	and (4.27) is proved.	
	4.5.	
	2	
	| log B|	,

  4.6. Proof of Theorem 1.2. The proof of Theorem 1.2 now follows from a simple time integration of the modulation equations.

	We estimate from (4.25)				
	(B k ) s +	B k s	k + 1 +	2 log s	B e k s(log s) 2
	and hence				
	d ds	(s k+1 (log s) 2 B k )	1 s(log s) 2
	which implies for s large enough:		

  where we used the orthogonality u, ψB,j B = 0, 0 ≤ j ≤ k. Therefore

							10)
	and note that v ∈ H 1 ρ,0 . Consider			
		w := v -	k j=0	v, Pj 0 Pj , Pj 0	Pj .
	Then from (2.11):					
		z 2 2 zdz ≥ (2k + 4)	z≥0	|w| 2 e	z 2 2 zdz
				≥ (2k + 4)	z≥	√ b	|w| 2 e	z 2 2 zdz.	(B.11)
	On the other hand, from (2.27), (B.1):	
		Pk -	2 |logB|	ψB,k	H 2 ρ,B	1 |logB|
	from which for 0 ≤ j ≤ k: v, Pj 0 = H B u( √ B) 0≤z≤ = O B|H B u( √ B)| + √ B	Pj e H B u L 2 z 2 2 zdz + H B u, ρ,B |logB| ,	2 |logB|	ψB,j B + O	H B u L 2 ρ,B |logB|
	v -w H 1 ρ,B Injecting this into (B.11) yields (B.3). We now apply (B.6) to v and conclude from B|H B u( √ B)| + v L 2 ρ,B . |logB|
	(A.11), (B.10):					
	zH B u 2 L 2 ρ,B	zv 2 L 2 ρ,0				

z≥0 |∂ z w| 2 e

  sup Lemma D.4 (A priori estimate). Assume that (w, λ) is a smooth solution to (D.2) on some interval [0, T * ]. Assume that λ 0 > 0, w 0 y=1 = 0, and that w(t, •) ∈ H 2 (Ω) for t ∈ [0, T * ]. Then there exists a T = T (E(0), λ 0 ) > 0, T ≤ T * , such that for any t ∈ [0, T ] the following a priori bounds hold:(s)| λ(s)| 5 + λ(s)| λ(s)| 3 ds ≤ C ′ t E 2 (t) + E 3/2 (t) + E 5/2 (t) sup

	Proof. From Lemma D.3 we infer that
	E(t) +	0	t	D(s) ds ≤E(0) +	2π 3	λ 3 0 λ(0) 3 -	2π 3	λ(t) 3 λ(t) 3 +	0	t	| λ(s)| λ(s)	ds E(t)
									+ π	t		λ 3 (s)| λ(s)| 5 + λ(s) λ(s) 3 ds	(D.15)
										0		
	Note that											
									w 2 y y=1			∆w 2 L 2 (Ω) + ∇w 2 L 2 (Ω) .
	Therefore									| λ(t)| 2 ≤	C λ 2 E(t), C > 1.	(D.16)
	Using (D.16) we obtain			
			E(t)	0	t	| λ(s)| λ(s)	ds + π	0	t	λ 3 0≤s≤t	1 λ 2 (s)	.	(D.17)
		0≤s≤t	1 2	w(s, •) 2 L 2 (Ω) +	1 2	∇w(s, •) 2 L 2 (Ω) +	1 2	∆w(s, •) 2 L 2 (Ω) , (D.11)
	D(t) =	1 λ(t) 2 ∇w(t, •) 2 L 2 (Ω) +	1 λ(t) 2 ∆w(t, •)) 2 L 2 (Ω) +	1 λ(t) 2 ∇∆w(t, •) 2 L 2 (Ω) .
													(D.12)
													E(t) ≤ 4E(0), λ(t) > λ 0 2 .	(D.13) (D.14)

For any given parametrization γ(t, •) : R → R

of ∂Ω(t), the normal velocity is given by the formula V ∂Ω(t) = ∂tγ • n, where n stands for the outward pointing unit normal with respect to ∂Ω(t).

see for instance[START_REF] Herraiz | A note on the dissolution of spherical crystals[END_REF][START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] and references therein for a Cauchy theory in the class of Hölder spaces.

see for example(3.32).

On the other hand by (4.7) it follows that

where we used (4.4), (2.96), (4.12), (B.12), and (4.9). The two previous inequalities lead to

Therefore u L 1 (Ω(t)) = λ 2 (t) v L 1 (Ω) → 0 as t → ∞ since |λ(t)| remains bounded. It follows in particular that the conservation law (4.32) holds and formula (1.9) follows. This concludes the proof of Theorem 1.2.

Appendix A. Coercivity estimates in the melting case

This appendix is devoted to the derivation of various coercivity estimates in the melting regime ± = -, ρ = ρ -, b > 0 which are used along the proof. We start with the standard compactness of the harmonic oscillator.

Proof of Lemma A.1. Indeed, we use ∂ z ρ = -zρ and integrate by parts to compute:

and hence for 0 < δ = δ(k) ≪ 1 small enough:

and (A.1) follows by induction on k ≥ 1.

We now claim the main coercivity property at the heart of the energy estimate.

Then the following inequality holds:

Moreover, there exists a constant c k > 0 such that

Appendix B. Coercivity estimates in the freezing case

We now consider the freezing regime

and the operator

We claim the analogue of Lemma A.2:

In analogy to Lemma A.3, we now renormalize Lemma A.3 by letting ε(y) = u( √ By) and obtain:

Appendix C. Non trivial melting initial data

In this appendix, we show that our set of initial data for melting is non empty and contains compactly supported data arbitrarily small in Ḣ1 . We show the construction for k = 0, an analogous construction holds for k ≥ 1 and is left to the reader.

To see this define a cut-off function χ(y) = 1 for y ≤ 1 and χ(y) = 0 for y ≥ 2, and set χ B = χ( y B ), where

By abuse of notation, we denote by b 0 the initial value of b 0 in this section. Let

where we used (2.77) and (2.78). Therefore

and hence (3.15) is satisfied. Moreover, [START_REF] Almgren | Mathematical existence of crystal growth with Gibbs-Thomson curvature effects[END_REF], and therefore the orthogonality condition from (3.14) is satisfied.

Remark C.1. Observe that by our construction, the initial temperature u 0 is nonnegative in Ω. In this case, the solution u(t, •) remains non-negative by the maximum principle.

Appendix D. Cauchy theory in Ḣ1 × Ḣ2

Then there exists a time T = T ( u 0 H 2 (Ω) , λ 0 ) > 0, a constant C > 0, and a solution (u, λ) to the Stefan problem (1.3) on the time interval [0, T ] such that

and the following bounds hold:

for some universal polynomial function C of the initial data. Moreover, if T is the maximal time of existence of a solution (w, λ) satisfying (D.1), then either lim

Remark D.2. The Stefan problem allows for an instant smoothing effect. It is well-known that the solution u becomes infinitely smooth on (0, T ) in both the time-and the space variable, see for instance [START_REF] Koch | Classical solutions to phase transition problems are smooth[END_REF][START_REF] Prüss | Existence of analytic solutions for the classical Stefan problem[END_REF][START_REF] Kinderlehrer | The smoothness of the free boundary in the one-phase Stefan problem[END_REF].

The proof of Theorem D.1 is presented at the very end of this section, as a simple consequence of Theorem D.5.

We start by pulling-back the problem (1.3) onto the fixed domain Ω := {y ∈ R 2 , |y| ≥ 1}. We denote the points in Ω by bold y, while the radial coordinate |y| is denoted by y. We define the pull-back temperature function w : Ω → R by w(t, y) = u(t, λ(t)y)