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∂ t u = ∆u + |u| p-1 u, (t, x) ∈ R × R d , u | t=0 = u 0 , (1.1) 
where p > 1. This model dissipates the total energy

E(u) = 1 2 |∇u| 2 - 1 p + 1 |u| p+1 , dE dt = -(∂ t u) 2 < 0 (1.2)
and admits a scaling invariance: if u(t, x) is a solution, then so is

u λ (t, x) = λ 2 p-1 u(λ 2 t, λx), λ > 0. (1.3)
This transformation is an isometry on the homogeneous Sobolev space

u λ (t, •) Ḣsc = u(t, •) Ḣsc for s c = d 2 - 2 p -1 .
We address in this paper the question of the existence and stability of blow up dynamics in the energy super critical range s c > 1 emerging from well localized initial data. There is an important literature devoted to the question of the description of blow up solutions for (1.1) and we recall some key facts related to our analysis.

Type I ODE blow-up. Type I singularities blow up with the self similar speed

u(t, •) L ∞ ∼ 1 (T -t) 1 p-1 .
These solutions concentrate to leading order at a point

u(t, x) ∼ 1 λ(t) 2 p-1 v x λ(t) , λ(t) = √ T -t,
where the blow up profile v solves the non linear elliptic equation

∆v - 1 2 2 p -1 v + y • ∇v + |v| p-1 v = 0. (1.4)
The ODE blow up corresponds to the special solution to (1.4)

v = 1 p -1 1 p-1
, and the existence and stability of the associated blow up dynamics has been studied in the series of papers [START_REF] Giga | On elliptic equations related to self-similar solutions for nonlinear heat equations[END_REF][START_REF] Giga | Asymptotically self similar blow up of semilinear heat equations[END_REF][START_REF] Giga | Characterizing blowup using similarity variables[END_REF][START_REF] Giga | Nondegeneracy of blowup for semilinear heat equations[END_REF][START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF][START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u+|u| p-1 u[END_REF][START_REF] Merle | Refined uniform estimates at blow-up and applications for nonlinear heat equations[END_REF].

Type I self similar blow-up. There also exist radial solutions to (1.4) which vanish at infinity. They correspond to the shooting problem

Φ ′′ + d -1 r Φ ′ - 1 2 2 p -1 Φ + rΦ ′ + Φ p = 0,
Φ ′ (0) = 0, lim r→+∞ Φ(r) = 0.

(1.5)

A countable class of such solutions has been constructed using either a direct Lyapunov functional approach [START_REF] Lepin | Self-similar solutions of a semilinear heat equation[END_REF][START_REF] Troy | The existence of bounded solutions of a semilinear heat equation[END_REF][START_REF] Budd | Semilinear elliptic equations and supercritical growth[END_REF][START_REF] Budd | The existence of bounded solutions of a semilinear elliptic equations[END_REF] or a bifurcation argument [START_REF] Biernat | Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres[END_REF][START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], and these solutions satisfy

Φ(r) 1 r 2 p-1 Φ ∈ C ∞ [0, +∞), |∂ k r Φ| k 1 r 2 p-1 +k , k ∈ N, (1.6) 
where r = √ 1 + r 2 . In particular, these solutions have infinite energy, but they can be shown to be the blow up profile for a finite codimensional class of finite energy smooth initial data, [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], see also [START_REF] Donninger | Stable blowup for the supercritical Yang-Mills heat flow[END_REF]. The finite codimension of self similar blow up initial data is in one to one correspondance with the nonpositive eigenmodes of the linearized operator restricted to radial functions:

L r = -∂ rr - d -1 r ∂ r + 1 2 2 p -1 + r∂ r -pΦ p-1
which is self adjoint for the weighted e -r 2 4 r d-1 dr measure:

λ -ℓ 0 < • • • < λ -1 = -1 < 0 < λ 0 < λ 1 < . . . , lim j→+∞ λ j = +∞. (1.7)
Type II blow-up. Type II singularities are slower than self similar

lim t→T (T -t) 1 p-1 u(t, •) L ∞ = +∞.
Such dynamics have been ruled out in the radial class for p < p JL in [START_REF] Matano | Classification of type I and type II behaviors for a supercritical nonlinear heat equation[END_REF][START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF] where p JL denotes the Joseph-Lundgren exponent

p JL := +∞ for d ≤ 10, 1 + 4 d-4-2 √ d-1 for d ≥ 11, (1.8) 
and the result is sharp since type II blow up solutions can be constructed for p > p JL , [START_REF] Herrero | A blow up result for the semilinear heat equations in the supercritical case[END_REF][START_REF] Matano | Classification of type I and type II behaviors for a supercritical nonlinear heat equation[END_REF][START_REF] Mizoguchi | Type-II blowup for a semilinear heat equation[END_REF][START_REF] Collot | Non radial type II blow up for the energy supercritical semilinear heat equation[END_REF] in connection with the general approach developed in [START_REF] Raphaël | Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems[END_REF][START_REF] Merle | Type II blow up for the energy super critical NLS[END_REF][START_REF] Raphaël | Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow[END_REF] for equation (1.1) and the corresponding semilinear wave and Schrodinger equation for p > p JL .

Dimensional reduction and anisotropic blow up.

There exist a variety of blow up problems where the construction relies on a dimensional reduction and the use of lower dimensional soliton like solutions.

A typical example is the construction of ring solutions for the two dimensional non linear Schrödinger equation i∂ t u + ∆u + u|u| p-1 = 0, x ∈ R 2 , 3 < p ≤ 5 as discovered in [START_REF] Raphaël | Existence and stability of a solution blowing up on a sphere for an L2-supercritical nonlinear Schrödinger equation[END_REF], [START_REF] Fibich | New singular solutions of the nonlinear Schrödinger equation[END_REF], see also [START_REF] Raphaël | Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation[END_REF], [START_REF] Merle | On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation[END_REF]. For example for p = 5, these solutions concentrate in finite time on the unit sphere u(t, r) ∼ 1 λ(t)

1 2 Q r -1 λ(t) e iγ(t)
where Q is the one dimensional ground state solitary wave and λ(t) corresponds to the stable blow up for the quintic problem in dimension one [START_REF] Merle | On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrödinger equation[END_REF]:

λ(t) ∼ T -t |log|log(T -t)| .
A second class of problems concerns anisotropic (NLS) problems like i∂ t u + ∂ xx u -∂ 2 yy u + u|u| p-1 = 0, (x, y) ∈ R 2 which have triggered a lot of attention in particular regarding numerical simulations [START_REF] Fibich | Beam self-focusing in the presence of small normal time dispersion[END_REF][START_REF] Fibich | Numerical simulations of self focusing of ultrafast laser pulses[END_REF][START_REF] Luther | The effects of normal dispersion on collapse events[END_REF] or the construction of infinite energy self similar solutions [START_REF] Kevrekidis | Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D[END_REF], and where anisotropic blow up with very different behaviours in the x, y directions is expected.

1.3. The cylindrical blow up problem. We propose in this paper a systematic program for the construction of parabolic anisotropic blow up bubbles by a dimensional reduction from d to d -1. In order to set up the problem and for the sake of simplicity, we consider the four dimensional focusing semilinear heat equation 4 (1.9) in the energy super critical zone p > 5. Note that p = 5 is the critical power for R 3 which is p = 3 for R 4 . We decompose x ∈ R 4 as x = (x ′ , z) ∈ R 3 × R, r = |x ′ | and consider functions f on R 4 which have cylindrical symmetry and are even with respect to z, i.e.

∂ t u = ∆u + |u| p-1 u, x ∈ R
f (x) = f (r, z), f (r, -z) = f (r, z). We call this symmetry even cylindrical symmetry. Since for any rotation matrix R of R 3 the transformations u(t, x ′ , z) → u(t, Rx ′ , z) and u(t, x ′ , z) → u(t, x ′ , -z) map a solution to (1.9) onto another solution to (1.9), uniqueness provided by the Cauchy theory ensures that the even cylindrical symmetry is propagated by the flow.

Since p > 5, p JL = +∞ and the only known blow up bubbles correspond to type I blow up bubbles with either the ODE or a non trivial 4 dimensional self similar profile. A basic observation however is now that any three dimensional radially symmetric type I self similar solution u(t, r) as constructed in [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF] is formally a solution to the four dimensional equation (1.9), but this solution is constant in the z direction. Hence it has infinite energy and its dynamical role among solutions to (1.9) is unclear. 1.4. Statement of the result. Our main claim is that there exist a blow up scenario emerging from finite energy initial data which to leading order reproduces the self similar three dimensional blow up. Hence this solution is nearly constant along the z axis in a boundary layer |z| ≤ z(t). We equivalently claim that the 3-dimensional self similar blow up is transversally stable modulo a finite number of instability directions.

Theorem 1.1 (Finite codimensional transversal stability of self similar blow up). Let Φ(r) solve (1.5), (1.6) and assume that the following non degeneracy condition is fulfilled: let (λ j ) -ℓ 0 ≤j≤-1 be given by (1.7), then

∀j ∈ {-ℓ 0 , . . . , -2}, -λ j / ∈ N. (1.10) 
Then, there exists a finite codimensional smooth manifold of initial data u 0 with even cylindrical symmetry and finite energy satisfying (3.15) (3.16) such that the corresponding solution to (1.9) blows up in finite time T < +∞ with the following sharp description of the singularity. For t close enough to T , the solution decomposes in self similar variables

u(t, x) = 1 (T -t) 2 p-1 U (t, Y ), Y = x √ T -t as U (t, Y ) = 1 (1 + b(t)z 2 ) 1 p-1 Φ r 1 + b(t)z 2 + v(t, Y ), Y = (r, z) with lim t→T v(t, •) L ∞ = 0,
and the free boundary moves at the speed 1

b(t) = c * (1 + o(1)) |log(T -t)|, c * = c * (Φ) > 0. (1.11)
Comments on the result 1. Moving free boundary. The main feature of Theorem 1.1 is to exhibit blow up solutions with strongly anisotropic blow up profiles. In particular the solution is almost constant in z and equals the three dimensional self similar profile Φ(r) inside the boundary layer

|z(t)| (T -t)|log(T -t)
| and the heart of the proof is to precisely compute the boundary. Note that the singularity still occurs at a point and not along the full z axis. The free boundary is computed by constructing the reconnecting profile which generalizes the construction in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF][START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u+|u| p-1 u[END_REF] for the ODE profile, and showing its stability. Note that in the companion paper [START_REF] Collot | On strongly anisotropic type II blow up[END_REF], the transversal stability of type II blow up is proved and leads to a completly different behaviour of the free boundary.

2. On the spectral assumption (1.10). We expect the spectral assumption (1.10) to be generic. It would aslo typically be fulfilled for the minimizing self similar solution of the energy super critical heat flow (for which λ -1 = -1 is the bottom of the spectrum of L r ). In the setting of the construction of solutions by bifurcation [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF][START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], this condition can be checked numerically, [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF]. Let us stress that our analysis suggests that other integer eigenvalues generate new zeros of the full four dimensional linearized operator close to Φ(r), see Lemma 2.3, and hence can generate new moving boundaries. Let us also stress that the speed of the moving boundary (1.11) is the fundamental mode, and that other speeds could be constructed corresponding to higher order excited modes.

3. More dimensional reductions. More generally, one could address the following problem: consider the heat equation

∂ t u = ∆u + u p , x ∈ R d 1 × R d 2 with d 1 + 2 d 1 -2 < p < p JL (d 1 )
with p JL given by (1.8), can one construct a self similar blow up dynamics emerging from finite energy initial which is to leading order constant in the direction (x d 1 +1 , . . . , x d 1 +d 2 )? Theorem 1.1 gives a positive answer for d 2 = 1, and we expect that it is the first step of an iteration argument. This would produce for a given nonlinearity finite energy self similar blow up solutions in arbitrarily large dimensions which is not known as of today.

4. L ∞ bounds. The main difficulty of the analysis is to control the perturbation in L ∞ in order to deal with the nonlinear term. Here the computation of the free boundary and the construction of the reconnecting profiles, Lemma 2.1, is essential. Such estimates were derived for the ODE blow up problem in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF] using explicit resolvent estimates for the linearized flow near the constant self similar solution, and in [START_REF] Merle | Refined uniform estimates at blow-up and applications for nonlinear heat equations[END_REF] using general Liouville type classification theorem. These approaches are not obvious to implement here due to to the super critical nature of the problem, and the fact that there is no explicit formula for Φ. We will overcome this using new elementary W 1,q energy estimates, and a by product of our analysis is another self contained dynamical proof of the stability of the ODE type I blow up using purely energy estimates.
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Notations. We let

Y = (y, z) ∈ R 3 × R, r = |y|
be the renormalized space variable. We let

∆ r = ∂ 2 r + 2 r ∂ r , ∆ Y = ∆ r + ∂ 2 z ,
and the generator of scalings be

Λ r = 2 p -1 + r∂ r , Λ Y = 2 p -1 + Y • ∇.
We define the weights

ρ r = e -r 2 4 , ρ Y = e -|Y | 2 4 , ρ z = e -z 2 4
with associated weighted norm

u 2 L 2 ρr = R 4 |u| 2 ρ r dY, u 2 L 2 ρ Y = R 4 |u(Y )| 2 ρ Y dY.
We say a function u(Y ) has even cylindrical symmetry if

u(Y ) = u(r, z) = u(r, -z) and denote L 2,e ρ Y
the associated Hilbert space. We let Φ(r) be a three dimensional self similar solution

∆ r Φ - 1 2 Λ r Φ + Φ p = 0 (1.12)
satisfying (1.6) as build in [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF]. We define for m ∈ N the m-th one dimensional Hermite polynomial

P m (z) = [ m 2 ] k=0 m! k!(m -2k)! (-1) k z m-2k (1.13) which satisfy R P m P m ′ ρ z dz = √ π2 m+1 m!δ mm ′ .
We let

s c = 3 2 - 2 p -1 , S c = 2 - 2 p -1 ,
where s c is the 3d critical exponent and S c is the 4d critical exponent. We let

x = 1 + |x| 2 .
2. Approximate solution in the boundary layer 

u(t, x) = 1 λ(t) 2 p-1 U (s, Y ), ds dt = 1 λ 2 , Y = x λ(t)
which maps (1.9) onto

∂ s U = ∆ Y U + λ s λ Λ Y U + U p . (2.1)
For the self similar choice

- λ s λ = 1 2 ,
an exact solution is given by U (Y ) = Φ(r), but this solution does not decay along the z direction. A better approximate solution decaying as |Y | → +∞ can be constructed by generalizing the approach in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF][START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u+|u| p-1 u[END_REF].

Lemma 2.1 (Reconnecting profiles). For all b > 0,

Φ b (r, z) = 1 µ b (z) 2 p-1 Φ r µ b (z) with µ b (z) = 1 + bz 2 (2.2) solves 1 2 z∂ z Φ b = ∆ r Φ b - 1 2 Λ r Φ b + Φ p b . (2.3)
Proof. On the one hand, we have

1 2 z∂ z Φ b = - 1 2 bz 2 µ 2 p-1 +2 b Λ r Φ r µ b ,
and on the other hand, we have

∆ r Φ b - 1 2 Λ r Φ b + Φ p b = 1 µ 2 p-1 +2 b ∆ r Φ - µ 2 b 2 Λ r Φ + Φ p r µ b = 1 µ 2 p-1 +2 b 1 2 (1 -µ 2 b )Λ r Φ r µ b = - 1 2 bz 2 µ 2 p-1 +2 b Λ r Φ r µ b ,
where we used (1.12). This concludes the proof of the lemma.

2.2. Diagonalization of the linearized operator close to Φ. Let the 4 dimensional linearized operator close to Φ:

L Y = -∆ Y + 1 2 Λ Y -pΦ p-1 , then L Y is self adjoint on a domain D(L Y ) ⊂ L 2 ρ Y (R 4
) and with compact resolvent. Let the 3 dimensional radial operator

L r = -∆ r + 1 2 Λ r -pΦ p-1
which is self adjoint on a domain D(L r ) ⊂ L 2 (r 2 ρ r dr) with compact resolvent and spectrum determined in [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF]:

Lemma 2.2 (Spectrum for L r in weighted spaces, [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF]). The spectrum of L r with domain D(L r ) ⊂ L 2 (r 2 ρ r dr) is given by

λ -ℓ 0 < • • • < λ -1 = -1 < 0 < λ 0 < λ 1 < . . .
for some integer ℓ 0 ≥ 1 with λ j > 0 for all j ≥ 0 and lim j→+∞ λ j = +∞.

(2.4)

The eigenvalues (λ j ) -ℓ 0 ≤j≤-1 are simple and associated to spherically symmetric eigenvectors

ψ -j (r), ψ -j L 2 (r 2 ρrdr) = 1, ψ -1 = Λ r Φ Λ r Φ L 2 (r 2 ρrdr)
.

(2.5)

Moreover, there holds the bound as r = |y| → +∞

|∂ k ψ j (r)| (1 + r) -2 p-1 -λ j -k , -ℓ 0 ≤ j ≤ -1, k ≥ 0. (2.6) 
We may now diagonalize the full operator L Y for function with cylindrical symmetry using a standard separation of variables claim and the tensorial structure of L Y . Lemma 2.3 (Spectrum for L Y in weighted spaces with cylindrical symmetry). The spectrum of L Y restricted to functions of cylindrical symmetry with domain

D(L Y ) ⊂ L 2 ρ Y (R 4
) is given by

µ j,m = λ j + m 2 , j ∈ [-ℓ 0 , +∞), m ∈ N with eigenfunction φ j,m (Y ) = ψ j (r)P m (z) (2.7) 
where P m (z) is the m-th one dimensional Hermite polynomial (1.13) and ψ j denote the eigenvectors of L r . In particular, for -ℓ 0 ≤ j ≤ -1, let m(j) be the smallest integer such that m(j) + 1 2 + λ j > 0, then there holds the spectral gap estimate:

∀ε ∈ H 1 ρ Y , (L Y ε, ε) L 2 ρ Y ≥ c ε 2 H 1 ρ Y - -1 j=-ℓ 0 m(j) m=0 (ε, φ j,m ) 2 L 2 ρ Y
for some universal constant c > 0.

Remark 2.4. In particular µ -1,2 = -1 + 2 2 = 0, and hence there is always a zero eigenmode. In view of (2.7) for j = -1 and m = 2, formula (2.5) for ψ -1 and formula (1.13) for P 2 , the corresponding eigenvector is given by

(z 2 -2)ΛΦ.
Proof. This is a standard claim based on separation of variables. We compute

L Y (ψ(r)P m (z)) = P m (z) -∆ r + 1 2 Λ r -pΦ p-1 ψ(r) + ψ(r) -∂ zz + 1 2 z∂ z P m (z)
and hence for an eigenfunction L r ψ j = λ j ψ j :

L Y (ψ j (r)P m (z)) = ψ j (r) -∂ zz + 1 2 z∂ z + λ j P m (z) = ψ j (r) m 2 + λ j P m (z),
where we used the fact that the one dimensional harmonic oscillator

-∂ 2 z + 1 2 z∂ z has spectrum m 2 , m ∈ N on L 2
ρz with eigenfunctions given by the m-th Hermite polynomial P m (z). It remains to observe that ψ j (r)P m (z) is a dense family of the cylindrically symmetric functions of L 2 ρ Y (R 4 ) from standard tensorial claims to conclude that it forms a Hilbertian basis of eigenvectors. The spectral gap estimate (2.9) then follows by decomposition of the self adjoint operator L Y in the Hibertian basis φ j,m .

Under the additional assumption of even cylindrical symmetry and the fact that P 2m is an even polynomial while P 2m+1 is an odd polynomial for all m ∈ N from (1.13), we obtain as a direct consequence of Lemma 2.3: Lemma 2.5 (Spectrum for L Y in weighted spaces with even cylindrical symmetry).

The spectrum of L

Y with domain D(L Y ) ⊂ L 2,e ρ Y (R 4 ) is given by µ j,2M = λ j + M, j ∈ [-ℓ 0 , +∞), M ∈ N (2.8)
with eigenfunction φ j,2M (Y ) = ψ j (y)P 2M (z)

where P m (z) is the m-th one dimensional Hermite polynomial (1.13). In particular, for -ℓ 0 ≤ j ≤ -1, let M (j) be the smallest integer such that

M (j) + 1 + λ j > 0,
then there holds the spectral gap estimate:

∀ε ∈ H 1,e ρ Y , (Lε, ε) L 2 ρ Y ≥ c ε 2 H 1 ρ Y - 1 c -1 j=-ℓ 0 M (j) M =0 (ε, φ j,2M ) 2 L 2 ρ Y (2.9)
for some universal constant c > 0.

2.3. The high order approximate solution in the boundary layer. Let us consider again the renormalized flow (2.1). The choice . We aim at improving this error and construct a high order approximate solution for |z| ≪ 1 √ b , which will be the key to the control of the flow in L ∞ .

λ s λ = - 1 2 , U ( 
Let us indeed pick a smooth mapping s → b(s) with 0 < b(s) ≪ 1 and look for a solution to (2.1) of the form

U (s, Y ) = Φ b(s) (Y ) + v(s, Y )
which together with (2.3) yields:

∂ s v + L Y v = ∂ 2 z Φ b -∂ s Φ b + λ s λ + 1 2 (Λ Y Φ b + Λ Y v) + F (v) (2.10)
where

F (v) = (Φ b + v) p -Φ p b -pΦ p-1 b v + p(Φ p-1 b -Φ p-1 )v. (2.11) 
We shall solve an approximate version of (2.10). First let

Z = √ bz and Φ b (r, z) = G(r, Z), G(r, Z) = 1 µ(Z) 2 p-1 Φ r µ(Z) , µ(Z) = 1 + Z 2 .
In order to construct an approximate solution, we anticipate the laws

b s = -bB(b), λ s λ + 1 2 = M (b) (2.12)
and look for a solution of the form

v b(s) (s, r, z) = V b(s) (r, Z) so that ∂ s v = -B(b) b∂ b + 1 2 Z∂ Z V, ∂ 2 z v = b∂ 2 Z V, z∂ z v = Z∂ Z V
and (2.10) becomes:

L r + 1 2 Z∂ Z V = b∂ 2 Z (G + V ) + B(b) 1 2 Z∂ Z G + 1 2 Z∂ Z V + b∂ b V + M (b)(Λ r + Z∂ Z )(G + V ) + F (V ),
where F (V ) is defined by

F (V ) = (G + V ) p -G p -pG p-1 V + p(G p-1 -Φ p-1 )V.
Given 0 < δ ≪ 1, we let:

Ω δ = {|Z| ≤ δ}, (2.13) 
and construct an arbitrarily high order approximate solution in Ω δ using an elementary Hilbert expansion.

Lemma 2.6 (High order approximate solution). Let n ∈ N * such that n ≥ p. Then for all 0 < δ < δ(n) ≪ 1 and 0 < b < b(n) ≪ 1 small enough, there exist

V b (r, Z) = n i=1 n j=0 b i V i,j (r)Z 2j , B(b) = n i=1 c i b i , M (b) = n i=1 d i b i (2.14)
where

|∂ k r V i,j | n,k 1 r 2 p-1 -1 n +k , k ∈ N (2.15) such that (V i,0 , Λ r Φ) L 2 ρr = (V i,1 , Λ r Φ) L 2 ρr = 0, 1 ≤ i ≤ n, (2.16) 
and

Ψ b = L r + 1 2 Z∂ Z V b -b∂ 2 Z (G + V b ) -F (V b ) (2.17) -B(b) 1 2 Z∂ Z (G + V b ) + b∂ b V b -M (b)(Λ r + Z∂ Z )(G + V b ) satisfies ∀Z ∈ Ω δ , |∂ j r ∂ k Z Ψ b | n b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n +j , 0 ≤ j + k ≤ 2. (2.18)
Moreover, there holds for the first terms:

V 1,0 = 0 (2.19)
and

c 1 = 2(2 -s c ) + rΛΦ 2 L 2 ρ Y 2 ΛΦ 2 L 2 ρ Y , d 1 = 1. (2.20)
Remark 2.7. The law (2.12), (2.20) written in the setting of the ODE type I blow

up Φ = 1 p-1 1 p-1 yields the leading order b law b s + 4p p -1 b 2 = 0
which is the frontier boundary computed in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF][START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u+|u| p-1 u[END_REF].

Proof. The proof follows by a brute force expansion.

step 1 Taylor expansion in Ω δ . Recall the uniform bound 1

r 2 p-1 Φ(r) 1 r 2 p-1 (2.21) and ∀k ≥ 1, |Λ k Φ| k 1 r 2 p-1 +2 . (2.22)
Moreover, we compute

∂ Z G = - µ ′ µ 1 µ 2 p-1 Λ r Φ r µ(Z)
and a simple induction argument based on (2.22) ensures for k ≥ 1 the bound:

∀|Z| ≤ δ, |∂ 2k Z G(r, Z)| k 2k j=1 |Λ j r Φ| 1 r 2 p-1 +2
.

(2.23)

In particular,

∂ 2k Z G Φ k 1 r 2 , k ≥ 1.
We may therefore replace G by its Taylor expansion at the origin

G(r, Z) = G n (r, 0) + Z 2n+2 (2n + 1)! 1 0 (1 -τ ) 2n+1 ∂ 2n+2 Z G(r, τ Z)dτ, G n (r, Z) = n k=0 ∂ 2k Z G(r, 0) (2k)! Z 2k with for |Z| ≤ δ, G n (r, Z) = Φ(r) 1 + n k=1 Z 2k F k (r) , F k (r) k 1 r 2 (2.24)
and

|G -G n | n Z 2n+2 r 2 p-1 +2 . (2.25) Next, let µ : R = → R + a smooth cut-off function such that µ = 1 on 0 ≤ s ≤ 1 and µ = 0 on s ≥ 2,
and let µ b be defined by

µ b (r) = µ(b n r).
Note that for |Z| ≤ δ and δ small enough, we have

1 b r 1 n |V b | |G n | 1 b r 1 n |V b | Φ n i=1 n j=0 b i-1 δ j r -1 n + 2 p-1 |V i,j | b + δ
where we anticipated on (2.19). For b and δ small enough, we infer

|V b | |G n | ≤ 1 2 on the support of µ b . (2.26) 
We now Taylor expand the nonlinearity using

(1 + x) p -1 -px p-1 = 2n+1 k=2 a k x k + O(x 2n+2 ), |x| ≤ 1 2
which yields

µ b (r) (G n +V b ) p -G p n -pG p-1 n V b = µ b (r) 2n+1 k=2 a k V k b G p-k n + O(V 2n+2 b G p-(2n+2) n ) (2.27) Also, from (2.24): ∀α ∈ Z: G α n = Φ(r) α   1 + n j=1 Z 2j F j (r)   α = Φ(r) α   1 + n j=1 Z 2j H α,j (r) + O(Z 2n+2 )   (2.28) with |∂ k r H α,j (r)| k 1 r 2+k .
Thus, we decompose

Ψ b = Ψ (1) b + Ψ (2) b (2.29)
where

Ψ (1) b = L r + 1 2 Z∂ Z V b -b∂ 2 Z (G n + V b ) (2.30) -µ b (r) 2n+1 k=2 a k V b Φ k Φ p   1 + n j=1 Z 2j H p-k,j (r)   -pΦ p-1 V b n j=1 Z 2j H p-1,j (r) -B(b) 1 2 Z∂ Z (G n + V b ) + b∂ b V b -M (b)(Λ r + Z∂ Z )(G n + V b ).
and

Ψ (2) b = -b∂ 2 Z (G -G n ) -(1 -µ b (r)) (G + V b ) p -G p -pG p-1 V b (2.31) -µ b (r)    (G + V b ) p -G p -pG p-1 V b - 2n+1 k=2 a k V b Φ k Φ p   1 + n j=1 Z 2j H p-k,j (r)      -pG p-1 V b + pΦ p-1 V b   1 + n j=1 Z 2j H p-1,j (r)   -B(b) 1 2 Z∂ Z (G -G n ) -M (b)(Λ r + Z∂ Z )(G -G n ).
step 2 Solving the approximate problem. We solve (2.30) up to an error of order Z 2n+2 or b n+1 by looking for a solution of the form

V b (r, Z) = n i=1 n j=0 b i V i,j (r)Z 2j , B(b) = n i=1 c i b i , M (b) = n i=1 d i b i .
Since the polynomial dependance in both b and Z is preserved by the RHS of (2.30), we sort the terms in b i Z 2j and obtain a hierarchy of equations of the following form

for 1 ≤ i ≤ n, 0 ≤ j ≤ n L r + 1 2 Z∂ Z (V i,j (r)Z 2j ) = F i,j (r)Z 2j + Z 2j d i ΛΦ for j = 0 c i 2(2j-1)! ∂ 2j Z G(r, 0) + d i (2j)! [Λ r + 2j] ∂ 2j Z G(r, 0) or equivalently: [L r + j] V i,j (r) (2.32) = F i,j (r) + d i ΛΦ for j = 0 c i 2(2j-1)! ∂ 2j Z G(r, 0) + d i (2j)! [Λ r + 2j] ∂ 2j Z G(r, 0)
where F i,j depends only on V i ′ ,j ′ with i ′ ≤ i, j ′ ≤ j and (i ′ , j ′ ) = (i, j), and on d i ′ and c i ′ with i ′ < i. Moreover, a fundamental observation is that the decay (2.15) is preserved by the forcing term (2.30), i.e.

|∂ k r F i,j (r)| n 1 r 2 p-1 +k-1 n ,
where we used in particular the fact that for 2 ≤ k ≤ 2n + 1, we have

r 2 p-1 -1 n |V b | Φ k Φ p r 2 p-1 -1 n r 1 n k 1 r 2 p-1 p r k-1 n -2 1.
In order to invert (2.32), we will rely on the following lemma which is proved in Appendix B. Lemma 2.8. Let j ∈ N, and let u j (r) the solution to

(L r + j)u = f j and (u 1 , Λ r Φ) = 0 if j = 1.
Furthermore, assume that we have in the case j = 1

(f 1 , Λ r Φ) L 2 ρr = 0.
Then, for η > 0 and k ∈ N, u satisfies the following bound

k l=0 r 2 p-1 +l-η ∂ l r u j L ∞ k,η k l=0 r 2 p-1 +l-η ∂ l r f j L ∞ .
We may now come back to (2.32). We consider first the case j = 0, then j = 1, and finally j ≥ 2.

• We have for j = 0

L r V i,0 (r) = F i,0 (r) + d i ΛΦ
and hence, in view of Lemma 2.8, the exists a unique V i,0 which in view of the above estimate for F i,j satisfies

|∂ k r V i,0 (r)| n 1 r 2 p-1 +k-1 n .
Furthermore, projecting on Λ r Φ and using the fact that L r (Λ r Φ) = -Φ, we have

-(V i,0 , Λ r Φ) L 2 ρr = (F i,0 , Λ r Φ) L 2 ρr + d i ΛΦ 2 L 2 ρr
and we choose d i to enforce

(V i,0 , Λ r Φ) L 2 ρr = 0. (2.33) • Also, since ∂ 2 Z G(r, 0) = -Λ r Φ(r), we have for j = 1 [L r + 1] V i,1 (r) = F i,1 (r) - c i 2 Λ r Φ - d i 2 (Λ r + 2)Λ r Φ.
We choose c i to enforce

(F i,1 , Λ r Φ) L 2 ρr - c i 2 ΛΦ 2 L 2 ρr - d i 2 (Λ r + 2)Λ r Φ, Λ r Φ L 2 ρr = 0. (2.34)
Thus, we may apply Lemma 2.8, and hence the exists a unique V i,1 such that

(V i,1 , Λ r Φ) L 2 ρr = 0, (2.35) 
and which in view of the above estimate for F i,j satisfies

|∂ k r V i,1 (r)| n 1 r 2 p-1 +k-1 n .
Note that (2.16) follows from (2.33) and (2.35). • Finally, for j ≥ 2, we may apply Lemma 2.8, and hence the exists a unique V i,j which in view of the above estimate for F i,j satisfies

|∂ k r V i,j (r)| n 1 r 2 p-1 +k-1 n .
step 3 Proof of the error estimate. We are now in position to prove the error estimate (2.18). As all terms of the type b i Z 2j for 1 ≤ i ≤ n and 0 ≤ j ≤ n in (2.30) vanish due to the choice of V i,j , and in view of the estimates for Φ, G, H α,j , as well as the estimates of step 2 above for V i,j , we infer

∀Z ∈ Ω δ , |∂ j r ∂ k Z Ψ (1) b | n b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n +j ∀j, k.
Also, we have for Z ∈ Ω δ and 0 ≤ j + k ≤ 2

∂ j r ∂ k Z (G + V b ) p -G p -pG p-1 V b n 1 r 2p p-1 -p n +j
, where we used the fact that j + k ≤ p, since p > 5 and j + k ≤ 2, which ensures that the above expression does not contain negative powers of G + V b . In view of the support of 1 -µ b , we deduce for Z ∈ Ω δ and 0 ≤ j + k ≤ 2

∂ j r ∂ k Z (1 -µ b ) (G + V b ) p -G p -pG p-1 V b n (b n ) 2-p-1 n r 2 p-1 -1 n +j n b n+1 r 2 p-1 -1 n +j
where we used the fact that n ≥ p in the last inequality. The other terms of Ψ 

∀Z ∈ Ω δ , |∂ j r ∂ k Z Ψ (2) b | n b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n +j , 0 ≤ j + k ≤ 2.
In view of the decomposition (2.29) for Ψ b , we immediately infer from the estimates for Ψ step 4 Computation of F 1,0 and F 1,1 . In view of the definition of F i,j in (2.32), we have

F 1,0 + F 1,1 Z 2 = ∂ 2 Z G(r, Z) + pΦ p-1 V 1,0 Z 2 H p-1,1 (r) + O(Z 4 ).
We compute the Taylor expansion

∂ 2 Z G = -Λ r Φ(r) + 3 2 Z 2 (2Λ r Φ + Λ 2 r Φ)(r) + O(Z 4 ), (2.36) 
which yields

F 1,0 = -Λ r Φ(r), F 1,1 = 3 2 (2Λ r Φ + Λ 2 r Φ)(r) + pΦ p-1 V 1,0 H p-1,1 (r).
(2.37)

Proof of (2.36). Recall that we have

G(r, Z) = 1 µ(Z) 2 p-1 Φ r µ(Z) , µ(Z) = 1 + Z 2 .
Then

∂ Z G = - µ ′ µ 1 µ 2 p-1 Λ r Φ r µ(Z)
.

(2.38)

We further compute:

∂ 2 Z G = 1 (1 + Z 2 ) 2 µ 2 p-1 (Z 2 -1)Λ r Φ + Z 2 Λ 2 r Φ r µ .
(2.39)

We now Taylor expand at Z = 0 and obtain in particular using the uniform bound on Λ i r Φ(r), i = 1, 2, 3: 1

µ 2 p-1 Λ r Φ r µ = Λ r Φ(r) - Z 2 2 Λ 2 r Φ(r) + O(Z 4 ) (2.40)
which yields the Taylor expansion at the origin:

∂ 2 Z G = -Λ r Φ(r) + 3 2 Z 2 (2Λ r Φ + Λ 2 r Φ)(r) + O(Z 4 ).
This concludes the proof of (2.36).

step 5 Computation of V 1,0 , d 1 and c 1 . From (2.32) for j = 0, we have

L r V 1,0 (r) = F 1,0 (r) + d 1 Λ r Φ
which together with (2.37) yields

L r V 1,0 (r) = (d 1 -1)Λ r Φ.
Since we choose d 1 to enforce the orthogonality (2.33), we immediately deduce

V 1,0 = 0, d 1 = 1,
which proves in particular (2.19). Next, recall from (2.34) that we choose c 1 to enforce

(F 1,1 , Λ r Φ) L 2 ρr - c 1 2 Λ r Φ 2 L 2 ρr - d 1 2 (Λ r + 2)Λ r Φ, Λ r Φ L 2 ρr = 0
which together with (2.37) and the computation of V 1,0 and d 1 above yields

c 1 = 4 + 2(Λ 2 r Φ, Λ r Φ) L 2 ρr Λ r Φ 2 L 2 ρr = 2(2 -s c ) + rΛ r Φ 2 L 2 ρr 2 Λ r Φ 2 L 2 ρr
, where we used in the last inequality the following computation

(Λ r f, f ) L 2 ρr = -s c f 2 L 2 ρr + 1 4 rf 2 L 2 ρr , s c = 3 2 - 2 p -1 . (2.41)
This finishes the proof of (2.20) and hence of Lemma 2.6.

Lemma 2.9 (High order localized approximate solution).

Let n ∈ N * such that n ≥ p. For 0 < δ < δ(n) ≪ 1 and 0 < b < b(n) ≪ 1 small enough, let (V b , B(b), M (b))
be the approximate solution given by Lemma 2.6. Let an even cut off function

χ δ (z) = χ Z δ , χ(σ) = 1 for |σ| ≤ 1, 0 for |σ| ≥ 2 ,
and let

Φ b = Φ b + ṽb where ṽb = χ δ v b and v b (z) = V b (Z).
Then, Φ b satisfies

-bB(b)∂ b Φ b + 1 2 -M (b) Λ Y Φ b -∆ Φ b + Φ p b = Ψ b (2.42)
where

Ψ b = b(χ δ -1)∂ 2 Z G + B(b)(χ δ -1)Z∂ Z G + Ψ (0) b (2.43)
and where Ψ

b is estimated by

|∂ j r ∂ k Z Ψ (0) b | δ b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n 1 |Z|≤2δ , 0 ≤ j + k ≤ 2. (2.44)
Furthermore, Φ b satisfies also

( Φ b ) |b=0 = Φ, ∂ Φ b ∂b |b=0 = - 1 2 (P 2 + 2P 0 )(z)Λ r Φ. (2.45) Proof. Since v b (z) = V b (Z)
, and in view of the equation (2.17) satisfied by V b , we infer

L Y v b = ∂ 2 z Φ b + bB(b)(∂ b Φ b + ∂ b v b ) + M (b)(Λ Y Φ b + Λ Y v b ) + F (v b ) + Ψ b with Ψ b satisfying (2.18). Since ṽb = χ δ v b , we infer L Y ṽb = χ δ ∂ 2 z Φ b +bB(b)(χ δ ∂ b Φ b +∂ b ṽb )+M (b)(Λ Y Φ b +Λ Y ṽb )+F (ṽ b )+ Ψ (0) b (2.46) with Ψ (0) b = χ Z δ Ψ b + 1 2 Zχ ′ - b δ 2 χ ′′ - B(b) δ χ ′ -M (b)Zχ ′ Z δ V b - 2b δ χ ′ Z δ ∂ Z V b + 1 -χ Z δ G p + χ Z δ (G + V b ) p -G + χ Z δ V b p .
In view of the estimate (2.18) for Ψ b , the properties of the support of χ and the estimates for G and V b , we immediately infer for j + k ≤ 2

∂ j r ∂ k Z Ψ (0) b δ b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n 1 |Z|≤2δ + b r 2 p-1 -1 n 1 δ≤|Z|≤2δ δ b n+1 + b|Z| 2n+2-k r 2 p-1 -1 n 1 |Z|≤2δ
which is (2.44).

Next, since Φ b = Φ b + ṽb and in view of the definition of Ψ b , we have

Ψ b = -bB(b)∂ b Φ b -∆ Y Φ b + 1 2 -M (b) Λ Y Φ b -Φ p b = -∆ Y Φ b + 1 2 Λ Y Φ b -Φ p b +L Y ṽb -bB(b)(∂ b Φ b + ∂ b ṽb ) -M (b)Λ Y (Φ b + ṽb ) -(Φ b + ṽb ) p + Φ p b + pΦ p-1 ṽb = -∂ 2 z Φ b + L Y ṽb -bB(b)(∂ b Φ b + ∂ b ṽb ) -M (b)Λ Y (Φ b + ṽb ) -F (ṽ b )
where we have used the equation (2.3) for Φ b and the definition of F in the last equality. Plugging (2.46), we infer

Ψ b = (χ δ -1)∂ 2 z Φ b + bB(b)(χ δ -1)∂ b Φ b + Ψ (0) b = b(χ δ -1)∂ 2 Z G + B(b)(χ δ -1)Z∂ Z G + Ψ (0) b wich is (2.43).
Finally, we prove (2.45). We compute from (2.2):

Φ b| b=0 = Φ and ∂Φ b ∂b = - ∂ b µ b µ b 1 µ 2 p-1 b Λ r Φ r µ b = - z 2 2µ 2 b 1 µ 2 p-1 b Λ r Φ r µ b , µ b = 1 + bz 2 ,
and hence

∂Φ b ∂b |b=0 = - z 2 2 Λ r Φ = - 1 2 (P 2 + 2P 0 )(z)Λ r Φ
where we used from (1.13):

P 2 (z) = z 2 -2, P 0 (z) = 1.
Moreover, we have

v b (z) = V b (z), ∂ b v b (z) = ∂ b V b (Z) + 1 2b Z∂ Z V b (Z)
which together with (2.14), (2.19) yields1 

(ṽ b ) |b=0 = (∂ b ṽb ) |b=0 = 0.
Hence, we infer

( Φ b ) |b=0 = Φ, ∂ Φ b ∂b |b=0 = - 1 2 (P 2 + 2P 0 )(z)Λ r Φ
which is (2.45). This concludes the proof of the lemma.

The bootstrap argument

3.1. Setting of the bootstrap. We set up in this section the bootstrap analysis of the flow for a suitable set of finite energy initial data. The solution will be decomposed in a suitable geometrical way using by now standards arguments, see [START_REF] Martel | Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation[END_REF][START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF].

Geometrical decomposition of the flow. We start by showing the existence of the suitable decomposition. 

µ 2 p-1   Φ b + -2 j=-ℓ 0 M (j) M =0 a j,M φ j,2M + ε   x µ ,
where ε satisfies the orthogonality conditions

(ε, φ j,2M ) L 2 ρ Y = 0, -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j),
and with

|µ -1| + |b -b| + -2 j=-ℓ 0 M (j) M =0 |a j,M | w L ∞ . (3.1)
Furthermore, for K such that

K ≥ 1 + max -ℓ 0 ≤j≤-1 M (j), (3.2) 
and q such that q > 1 and

q + 1 p -1 > 2, (3.3) 
we have

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε 2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + v W 1,2q+2 b -5 4 ( w H 2 + w W 1,2q+2 ) (3.4 
)

where v = -2 j=-ℓ 0 M (j) M =0
a j,M φ j,2M + ε.

Proof. It is a classical consequence of the implicit function theorem.

step 1 Existence of the decomposition of U and proof of (3.1). We introduce the smooth maps

F w, µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) = µ 2 p-1 Φ b + w (µx)-Φ b - -2 j=-ℓ 0 M (j) M =0 a j,M φ j,2M and G = (F, φ j,M ) L 2 ρ Y , -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j) .
We immediately check that G(0, 1, b, . . . , 0) = 0. Also, from (2.45), (2.5) and Lemma 2.5, we have

(ΛΦ r , φ j,2M ) L 2 ρ Y = ∂ Φ b ∂b |b=0 , φ j,2M L 2 ρ Y = 0, -ℓ 0 ≤ j ≤ -2, 0 ≤ M ≤ M (j),
and hence, we deduce that

∂G ∂(µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) ) | (0,1,0,...,0) = A 0 0 I
where I is the N by N identity matrix with the integer N is given by

N = -1 j=-ℓ 0 (1 + M (j))
and where A is the following 2 by 2 matrix

  ( ∂ Φ b ∂b |b=0 , φ -1,0 ) L 2 ρ Y (Λ r Φ, φ -1,0 ) L 2 ρ Y ( ∂ Φ b ∂b |b=0 , φ -1,2 ) L 2 ρ Y (Λ r Φ, φ -1,2 ) L 2 ρ Y   .
Since we have is invertible. In view of the implicit function theorem, for κ > 0 small enough, for any w L ∞ ≤ κ there exists (µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) ) and

|A| = 1 P 0 L 2 ρz P 2 L 2 ρz Λ r Φ 2 L 2 ρr -1 2 (P 2 + 2P 0 )(z)Λ r Φ, P 0 Λ r Φ L 2 ρ Y (Λ r Φ, P 0 Λ r Φ) L 2 ρ Y -1 2 (P 2 + 2P 0 )(z)Λ r Φ, P 2 Λ r Φ L 2 ρ Y 0 = 1 2 P 0 L 2 ρz P 2 L 2 ρz Λ r Φ 2 L 2 ρr = 0, we deduce that ∂G ∂(µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) ) | (0,1,0,...,0) is invertible. Since 0 < b ≤ b ≪ 1,
ε = F w, µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j)
such that

u = Φ b + w = 1 µ 2 p-1   Φ b + -2 j=-ℓ 0 M (j) M =0 a j,M φ j,2M + ε   x µ , (ε, φ j,2M ) L 2 ρ Y = 0, -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j),
and the estimate (3.1) holds true for the parameters, i.e.

|µ -1| + |b -b| + -2 j=-ℓ 0 M (j) M =0 |a j,M | w L ∞ .
step 2 Proof of (3.4). Recall that we have defined ε as

ε = µ 2 p-1 Φ b + w (µx) -Φ b - -2 j=-ℓ 0 M (j) M =0
a j,M φ j,2M .

We infer

ε = ε + µ 2 p-1 w(µY ) - -2 j=-ℓ 0 M (j) M =0 a j,M φ j,2M .
where we have introduced the notation ε = (µ -1)

1 0 (1 + σ(µ -1)) 2 p-1 Λ Y Φ b((1 + σ(µ -1))Y )dσ +(b -b) 1 0 ∂ b Φ b+σ(b-b) (Y )dσ.
We estimate

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε 2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + v W 1,2q+2 ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + ε W 1,2q+2 + w H 2 + w W 1,2q+2 + -2 j=-ℓ 0 M (j) M =0 |a j,M |,
where we used the fact that for -ℓ 0 ≤ j ≤ -2 and 0 ≤ M ≤ M (j), we have

φ 2 j,2M 1 + z 2K ρ r dY 1 2 + |∇φ j,2M | 2q+2 1 + z 2K ρ r dY 1 2q+2 P 2 2M 1 + z 2K dz 1 2 + (P ′ 2M ) 2q+2 1 + z 2K dz 1 2q+2 1 in view of the choice K ≥ 1 + max -ℓ 0 ≤j≤-1 M (j).
Together with the estimate for a j,M derived in step 1, we infer

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε 2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + v W 1,2q+2 ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + ε W 1,2q+2 + w H 2 + w W 1,2q+2
where we used the fact that q > 1 and the Sobolev embedding in R 4 in the last inequality.

We still need to estimate ε. We have

Λ Y Φ b (Y ) = 1 -Z 2 1 + Z 2 1 µ 2 p-1 Λ r Φ r µ , ∂ b Φ b = - 1 b Z 2 1 + Z 2 1 µ 2 p-1 Λ r Φ r µ ,
which together with the decay of Φ, the fact that Φ b = Φ b + ṽb and the estimates for ṽb yields

|∂ j r ∂ k Z Λ Y Φ b (Y )| 1 ( r + |Z|) 2 p-1 -1 n , |∂ j r ∂ k Z ∂ b Φ b (Y )| 1 b( r + |Z|) 2 p-1 -1 n
In view of the definition of ε, we infer

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + ε W 1,2q+2 b -1 4 |µ -1| + b -5 4 |b -b|
where we have used for the last term the fact that in view of n ≥ p and (3.3), we have

(2q + 2) 2 p -1 - 1 n > 4, so that we have in view of Z = √ bz 1 ( r + |Z|) 2 p-1 -1 n L 2q+2 b -1 4q+4 .
Together with the estimate for the parameters b and µ, we infer

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + ε W 1,2q+2 b -5 4 w L ∞ .
Coming back to ε, we deduce

ε H 2 ρ Y + ∇ε L 2q+2 ρ Y + ε 2 1 + z 2K ρ r dY 1 2 + |∇ε| 2q+2 1 + z 2K ρ r dY 1 2q+2 + v W 1,2q+2 b -5 4 ( w H 2 + w W 1,2q+2 )
which is (3.4). This concludes the proof of the lemma.

Description of the initial data. We now pick an initial data close to Φ b up to scaling, where Φ b has been constructed in Lemma 2.9, and assume in the coordinate of the above geometrical decomposition

u 0 = 1 λ 0 Φ b 0 + v 0 x λ 0 (3.5) 
with

v 0 = ψ 0 + ε 0 , ψ 0 = -2 j=-ℓ 0 M (j) M =0 (a j,M ) 0 φ j,2M (Y ) (3.6)
and ε 0 satisfies the following orthogonality conditions

(ε 0 , φ j,2M ) L 2 ρ Y = 0, -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j). (3.7) 
Let K > 0 be a large enough universal constant such that in particular (3.2) holds true, and define

ν K (z) = 1 1 + z 2K (3.8)
Let a large enough integer q such that in particular (3.3) holds true, and pick n ≥ n(K) large enough and s 0 > s 0 (n, K) large enough. Pick parameters λ 0 , b 0 , (a j,M ) 0 and a profile ε 0 which satisfy the initial bounds:

• rescaled solution: λ 0 = e -s 02 ;

(3.9)

• control of the b parameter:

b 0 = 1 c 1 s 0 (3.10)
where the constant c 1 > 0 is given by (2.20);

• initial control of the unstable modes:

-2 j=-ℓ 0 M (j) M =0 |a j,M (0)| 2 ≤ 1 s n 0 ; (3.11) 
• initial control of the exponentially localized norm:

ε 0 H 2 ρ Y + ∇ε 0 L 2q+2 ρ Y < 1 s n 0 ; (3.12) 
• control of polynomially localized norms:

ν K ε 2 0 ρ r dY ≤ 1 s 2K 0 , ν K |∇ε 0 | 2q+2 ρ r dY ≤ 1 s 2q+2K 0 ; (3.13) 
• initial control of the global W 1,2q+2 norm:

v 0 W 1,2q+2 < 1 s 0 . (3.14) 
Remark 3.2. Note that the above properties of the initial data u 0 can be obtained by applying Lemma 3.1 to an initial data of the form

u 0 = Φ b 0 + w 0 (3.15)
where Φ b has been constructed in Lemma 2.9 and where ). Finally, we may always renormalize the initial data to enforce (3.9).

0 < b 0 ≪ 1 and w 0 W 1,2q+2 + w 0 H 2 ≤ b 2n 0 . ( 3 
Renormalized flow. From a standard continuity in time argument, as long as the solution remains close to Φ up to scaling in L 2 ρ Y , we may introduce the time dependent geometrical decomposition

u(t, x) = 1 λ(t) 2 p-1 U (s, Y ), Y = x λ(t) U = Φ b(t) + v, v = ψ + ε (3.17) with ψ = -2 j=-ℓ 0 M (j) M =0 a j,M (t)φ j,2M (Y ) (3.18) and (ε(t), φ j,2M ) L 2 ρ Y = 0, -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j). (3.19)
The above decomposition is continuously differentiable with respect to time from standard parabolic regularizing effects. Consider the renormalized time

s(t) = t 0 dτ λ 2 (τ ) + s 0 , (3.20) 
then from (3.17):

∂ s U - λ s λ ΛU = ∆U + U p
which together with (2.14), (2.3) yields the v equation:

(b s + bB(b))∂ b Φ b - λ s λ + 1 2 -M (b) Λ Φ b + ∂ s v + Lv = Ψ b + λ s λ + 1 2 Λv + F (v) (3.21) 
where

F (v) = F 1 + F 2 , F 1 = p( Φ p-1 b -Φ p-1 )v, F 2 = ( Φ b + v) p -Φ p b -p Φ p-1 b v. (3.22)
We may equivalently develop v = ψ + ε and obtain the ε equation:

∂ s ε + Lε = Ψ b -Mod + L(ε) + F (v) (3.23) 
where Mod encodes the modulation equations

Mod = -2 j=-ℓ 0 M (j) M =0 [(a j,M ) s + (λ j + M )a j,M ] φ j,2M - λ s λ + 1 2 Λψ - λ s λ + 1 2 -M (b) Λ Φ b + (b s + bB(b))∂ b Φ b (3.24)
and we defined the linear error

L(ε) = λ s λ + 1 2 Λε. (3.25) 
We claim the following bootstrap proposition.

Proposition 3.3 (Bootstrap). Given q large enough satisfying in particular (3.3), K ≥ K(q) large enough satisfying in particular (3.2), n ≥ n(K, q) large enough and s 0 (n, K, q) large enough, then forall λ 0 , b 0 , ε 0 satisfying (3.9), (3.10), (3.12), (3.13), (3.14) and the orthogonality conditions (3.7), there exist (a j,M (0)) -ℓ 0 ≤j≤-2,0≤M ≤M (j) satisfying (3.11) such that the solution starting from u 0 given by (3.5), decomposed according to (3.17) satisfies for all s ≥ s 0 :

• control of the scaling:

0 < λ(s) < e -s 4 ; (3.26)
• control of the b parameter:

1 10c 1 s < b(s) < 10 c 1 s ; (3.27)
• control of the unstable modes:

-2 j=-ℓ 0 M (j) M =0 |a j,M (s)| 2 ≤ 1 s n ; (3.28)
• control of the exponentially localized norm:

ε(s) H 2 ρ < 1 s n 2 (3.29) and ∇ε L 2q+2 ρ Y < 1 s n 2 ;
(3.30)

• control of polynomially localized norms:

ν K |ε(s)| 2 ρ r dY ≤ 1 s K+1 , ν K |∇ε(s)| 2q+2 ρ r dY ≤ 1 s 2q+K+1 ;
(3.31)

• control of the global W 1,2q+2 norm:

v(s) W 1,2q+2 < 1 s δq (3.32)
for some small enough δ q > 0.

Proposition 3.3 is the heart of the analysis, and the corresponding solutions are easily shown to satisfy the conclusions of Theorem 1.1. The strategy of the proof follows [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF] Merle | Type II blow up for the energy super critical NLS[END_REF]: we prove Proposition 3.3 by contradiction using a topological argument à la Brouwer: given λ 0 , b 0 , ε 0 satisfying (3.9), (3.10), (3.12), (3.13), (3.14), (3.7), we assume that for all (a j,M (0)) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) satisfying (3.11), the exit time ) can be improved, implying that at time s * necessarily the unstable modes have grown and (3.28) reaches its boundary. Since 0 is a linear repulsive equilibrium for these modes, this will contradict Brouwer fixed point theorem.

s * = sup { s ≥ s 0 such that (3.

Modulation equations.

We now compute the modulation equations which describe the time evolution of the parameters. They are computed in the self-similar zone, and involve the ρ weighted norm.

Lemma 3.4 (Modulation equations).

There holds the modulation equations:

λ s λ + 1 2 -M (b) + |b s + bB(b)| + -2 j=-ℓ 0 M (j) M =0 |(a j,M ) s + (λ j + M )a j,M | b n+1 + b   ε L 2 ρ Y + -2 j=-ℓ 0 M (j) M =0 |a j,M |   . (3.35)
Proof. This lemma follows from the choice of orthogonality conditions (3.19) and the explicit properties of the refined reconnecting profile Φ b . The control of the nonlinear term relies in an essential way on (3.32) which from Sobolev implies for q large enough the

L ∞ smallness v L ∞ v W 1,2q+2 1 s δq ≪ 1. (3.36)
We take the L 2 ρ Y scalar product of (3.23) with φ j,2M and compute from (3.19):

(Mod, φ j,2M ) L 2 ρ Y = ( Ψ b , φ j,2M ) L 2 ρ Y + (L(ε) + F (v), φ j,2M ) L 2 ρ Y .
The error term in controlled from (2.43) (2.44) thanks to the space localization of the ρ Y dY measure :

|( Ψ b , φ j,2M ) L 2 ρ Y | b n+1 .
The linear term is estimated by integration by parts

|(L(ε), φ j,2M ) L 2 ρ Y | λ s λ + 1 2 ε L 2 ρ Y .
For the nonlinear term, we recall (3.22). We estimate:

|∂ b Φ b | = - z 2 2(1 + bz 2 ) 1 µ 2 p-1 b ΛΦ r µ b |z| 2 , |∂ b ṽb | 1 which using Φ b L ∞ 1 implies the pointwise bound | Φ p-1 b -Φ p-1 b 0 Φ p-2 b ∂ b Φ b db b(1 + |z| 2 ) (3.37)
and hence

(F 1 (v), φ j,2M ) L 2 ρ Y b (v, (1 + |z| 2 )φ j,2M ) L 2 ρ Y b ε L 2 ρ Y + |a j,M | .
For the remaining nonlinear term, we use the rough

L ∞ bound v L ∞ + Φ b L ∞ ≤ 1
and the confining measure:

|(F 2 (v), φ j,2M ) L 2 ρ Y | (|v| 2 + |v| p )|φ j,2M |ρ Y dY |v| 2 |φ j,2M |ρ Y dY b |v||φ j,2M |ρ Y dY b v L 2 ρ Y b ε L 2 ρ Y + |a j,M |
where we used the fact that v = ψ + ε and the rough bound

v L 2 ρ Y ≤ ε L 2 ρ Y + |a j,M | ≤ b (3.38)
which follows from (3.27) (3.28) (3.29). We therefore have obtained the following identity:

(Mod, φ j,2M ) L 2 ρ Y b n+1 + λ s λ + 1 2 -M (b) + b ε L 2 ρ Y + b |a j,M |. (3.39)
We now compute the lhs of (3.39) for the various values of j.

a j,M terms, j ≤ -2. First observe from (2.14), (2.19) the bounds

∇ k Y Λṽ b L 2 + ∇ k Y ∂ b ṽb L 2 ρ Y b, k = 0, 1, 2, (3.40)
which together with the computations

∇Φ b = 1 -bz 2 1 + bz 2 1 µ 2 p-1 b ΛΦ r µ b , ∂ b Φ b = z 2 2µ 2 b 1 µ 2 p-1 b ΛΦ r µ b yields ∇ k Y (Λ Φ b -ΛΦ) L 2 ρ Y + ∇ k Y ∂ b Φ b + 1 2 z 2 ΛΦ L 2 ρ Y b, k = 0, 1, 2. (3.41)
Hence, we have in particular

(∂ b Φ b , φ j,2M ) L 2 ρ Y = O(b), (Λ Φ b , φ j,2M ) L 2 ρ Y = O(b).
We conclude from (3.24) using the orthonormality of eigenfunctions, separation of variables and the rough bound (3.38):

(Mod, φ j,2M ) L 2 ρ Y = [(a j,M ) s + (λ j + M )a j,M ] φ j,2M 2 L 2 ρ Y (3.42) + O b λ s λ + 1 2 -M (b) + |a j,M | + |b s bB(b)| .
Scaling terms. We compute from (3.41) :

(Λ Φ b , ΛΦ) L 2 ρ Y = ΛΦ 2 L 2 ρ Y + O(b)
and hence:

(Mod, ΛΦ) L 2 ρ Y = - λ s λ + 1 2 -M (b) ΛΦ 2 L 2 ρ Y + O(b) (3.43) + O |b s + bB(b)| + b λ s λ + 1 2 -M (b) + |a j,M | .
b equation. We compute from (3.41):

(Λ Φ b , (z 2 -2)ΛΦ) L 2 ρ Y = O(b) (∂ b Φ b , (z 2 -2)ΛΦ) L 2 ρ Y = - 1 2 (z 2 -2)ΛΦ 2 L 2 ρ Y + O(b)
from which using the orthogonality of eigenfunctions: 

(Mod, (z 2 -2)ΛΦ) L 2 ρ Y = - 1 2 (z 2 -2)ΛΦ 2 L 2 ρ Y (1 + O(b))(b s + bB(b)) + O b λ s λ + 1 2 -M (b) + |a j,M | . ( 3 

3.3.

Inner H 2 bounds with exponential localization. We now turn to the control of the flow in exponentially weighted norms which is an elementary consequence of the spectral gap estimate (2.9), the dissipative structure of the flow, the L ∞ bound (3.36) to control the non linear term and the explicit form of the refined reconnecting Φ b profiles which generate the leading order error term.

Lemma 3.5 (Lyapunov control of exponentially weighed norms).

There holds the pointwise differential bounds:

d ds ε 2 L 2 ρ Y + c ε 2 H 1 ρ Y b 2n+2 + ( v 2 L ∞ + b 2 ) |a j,M | 2 , (3.45) d ds ∇ε 2q+2 L 2q+2 ρ Y + c ∇ε 2q+2 L 2q+2 ρ Y ε 2q+2 H 1 ρ Y + |a j,M | 2q+2 + b (2q+2)(n+1) , (3.46) d ds L Y ε 2 L 2 ρ Y + c L Y ε 2 H 1 ρ Y b 2n+2 + (b + v 2 L ∞ ) ε 2 H 1 ρ Y (3.47) + (b 2 + v 2 L ∞ ) |a j,M | 2 + e -c √ b ε 2 + |∇ Y ε| 2 1 + |z| 2K ρ r dY
for some universal constant c > 0.

Proof. step 1 L2 exponential bound. We compute from (3.23):

1 2 d ds ε 2 L 2 ρ Y = (ε, ∂ s ε) L 2 ρ Y = -(Lε, ε) L 2 ρ Y + ( Ψ b + L(ε) -Mod + F (v), ε) L 2 ρ Y (3.48)
and estimate all terms in the above identity.

We start with the nonlinear term (3.22). Recall the variance bound

2 Y u L 2 ρ Y u H 1 ρ Y (3.49)
which together with the pointwise bound (3.37) ensures

|([Φ p-1 b -Φ p-1 ]ε, ε) L 2 ρ Y b((1 + |z| 2 )ε, ε) L 2 ρ Y b ε 2 H 1 ρ Y
.

We now estimate using the rough

L ∞ bound v L ∞ ≪ 1: |(F 2 (v), ε) ρ | |ε|v 2 ρ Y dY ≤ δ |ε| 2 ρ + C δ |v| 4 ρ Y dY ≤ δ ε 2 L 2 ρ Y + C δ v 2 L ∞ |v| 2 ρ Y dY δ ε 2 L 2 ρ Y + v 2 L ∞ |a j,M | 2 .
To estimate the L term, we use the rough bound from (3.35):

λ s λ + 1 2 + |b s + bB(b)| + |(a j,M ) s -(λ j + M )a j,M | b (3.50)
which implies using (2.41), (3.49):

|(ε, L(ε)) L 2 ρ Y | b|(ε, Λε) L 2 ρ Y | b (1 + |Y |)ε L 2 ρ Y b ε 2 H 1 ρ . (3.51)
The leading order term Ψ b term is estimated in brute force from (2.43) (2.44) using the exponential localization of the measure:

(ε, Ψ b ) L 2 ρ Y b n+1 ε L 2 ρ Y .
To control the modulation parameters, we use (3.41), (3.19), (3.35) to estimate:

|(ε, Mod)| b |a j,M | + b n+1 + b ε L 2 ρ Y (1 + |Y |)ε L 2 ρ Y δ ε 2 H 1 ρ Y + c δ b 2n+4 + c δ b 2 |a j,M | 2 .
Injecting the collection of above bounds into (3.48) and using the spectral gap estimate (2.9) with the choice of orthogonality conditions (3.19) yields (3.45).

step 2 Ẇ 1,2q+2 exponential bound. Let q be a large enough integer. Let

ε i = ∂ i ε, i = 1, 2, 3, 4,
then from (3.23):

∂ s ε i + (L + 1)ε i = ∂ i Ψ b -Mod + L(ε) + F (v) + p(p -1)Φ p-2 ∂ i Φε. (3.52)
We then compute:

1 2q + 2 d ds ε 2q+2 i ρ Y dY = ε 2q+1 i ∂ s ε i = -(L + 1)ε i , ε 2q+1 i L 2 ρ Y + ε 2q+1 i , ∂ i Ψ b -Mod + L(ε) + F (v) L 2 ρ Y + ε 2q+1 i , p(p -1)Φ p-2 ∂ i Φε L 2 ρ Y
and estimate all terms in the above identity. We integrate by parts to compute:

∆ - 1 2 Y • ∇ ε i , ε 2q+1 i L 2 ρ Y = 1 ρ Y ∇ • (ρ Y ∇ε i )ε 2q+1 i ρ Y dY = -(2q + 1) ε 2q i |∇ Y ε i | 2 ρ Y dY = - 2q + 1 (q + 1) 2 |∇ Y (ε q+1 i )| 2 ρ Y dY.
We apply the spectral gap estimate (2.9) to ε q+1 i and conclude that there exists c > 0, and for all A > 0 large enough, there exists

C A such that |∇ Y (ε q+1 i )| 2 ρ Y dY ≥ c |∇(ε q+1 i )| 2 ρ Y dY + A (ε q+1 i ) 2 ρ Y dY -C A j,M ≤j(A),M (A) ε q+1 i , φ j,2M 2 
L 2 ρ Y
, where j, M ≤ j(A), M (A) are the indices corresponding to all eigenvalues µ j,2M of L Y that satisfy µ j,2M ≤ A. Hence choosing A large enough compared to Φ L ∞ , we infer

-(L + 1)ε i , ε 2q+1 i L 2 ρ Y ≤ -c |∇(ε q+1 i )| 2 ρ Y dY - A 2 (ε q+1 i ) 2 ρ Y dY +C A j,M ≤j(A),M (A) ε q+1 i , φ j,2M 2 
L 2 ρ Y
.

We now estimate using Hölder and the polynomial growth of eigenmodes |φ j,2M | |Y | c(j,M ) :

ε q+1 i , φ j,2M 2 
L 2 ρ Y |ε i | 2q |φ j,2M | 2 ρ Y dY |ε i | 2 ρ Y dY |ε i | 2q+2 ρ Y dY 2q 2q+2 |ε i | 2 ρ Y dY ≤ δ |ε i | 2q+2 ρ Y dY + c δ |ε i | 2 ρ Y dY q+1 .
and hence, for δ small enough compared to C A , j(A) and M (A), we infer

-(L + 1)ε i , ε 2q+1 i L 2 ρ Y ≤ -c |∇(ε q+1 i )| 2 ρ Y dY - A 4 (ε q+1 i ) 2 ρ Y dY + C A ε 2q+2 H 1 ρ Y .
(3.53) The leading order error term is controlled from (2.44):

ε 2q+1 i , ∂ i Ψ b L 2 ρ Y |ε i | 2q+2 ρ Y dY + |∂ i Ψ b | 2q+2 ρ Y dY |ε i | 2q+2 ρ Y dY +b (2q+2)(n+1) .
We integrate by parts and use (A.1) to estimate:

|(ε 2q+2 i , ∂ i Λε) L 2 ρ Y | (1 + |Y | 2 )ε 2q+2 i ρ Y dY ε 2q+2 i + |∇ Y (ε q+1 i )| 2 ρ Y dY
and hence from (3.50):

|(ε 2q+1 i , L(ε)) L 2 ρ Y | b ε 2q+2 i + |∇ Y (ε q+1 i )| 2 ρ Y dY.
Also, we have

ε 2q+1 i , p(p -1)Φ p-2 ∂ i Φε L 2 ρ Y |ε i | 2q+1 |ε|ρ Y dY |ε i | 2q+2 ρ Y dY.
We now turn to the control of the nonlinear term. We first estimate using

Φ b L ∞ + ∇ Φ b L ∞ 1,
Hölder and the polynomial growth of ψ:

|(∂ i F 1 (v), ε 2q+1 i ) L 2 ρ Y | |ε i | 2q+1 (|v| + |∇v|)ρ Y dY |ε i | 2q+2 ρ Y dY + (|v| + |∇v|) 2q+2 ρ Y dY |ε i | 2q+2 ρ Y dY + |a j,M | 2q+2 .
We now compute

∇F 2 (v) = p∇ Y v ( Φ b + v) p-1 -Φ p-1 b + p∇ Y Φ b ( Φ b + v) p-1 -Φ p-1 b -(p -1) Φ p-2 b v
and estimate by homogeneity with the L ∞ bound (3.36):

|F 2 (v)| |v| 2 , |∇ Y F 2 (v)| |∇ Y v||v| + |v| 2 |∇ Y v| + |v| (3.54)
and hence the same bound as above:

|(∂ i F 1 (v), ε 2q+1 i ) L 2 ρ Y | |ε i | 2q+1 (|v| + |∇v|)ρ Y dY |ε i | 2q+2 ρ Y dY + |a j,M | 2q+2 .
The collection of above bounds for i = 1, 2, 3, 4 yields (3.46) provided the constant A in (3.53) has been chosen large enough.

step 3 Ḣ2 exponential bound. Let ε (2) = L Y ε, then ε (2)
satisfies the orthogonality conditions (3.19) and the equation from (3.23):

∂ s ε (2) + L Y ε (2) = L Y Ψ b -Mod + L(ε) + F (v) (3.55)
and hence 1 2

d ds ε (2) 2 L 2 ρ Y = -L Y ε (2) + L Y Ψ b -Mod + L(ε) + F (v) , ε (2) L 2 ρ Y . (3.56)
The main forcing term is estimated in brute force using (2.43) (2.44):

(L Y ( Ψ b ), ε (2) ) L 2 ρ Y b n+1 ε (2) L 2 ≤ c δ b 2n+2 + δ ε (2) 2 H 1 ρ Y .
The Mod terms are controlled using (3.41), (3.19), (3.35) which yield:

(L Y Mod, ε (2) ) L 2 ρ Y b |a j,M | + b n+1 + b ε L 2 ρ Y (1 + Y )ε (2) L 2 ρ Y δ ε (2) 2 H 1 ρ Y + c δ b 2n+4 + c δ b 2 |a j,M | 2 .
For the L(ε) term, we use the commutator relation

[∆ Y , Λ Y ] = 2∆ Y (3.57) to compute [L Y , Λ Y ] = [-∆ Y + Λ Y -pΦ p-1 , Λ Y ] = -2∆ Y + p(p -1)Φ p-2 n r∂ r Φ = 2(L Y -Λ Y + pΦ p-1 ) + p(p -1)Φ p-2 r∂ r Φ from which using (2.41) (3.51), (3.49) and Φ L ∞ + ΛΦ L ∞ 1: |(ε (2) , L Y Λ Y ε) L 2 ρ Y | = (ε (2) , [L Y , Λ Y ]ε) L 2 ρ Y + (ε (2) , Λ Y ε (2) ) L 2 ρ Y ε (2) 2 H 1 ρ Y + |(ε (2) , Λε) L 2 ρ Y | + ε 2 L 2 ρ Y ε (2) 2 H 1 ρ Y + ε 2 H 1 ρ Y
and hence from (3.50):

|(ε (2) , L Y L(ε)) L 2 ρ Y | b ε (2) 2 H 1 ρ Y + ε 2 H 1 ρ Y 
.

It remains to estimate the nonlinear term. We first integrate by parts since

L Y is self adjoint for (•, •) L 2 ρ Y : |(L Y F, ε (2) ) L 2 ρ Y | = (∇F, ∇ε (2) ) L 2 ρ Y + 2 p -1 F -pΦ p-1 F, ε (2) L 2 ρ Y 
.

We recall the decomposition (3.22). For the first term, we need to deal with the fact that the difference Φ b -Φ is not L ∞ small for |Z| 1. We first estimate pointwise using (2. [START_REF] Lepin | Self-similar solutions of a semilinear heat equation[END_REF])

|∂ b Φ b | = 1 2b Z∂ Z G = - 1 b Z 2 µ 2 p-1 +1 Λ r µ(Z) Z 2 b = z 2 , |∂ b ṽb | b
and similarly for higher derivatives, and hence the pointwise bound

|∂ b Φ b | + |∇ Y ∂ b Φ b | 1 + z 2 . (3.58) 
This implies

|∇ k Y ( Φ p-1 b -Φ p-1 )| = (p -1) b 0 ∇ Y Φ p-2 b ∂ b Φ b db b(1+z 2 ), k = 0, 1. (3.59)
We first estimate:

2 p -1 -pΦ p-1 F 1 , ε (2) 
L 2 ρ Y b (1 + |Y | 2 )|ε (2) | 2 ρ Y dY b ε (2) 2 H 1 ρ Y
.

Next:

|(( Φ p-1 b -Φ p-1 )∇ Y v, ∇ Y ε (2) ) L 2 ρ Y ≤ δ ∇ Y ε (2) 2 L 2 Y + c δ b 2 |a j,M | 2 + c δ | Φ p-1 b -Φ p-1 | 2 |∇ Y ε| 2 and |(v∇ Y ( Φ p-1 b -Φ p-1 ), ∇ Y ε (2) ) L 2 ρ Y | ≤ δ ∇ Y ε (2) 2 L 2 Y + c δ b 2 |a j,M | 2 + c δ |∇( Φ p-1 b -Φ p-1 )| 2 |ε| 2 .
We split the last integral in two parts using (3.59):

|∇( Φ p-1 b -Φ p-1 )| 2 ε 2 + | Φ p-1 b -Φ p-1 | 2 |∇ Y ε| 2 ρ Y dY |z|≤ 1 b 1 4 |∇( Φ p-1 b -Φ p-1 )| 2 ε 2 + | Φ p-1 b -Φ p-1 | 2 |∇ Y ε| 2 ρ Y dY +e -c √ b ε 2 + |∇ Y ε| 2 1 + |z| 2K r 2 e -r 2 2 drdz b ε 2 H 1 ρ Y + e -c √ b ε 2 + |∇ Y ε| 2 1 + |z| 2K ρ r dY
and hence the control of the first nonlinear term:

|(∇F 1 , ∇ε (2) ) L 2 ρ Y | ≤ δ ∇ε (2) 2 L 2 ρ Y + c δ b 2 a 2 j,M + e -c √ b ε 2 + |∇ Y ε| 2 1 + |z| 2K ρ r dY.
For the second nonlinear term, we compute explicitly

∇F 2 (v) = p∇ Y v ( Φ b + v) p-1 -Φ p-1 b + p∇ Y Φ b ( Φ b + v) p-1 -Φ p-1 b -(p -1) Φ p-2 b v .
We estimate by homogeneity with the L ∞ bound (3.36):

|F 2 (v)| |v| 2 , |∇ Y F 2 (v)| |∇ Y v||v| + |v| 2 (3.60)
and hence the bound using (3.36) again:

|(∇F 2 (v), ∇ε (2) ) L 2 ρ Y | + 2 p -1 F 2 (v) -pΦ p-1 b F 2 (v), ε (2) 
L 2 ρ Y |v||∇ Y v| + |v| 2 |∇ε (2) |ρ Y dY + |ε (2) ||v| 2 ρ Y dY ≤ δ ε (2) 2 H 1 ρ Y + C δ |v| 2 |∇ Y v| 2 ρ Y dY + |v| 4 ρ Y dY ≤ δ ε (2) 2 H 1 ρ Y + C δ v 2 L ∞ v 2 H 1 ρ Y ≤ δ ε (2) 2 H 1 ρ Y + C δ v 2 L ∞ ε 2 H 1 ρ Y + |a j,M | 2 .
The collection of above bounds together with the spectral gap estimate (2.9) and the orthogonality conditions (3.19) injected into (3.56) yields (3.61).

3.4.

Inner W 1,2q+2 bounds with polynomial localization in z. The bounds of Lemma 3.5 rely in an essential way on the spectral gap estimate (2.9) which demands a Gaussian like localization measure. Once these bounds are known, they can be turned into polynomially weighted bounds provided the weight is strong enough, and the approximate solution of Lemma 2.6 has been developed to a sufficiently high order.

Lemma 3.6 (Lyapunov control of polynomially weighted norms). Let K ≥ K(q) a large enough constant and recall (3.8):

ν K (z) = 1 1 + z 2K .
Then there holds the pointwise differential bounds:

d ds ε √ ν K 2 L 2 ρr + K 8 ε √ ν K 2 L 2 ρr + √ ν K ∇ε 2 L 2 ρr ε 2 H 1 ρ Y + b K+ 3 2 + ( v 2 L ∞ + b 2 ) |a j,M | 2 , (3.61) d ds |∇ε| 2q+2 ν K ρ r dY + K 16q + 16 |∇ε| 2q+2 ν K ρ r dY ε 2q+2 L 2 ρ Y + |∇ε| 2q+2 ρ Y dY + b 2q+K+ 3 2 + |a j,M | 2q+2 . (3.62)
Remark 3.7. We more precisely need K Φ p-1 L ∞ in order to absorb the potential terms in the energy estimates below. Also the constants in the rhs of (3.61), (3.62) do not depend on K.

Proof of Lemma 3.6. This follows from a brute force energy identity using the weight 1 1+|z| 2K to overcome the bounded potential Φ p-1 . step 1 L 2 weighted bound. From (3.23):

1 2 d ds ε √ ν K 2 L 2 ρr = (∂ s ε, ν K ε) L 2 ρr = -(L Y ε, ν K ε) L 2 ρr + ( Ψ b + L(ε) -Mod + F (v), ν K ε) L 2 ρr .
We integrate by parts to compute:

-∆ Y ε + 1 2 Y • ∇ Y ε ν K ερ r dY = - 1 ρ r r 2 ∂ r (r 2 ρ r ∂ r ε) -∂ 2 z ε + 1 2 z∂ z ε ν K (z)εr 2 ρ r drdz = |∇ Y ε| 2 ν K ρ r dY -ε 2 (zν K ) ′ 4 + ν ′′ K 2 ρ r dY
and hence

-L Y ε, ε 1 + z 2K L 2 ρr = -|∇ Y ε| 2 ν K ρ r dY (3.63) + ε 2 - 2 p -1 + pΦ p-1 ν K + (zν K ) ′ 4 + ν ′′ K ρ r dY.
We now observe that for |z| ≥ z(K),

(zν K ) ′ 4 + ν ′′ K 2 ≤ - K 4|z| 2K
(3.64) and hence for

K 1 + Φ L ∞ : -(L Y ε, ν K ε) L 2 ρr ≤ -|∇ Y ε| 2 ν K dY - K 8 ε √ ν K 2 L 2 ρr + C K ε 2 L 2 ρ Y , (3.65) 
where the last term controls the region |z| ≤ z(K). The leading order term is estimated from (2.43) (2.44):

|(ε, ν K Ψ b ) L 2 ρr | ≤ δ ε √ ν K 2 L 2 ρr + c δ |Z|≤2δ 1 1 + |z| 2K b 2n+2 + b 2 |Z| 4n+4 dz +c δ b 2 |Z|≥δ dz 1 + |z| 2K .
We estimate after changing variables Z = z √ b:

|Z|≤2δ 1 1 + |z| 2K b 2n+2 + b 2 |Z| 4n+4 ρ r dz b 2n+2 + |Z|≤2δ b 2 √ b b K |Z| 4n+4 |Z| 2K dZ +b 2 |Z|≥δ 1 √ b b K 1 |Z| 2K dZ b K+ 3 2
provided n ≥ n(K) has been chosen large enough in Lemma 2.6. We next integrate by parts like for the proof of (2.41) to compute:

|(ν K ε, Λ Y ε) L 2 ρr | ν K (1 + r 2 )ε 2 ρ r r 2 drdz ν K (|∇ε| 2 + ε 2 )ρ r r 2 drdz (3.66)
where we used (A.1) in the last step, and hence from (3.50):

|(L(ε), ν K ε| b ∇ε √ ν K 2 L 2 ρr + ε √ ν K 2 L 2 ρr .
To estimate the modulation equation terms, we first observe from (2.7) that

√ ν K φ j,2M L 2 ρr + Λ Φ b √ ν K L 2 ρr + ∂ b Φ b √ ν K L 2 ρr 1, -ℓ 0 ≤ j ≤ -1, 0 ≤ M ≤ M (j) (3 
.67) provided K satisfies (3.2) and hence from (3.35):

Mod √ ν K L 2 ρr |(a j,M ) s -(λ j + M )a j,M | + λ s λ + 1 2 |a j,M | + λ s λ + 1 2 -M (b) + |b s + bB(b)| b n+1 + b ε L 2 ρ Y + |a j,M | (3.68)
which yields the bound:

|(Mod, ν K ε) L 2 ρr | ≤ b 2n+1 + b ε 2 L 2 ρ Y + b 2 |a j,M | 2 + ε √ ν K 2 L 2
ρr . The small linear term is estimated in brute force using

Φ b L ∞ + Φ L ∞ 1: |(F 1 (v), ν K ε) L 2 ρr | (|ε| + |ψ|)ν K |ε|e -r 2 2 r 2 dz ≤ K 20 ε √ ν K 2 L 2 ρr + |a j,M | 2
where we used (3.67) in the last step. The nonlinear term is estimated as before:

|(F 2 (v), ν K ε) L 2 ρr | ν K |ε|v 2 ρ r r 2 drdz ≤ K 20 ν K |ε| 2 ρ r r 2 drdz + ν K |v| 4 ρ r r 2 drdz ≤ K 20 ν K |ε| 2 ρ r r 2 drdz + v 2 L ∞ ν K |v| 2 ρ r r 2 drdz ≤ K 20 ν K |ε| 2 ν K ρ r r 2 drdz + C v 2 L ∞ |a j,M | 2 ,
where we used (3.67) in the last step, and (3.61) follows.

step 2 Ẇ 1,2q+2 weighted bound. Let ε i = ∂ i ε, for i = 1, 2, 3, 4. We compute from (3.52):

1 2q + 2 d ds ν K ε 2q+2 i ρ r dY = ν K ε 2q+1 i ∂ s ε i = -(L + 1)ε i , ν K ε 2q+1 i L 2 ρr + ε 2q+1 i , ν K ∂ i Ψ b -Mod + L(ε) + F (v) L 2 ρr + ε 2q+1 i , ν K p(p -1)Φ p-2 ∂ i Φε L 2 ρr .
We integrate by parts to compute:

-∆ Y ε i + 1 2 Y • ∇ Y ε i ν K ε 2q+1 ρ r dY = - 1 ρ r r 2 ∂ r (r 2 ρ r ∂ r ε i ) -∂ 2 z ε i + 1 2 z∂ z ε i ν K (z)ε 2q+1 i r 2 ρ r drdz = (2q + 1) ε 2q i |∂ r ε i | 2 ν K ρ r r 2 drdz + (2q + 1) (∂ z ε i ) 2 ν K ρ r r 2 drdz - 1 2q + 2 ε 2q+2 i (zν K ) ′ 2 + ν ′′ K ρ r r 2 drdz ≥ c |∇ Y (ε q+1 i )| 2 ν K ρ r dY + K 8q + 8 ε 2q+2 i ν K ρ r dY -C K ε 2q+2 i ρ Y dY
where we used (3.64) in the last step, and hence

-(L + 1)ε i , ν K ε 2q+1 i L 2 ρr ≤ -c |∇ Y (ε q+1 i )| 2 ν K ρ r dY + K 16q + 16 ε 2q+2 i ν K ρ r dY + C K ε 2q+2 i ρ Y dY.
The leading order term is estimated from (2.43) (2.44):

(ε 2q+1 i , ν K ∂ i Ψ b ) L 2 ρr ν K |ε i | 2q+2 + |∂ i Ψ b | 2q+2 ρ r dY ν K |ε i | 2q+2 ρ r dY + |Z|≤2δ 1 1 + |z| 2K b 2n+2 + b|Z| 4n+4 2q+2 dz +b 2q+2 |Z|≥δ 1 1 + |z| 2K dz ν K |ε i | 2q+2 ρ r dY + b 2q+K+ 3 2 .
We next integrate by parts and use (A.1) to estimate:

|(ν K ε 2q+1 i , ∂ i Λ Y ε) L 2 ρr | ν K (1+r 2 )ε 2q+2 i ρ r dY ν K ε 2q+2 i + |∇ Y (ε q+1 i )| 2 ρ r dY
and hence from (3.50):

|(ν K ε 2q+1 i , ∂ i L(ε)) L 2 ρr | b ν K ε 2q+2 i + |∇ Y (ε q+1 i )| 2 ρ r dY.
The modulation equation terms are estimated in brute force for K ≥ K(q) large enough from (3.35):

|(ν K ε 2q+1 i , ∂ i Mod) L 2 ρr | ν K ε 2q+2 i ρ r dY + |∂ i Mod| 2q+2 ν K ρ r dY ν K ε 2q+2 i ρ r dY + b 2q+2 ε 2q+2 L 2 ρ Y + |a j,M | 2q+2 + b 2q+K+ 3 2 .
Also, we have

ε 2q+1 i , ν K p(p -1)Φ p-2 ∂ i Φε L 2 ρr |ε i | 2q+1 |ε|ν K ρ r dY |ε i | 2q+2 ν K ρ r dY.
For the nonlinear term, we estimate in brute force from (3.54):

|(ν K ε 2q+1 i , ∂ i F (v)) L 2 ρr | (|v|+|∇ Y v|)ν K |ε i | 2q+1 ρ r dY |ε i | 2q+2 ν K ρ r dY + |a j,M | 2q+2 .
The collection of above bounds concludes the proof of (3.62).

3.5.

Outer global W 1,2q+2 bound. We recall

v = ε + ψ
and now aim at propagating an unweighted global W 1,2q+2 decay estimate for v. We rewrite (3.21) as

∂ s v -∆ Y v - λ s λ Λ Y v = h, (3.69) 
with

h = Ψ b + λ s λ + 1 2 -M (b) Λ Φ b -(b s + bB(b))∂ b Φ b + F (v), F = ( Φ b + v) p -Φ p b .
Lemma 3.8 (Global W 1,2q+2 bound). There holds the Lyapunov type monotonicity formula

d ds |v| 2q+2 dY + c |v| 2q+2 dY b 2q+ 3 2 + 1 b K |v| 2q+2 1 + |z| 2K ρ r dY, (3.70) d ds |∇ Y v| 2q+2 dY + c |∇ Y v| 2q+2 dY (3.71) b 2q+ 3 2 + 1 b K |∇ Y v| 2q+2 + |v| 2q+2 1 + |z| 2K ρ r dY,
for some universal constant c(q) > 0.

Proof of Lemma 3.8. step 1 L 2q+2 bound. We compute from (3.69):

1 2q + 2 d ds v 2q+2 dY = v 2q+1 ∂ s v = v 2q+1 ∆ Y v + λ s λ Λv + h dY.
The linear term is computed by integration by parts:

v 2q+1 ∆ Y v + λ s λ Λv dY (3.72) = -(2q + 1) v 2q |∇ Y v| 2 dY + λ s λ 2 p -1 - 4 2q + 2 v 2q+2 dY.
Observe using (3.50) that

λ s λ 2 p -1 - 4 2q + 2 v 2q+2 dY = - 1 2 + O(b) 2 p -1 - 4 2q + 2 v 2q+2 dY ≤ -c v 2q+2 dY
where c > 0 for b small enough and q large enough. Next by Hölder:

v 2q+1 hdY ≤ δv 2q+2 dY + c δ h 2q+2 dY
and we now estimate the h terms. First from (2.43) (2.44):

| Ψ b | 2q+2 |Z|≤2δ b n+1 + b|Z| 2n+2 r 2 p-1 -1 n 2q+2 dY +b 2q+2 |Z|≥δ (|∂ 2 Z G| + |Z∂ Z G|) 2q+2 dY b 2q+2-1 2
for q large enough, where we used in the last inequality the fact that in view of (2.22) (2.38) (2.39), we have

|∂ 2 Z G| + |Z∂ Z G| 1 (1 + r 2 + |Z| 2 ) 1 p-1 .
In order to treat the modulation equation terms, we compute

|Λ Y Φ b | = 1 µ 2 p-1 1 - Z 2 1 + Z 2 ΛΦ r µ 1 µ 2 p-1 + r 2 p-1 1 (1 + r 2 + bz 2 ) 1 p-1
and hence for q large enough using (2.15):

|Λ Y Φ b | 2q+2 1 √ b .
Similarly:

|∂ b Φ b | 1 2b |Z∂ Z G| 1 b Z 2 1 + Z 2 1 µ 2 p-1 ΛΦ r µ 1 b 1 (1 + r 2 + bz 2 ) 1 p-1 and hence |∂ b Φ b | 2q+2 dY 1 √ bb 2q+2 .
We conclude using (3.35):

λ s λ + 1 2 -M (b) Λ Φ b -(b s + bB(b))∂ b Φ b 2q+2 dY 1 √ b b n + ε L 2 ρ Y + |a j,M | 2q+2 b n 2
where we used in the last inequality the bounds (3.27) (3.28) (3.29). We now turn to the nonlinear term whose control relies on the polynomially weighted bounds of Lemma 3.6. Indeed, we estimate by homogeneity

| F (v)| | Φ b ||v| + v L ∞ |v| from which: | F (v)| 2q+2 dY | Φ b | 2q+2 |v| 2q+2 + v 2q+2 L ∞ |v| 2q+2 dY.
The second term is treated thanks to v L ∞ ≪ 1, and we split the first term using

∂ k i Φ b L ∞ (|Z|≥A) + ∂ k i Φ b L ∞ (r≥A) < δ ≪ 1, k = 0, 1 (3.73) 
for A large enough, and hence

| Φ b | 2q+2 |v| 2q+2 |Z|≥A | Φ b | 2q+2 |v| 2q+2 + r≥A | Φ b | 2q+2 |v| 2q+2 + |Z|≤A,r≤A | Φ b | 2q+2 |v| 2q+2 δ |v| 2q+2 dY + C(A) b K |v| 2q+2 1 + |z| 2K ρ r dY.
The collection of above bounds concludes the proof of (3.70).

step 2 Ẇ 1,2q+2 bound. Let v i = ∂ i v for i = 1, 2, 3, 4. Then from (3.69): ∂ s v i -∆ Y v i - λ s λ [v i + Λ Y v i ] = ∂ i h,
and hence:

1 2q + 2 d ds v 2q+2 i dY = v 2q+1 i ∂ s v i = v 2q+1 i ∆ Y v i + λ s λ (v i + Λ Y v i ) + ∂ i h dY.
The linear term is computed from (3.72):

v 2q+1 i ∆ Y v i + λ s λ (v i + Λ Y v i ) dY = -(2q + 1) v 2q i |∇ Y v i | 2 dY + λ s λ 1 + 2 p -1 - 4 2q + 2 v 2q+2 i dY = - 1 2 + O(b) 1 + 2 p -1 - 4 2q + 2 v 2q+2 i dY ≤ -c v 2q+2 i dY.
Next, we have by Hölder:

v 2q+1 i ∂ i hdY ≤ δv 2q+2 i dY + c δ (∂ i h) 2q+2 dY
and we now estimate the ∂ i h terms. From (2.44):

|∂ i Ψ b | 2q+2 |Z|≤2δ b n+1 + b|Z| 2n+2-1 r 2 p-1 -1 n 2q+2 dY +b 2q+2 |Z|≥δ (|∂ i ∂ 2 Z G| + |∂ i (Z∂ Z G)|) 2q+2 dY b 2q+2-1 2
for q large enough. For the modulation equation terms, we estimate in brute force as above

|∂ i Λ Y Φ b | 2q+2 1 √ b , |∂ i ∂ b Φ b | 2q+2 dY 1 √ bb 2q+2
from which using (3.35):

λ s λ + 1 2 -M (b) ∂ i Λ Φ b -(b s + bB(b))∂ i ∂ b Φ b 2q+2 dY b n 2 .
We now estimate the nonlinear term by homogeneity:

|∂ i F (v)| |∂ i Φ b ||v| + |∂ i v| v p-1 L ∞ + | Φ b | p-1
from which for A large enough using (3.73):

|∂ i F (v)| 2q+2 dY δ (|v| 2q+2 + |v i | 2q+2 )dY + |Z|≤A,r≤A (|v| 2q+2 + |v i | 2q+2 )dY δ (|v| 2q+2 + |v i | 2q+2 )dY + C(A) b K |v| 2q+2 + |v i | 2q+2 1 + |z| 2K ρ r dY.
The collection of above bounds concludes the proof of (3.71). 

|b s + c 1 b 2 | 1 s 3 , c 1 > 0. Hence d ds - 1 b + c 1 1 s 3 b 2
L 2 ρ Y + c ε 2 L 2 ρ Y 1 s n+δq 2 
which time integration with (3.12) yields: e -c(s-s 0 ) is non increasing on [s 0 , +∞) for s 0 (n) large enough. We similarly rewrite (3.47):

ε(s) 2 L 2 ρ Y ≤ ε(0) 2 L 2 ρ Y e -c(s-s 0 ) + e -s
d ds L Y ε 2 L 2 ρ Y + c L Y ε 2 L 2 ρ Y
1 s n+δq which similarly yields with (3.12):

L Y ε(s) 2 L 2 ρ Y 1 s n+δq .
(3.75)

We now recall

(L Y ε, ε) ρ = ∇ε 2 L 2 ρ Y + 2 p -1 -pΦ p-1 |ε| 2 ρ Y dY
which together with (3.74), (3.75) implies: 

∇ε 2 L 2 ρ Y ≤ (L Y ε, ε) L 2 ρ Y + C ε 2 L 2 ρ Y 1 s n+δq . This implies from (A.2): ∆ε 2 L 2 ρ Y L Y ε(s) 2 L 2 ρ Y + ε 2 H 1 ρ Y
L 2q+2 ρ Y + c ∇ε 2q+2 L 2q+2 ρ Y 1 s (q+1)(n+1)
which time integration using (3.12) ensures: 

∇ε 2q+2 L 2q+2 ρ Y 1 s (q+1)(n+1) ≤ 1 2s n(
d ds v 2q+2 W 1,2q+2 + c v 2q+2 W 1,2q+2 1 
s 2q+ 3 2 + 1 b K 1 s K+1 1 s .
Integrating in time using (3.14) ensures v(s) 2q+2

W 1,2q+2
1 s which improves (3.32) provided δ q has been chosen small enough. We conclude from standard argument that the map (a j,M (0)s n 0 ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) → (a j,M (s * )s n * ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j)

is continuous on the unit ball of R N where N = -2 j=-ℓ 0

(1 + M (j))

and the identity on its boundary a contradiction to Brouwer's Theorem. This concludes the proof of Proposition 3.3.

We are now in position to conclude the proof of Theorem 1.1. The fact that the above construction defines a Lipschitz manifold of initial data in the W 1,2q+2 ∩ H 2 topology is now classical, see [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], and the details are left to the reader. This concludes the proof of Theorem 1.1.

and hence from Hölder: We now multiply by ν and integrate in z, and (A.1) is proved.

step 2. Proof of (A.2). We compute: Hence:

-∆u + 1 2 Y • ∇u 2 L 2 ρ Y = ∆u 2 L 2 ρ Y + 1 4 Y • ∇u 2 L 2 ρ Y - ( 
-∆u + 1 2 Y • ∇u 2 L 2 ρ Y = ∆u 2 L 2 ρ Y + 1 4 ρ Y (|Y | 2 |∇u| 2 -|Y • ∇u| 2 ) -ρ Y |∇u| 2 ≥ ∆u 2 L 2 ρ Y -∇u 2 L 2 ρ Y
which concludes the proof of (A.2).

Appendix B. Proof of Lemma 2.8

Recall that j ∈ N and u j (r) is the solution to (L r + j)u j = f j and (u 1 , Λ r Φ) = 0 if j = 1, where f j satisfies in the case j = 1 (f 1 , Λ r Φ) L 2 ρr = 0.

Recall also from Lemma 2.2 and (1.10) that L r + j is a selfadjoint operator with domain D(L r ) ⊂ L 2 (r 2 ρ r dr) and Ker(L r + 1) = Λ r Φ and Ker(L r + j) = {0} for all j ∈ N \ {1}.

We immediately infer that we can solve uniquely (L r + j)u j = f j and (u 1 , Λ r Φ) = 0 if j = 1, as long as f j ∈ L 2 ρr with (f 1 , Λ r Φ) L 2 ρr = 0 in the case j = 1, and there holds the following trivial bound for k ∈ N Next, we derive a pointwise bound for derivatives of u j in the region r ≥ 1. There exists two independent solutions ϕ 1,j and ϕ 2,j of (L r + j)ϕ = 0 smooth on (0, +∞) such that ϕ 1,j ∼ r as r → +∞, and their Wronskian W := ϕ ′ 1,j ϕ 2,j -ϕ ′ 2,j ϕ 1,j is given by 4 .

W = 1 r 2 e r 2 
See for example Lemma 3.4 in [START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF] for a proof. Then, using variation of constants as well as the estimates (B.1) satisfied by u j implies that u j is given by u j (r) = +∞ r f j ϕ 2,j (r ′ ) 2 e -(r ′ ) 2 4 dr ′ ϕ 1,j (r) + a j -r 1 f j ϕ 1,j (r ′ ) 2 e -(r ′ ) 2 4 dr ′ ϕ 2,j (r)

where the constant a j is given by a j = 1 ϕ 2,j [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF] u j (1) - This concludes the proof of Lemma 2.8.

  Y ) = Φ b (Y ), b(s) = b > 0 yields an O(b) approximate solution in the boundary layer |z| 1 √ b

b

  the error estimate (2.18) for Ψ b .

Lemma 3 . 1 (

 31 Geometrical decomposition). There exists b > 0 and κ > 0 small enough such if 0 < b ≤ b and w L ∞ ≤ κ, and u = Φ b + w, then u has a unique decomposition u = 1

  we infer by continuity and the fact that the set of invertible matrices is open that ∂G ∂(µ, b, (a j,M ) -ℓ 0 ≤j≤-2, 0≤M ≤M (j) ) | (0,1,b,0,...,0)

. 16 )s 2n 0 ,

 160 Indeed, the decomposition (3.5) (3.6) (3.7) immediately follows from Lemma 3.1. Then, we may choose s 0 as s 0 = 1 c 1 b 0 so that (3.10) holds true. In view of our assumptions on w 0 , this yields in particularw 0 W 1,2q+2 + w 0 H 2 1and the estimates (3.11) (3.12) (3.13) (3.14) immediately follow from the bounds (3.1) (3.4

  26), (3.27), (3.28), (3.29), (3.31), (3.32) holds on [s 0 , s)} (3.33) is finite s * < +∞ (3.34) and look for a contradiction for s 0 ≥ s 0 (n, K, q) large enough. From now on, we therefore study the flow on [s 0 , s * ] where (3.26), (3.27), (3.28), (3.29), (3.31), (3.32) hold. Using a bootstrap method we show that the bounds (3.26), (3.27), (3.29), (3.31), (3.32

  .44) Conclusion. Injecting (3.42), (3.43), (3.44) into (3.39) yields (3.35).

e

  -c(s-s 0 ) ≤ 1 for s ≥ s 0 since s → s s 0 2n

step 3

 3 Brouwer fixed point argument. In view of the above improvements of (3.26), (3.27), (3.29), (3.30), (3.31), (3.32), we conclude from an elementary continuity argument that (3.34) implies the exit condition: ,M (s * )) 2 = 1 (s * ) n . (3.77) On the other hand, we estimate from (3.35), (3.29):|(a j,M ) s + (λ j + M )a j,M | 1 s n 2 +1. Also, from the non degeneracy (1.10), there exists c > 0 such thatλ j + M ≤ -c < 0, -ℓ 0 ≤ j ≤ -2, 0 ≤ M ≤ M (j) and hence d ds s n (a j,M (s)) 2 = s n a j,M (a j,M ) s + n s a j,M = s n a j,M (a j,M ) s + (λ j + M )a j,M + n s a j,M -s n (λ j + M )|a j,M | 2 ≥ cs n |a j,M | 2 + O s n s n+1which implies from (3.77) the outgoing flux condition:

Proof of Theorem 1 . 1 . 2 0 λ 2

 11202 Let an initial data as in Proposition 3.3. The s time being global, the integration of the modulation equations (3.35) with the bounds (3.29) easily leads to the laws where we used the fact that d 1 = 1 in the last equality in view of (2.20). Hence λ(s) = e -s 2 +O(logs) = e -This implies that the life time of the solution is finite T = +∞ s (s)ds < +∞ and the blow up is self similar T -t = +∞ s λ 2 (s)ds = e -s 1 + O logs s , λ(t) = √ T -t(1 + o(1)).

+∞ 0 ε 2 r 2 e -r 2 4 r 2 dr +∞ 0 |∂ r ε||rε|e -r 2 4 r 2 dr + +∞ 0 ε 2 e -r 2 4 r 2 dr ≤ c δ +∞ 0 |∂ r ε| 2 r 2 e -r 2 4 r 2 dr + δ +∞ 0 ε 2 r 2 e -r 2 4 r 2 dr + +∞ 0 ε 2 e -r 2 4 r 2 dr. Hence +∞ 0 ε 2 r 2 e -r 2 4 r 2 dr +∞ 0 |∂ r ε| 2 +

 00020002002 ε 2 r 2 e -r 2 4 dr.

2 Y 4 |∇u| 2 |Y | 2 ρ Y - 1 2

 2422 ∆u)Y • ∇uρ Y dY.To compute the crossed term, let u λ (Y ) = u(λY ), then|∇u λ (Y )| 2 ρ Y dY = 1 λ 2 |∇u(Y )| 2 ρ Y Y λ dyand hence differentiating in λ and evaluating at λ = 1:2 ∇u • ∇(Y • ∇u)ρ Y dY = |∇u| 2 (-2ρ Y -Y • ∇ρ Y )dy i.e. 2 Y • ∇u(ρ Y ∆u + ∇u • ∇ρ Y ) = 2 |∇u| 2 ρ Y + 1 • ∇ρ Y dy which using ∇ρ Y = -1 2 Y ρ Y becomes: -(∆u)Y • ∇uρ Y dY = 1 |Y • ∇u| 2 ρ Y -ρ Y |∇u| 2 .

2 p- 1

 21 +l-η ∂ l r f j L ∞ . (B.1)

+∞ 1 f j ϕ 2 ,j r 2 e -r 2 4 k l=0 r 2 p- 1 r 2 p- 1 2 p- 1

 124212121 dr ϕ 1,j[START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF] .This immediately yields the pointwise bound3 +l-η ∂ l r u j L ∞ (r≥1) k,η |u j (1)| + k l=0 +l-η ∂ l r f j L ∞ .Finally, we derive a pointwise bound for u in r ≤ 1. By the Sobolev embedding in dimension 3 and (B.1), we have +l-η ∂ l r f j L ∞ .

1 .

 1 Introduction 1.1. Type I and type II blow up. Let us consider the focusing nonlinear heat equation

  3.6. Conclusion.We are now in position to conclude the proof of Proposition 3.3 which then easily implies Theorem 1.1.

	1 2	(1 -δ) < -	λ s λ	<	1 2	(1 + δ), 0 < δ ≪ 1
	which implies	(λ(s)e	s 4 ) ′ < 0, (λ(s)e 2s ) ′ > 0
	and hence using (3.9)					
		0 < λ(s) < λ(s 0 )e	s 0 4 e -s 4 <	1 2	e -s 4 ,
	and (3.26) is improved. For the b parameter, we estimate from (3.35), (3.27), (3.28),
	(3.29) and (2.20):					

Proof of Proposition 3.3. We recall that we are arguing by contradiction assuming

(3.34)

. We first show that the bounds (3.26), (3.27), (3.29), (3.30), (3.31), (3.32) can be improved on [s 0 , s * ], and then, the existence of the data a j,M (0) follows from a classical topological argument à la Brouwer.

step 1 Improved control of the geometrical parameters. We estimate from (3.50):

  q+1) and (3.30) is improved. Polynomial norms. We rewrite (3.61) using (3.27), (3.28), (3.29), (3.32) as:This yields an improvement of (3.31).

	which together with (3.13) ensures:		
		|∇ε(s)| 2q+2 ν K ρ r dY	1 s K+2q+ 3 2	<	1 2s K+2q+1 .
	Global norms. We use the lossy bound	
	|v| 2q+2 1 + |z| 2K ρ r dY	v 2q L ∞ 1	|v| 2 1 + |z| 2K ρ r dY	|ε| 2 1 + |z| 2K ρ r dY +	|a j,M | 2
			s K+1			
	which injected into (3.70), (3.71) yields	
			d ds	ε √ ν K	2 L 2 ρr +	K 8	ε √ ν K	2 L 2 ρr	1 s K+ 3 2
	for n ≥ n(K) large enough, which time integration using (3.13) yields: ε(s) √ ν K 2 L 2 ρr 1 s K+ 3 2 < 1 2s K+1 .
	Similarly from (3.62):					
	d ds	|∇ε| 2q+2 ν K ρ r dY +	K 16q + 16	|∇ε| 2q+2 ν K ρ r dY	1 s K+2q+ 3 2

Recall that Z = √ bz.

p-1

see for example[START_REF] Collot | On the stability of type I blow up for the energy super critical heat equation[END_REF], Appendix A.

Funding. P.R. and J.S are supported by the ERC-2014-CoG 646650 SingWave. F.M. is supported by the ERC Advanced grant BLOWDISOL 291214.

Appendix A. Coercivity estimates

Lemma A.1 (Exponential Hardy). Let ν(z) ≥ 0 and u(r, z) with cylindrical symmetry, then:

Moreover:

Proof. step 1 Proof of (A.1). By density, we assume u ∈ D(R 4 ). We use ∂ r ρ r = -rρ r /2 and integrate by parts to compute:
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3 Note that we may take η = 0 for j ≥ 1. Only the case j = 0 actually contains a log divergence and hence requires η > 0.