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Summary

Automated cell segmentation plays a key role in characterisa-
tions of cell behaviours for both biology research and clinical
practices. Currently, the segmentation of clustered cells still re-
mains as a challenge and is the main reason for false segmenta-
tion. In this study, the emphasis was put on the segmentation
of clustered cells in negative phase contrast images. A new
method was proposed to combine both light intensity and cell
shape information through the construction of grey-weighted
distance transform (GWDT) within preliminarily segmented
areas. With the constructed GWDT, the clustered cells can be
detected and then separated with a modified region skeleton-
based method. Moreover, a contour expansion operation was
applied to get optimised detection of cell boundaries. In this
paper, the working principle and detailed procedure of the
proposed method are described, followed by the evaluation
of the method on clustered cell segmentation. Results show
that the proposed method achieves an improved performance
in clustered cell segmentation compared with other methods,
with 85.8% and 97.16% accuracy rate for clustered cells and
all cells, respectively.

Introduction

Observation and analysis of live cells play a vital role in charac-
terisation of cell behaviours for both biology research and clini-
cal practices, including wound healing, immunoreaction, and
cancer cell metastasis (Piccinini et al., 2013; Das et al., 2015).
In these applications, individual cells are segmented in optical
images to implement cell morphological analysis, cell classi-
fication and even tracking (Xing & Yang, 2016). Cell image
segmentation is a process of separating individual cells from
background in images containing cells. This could be done
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manually, which is tedious and time consuming. Therefore,
automated cell image segmentation techniques become im-
portant for high throughout cell morphological and dynamics
studies (Irshad et al., 2014; Wang et al., 2014).

Different methods have been proposed to implement au-
tomated cell image segmentation, including thresholding
method (Chalfoun et al., 2013), morphological erosion method
(Chowdhury et al., 2013), watershed method (Lin et al., 2003;
Wahlby et al., 2004; Yi et al., 2013; Kim et al., 2014), level
set method (Ersoy et al., 2008) and active contour models
(Chenyang & Prince, 1998; Cosatto et al., 2008; Ali & Mad-
abhushi, 2012; Seroussi et al., 2012; Vink et al., 2013), or
the combination of several different algorithms. Most meth-
ods can achieve automated cell segmentation to some extent,
especially for individual cells. However, the segmentation of
clustered cells still remains as a challenge.

The methods used to segment clustered cells can be cate-
gorised into shaped-based (Kumar et al., 2006; Al-Kofahi et al.,
2010; Kong et al., 2011; Wienert et al., 2012; Veta et al., 2013;
Chen et al., 2015; Song et al., 2015; Gharipour & Liew, 2016)
and light intensity-based approaches (Ali et al., 2008; Wang
et al., 2015). Shape-based approaches use distance transform
(Al-Kofahi et al., 2010; Chen et al., 2015; Song et al., 2015),
concave points along contours (Kumar et al., 2006; Wienert
et al., 2012; Gharipour & Liew, 2016), and radial symmetry
transform (Kong et al., 2011; Veta et al., 2013; Gharipour
& Liew, 2016) to conduct cell segmentation, assuming cells
have regular (elliptical, for example) and convex shapes. Light
intensity-based methods segment cells using the special dis-
tribution of light intensity over cell bodies, assuming the light
intensity has direct correlation with cell height. The commonly
used methods are level set method (Ali et al., 2008) or peak
detection method (Wang et al., 2015).

Both shape-based and light intensity-based methods have
pros and cons in clustered cell segmentation. On one hand,
light intensity, like phase contrast images, represents height
information of cells. As a result, the light intensity information
is useful in determining cell locations and exact boundaries
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between two contacting cells within an area of clustered ones.
On the contrary, the shape-based methods only use the bound-
ary information, which is normally obtained from a binarisa-
tion operation. This inevitably loses some useful information
of the clustered cells. On the other hand, the light intensity-
based methods require high image contrast. However, the ac-
tual cell images, including phase contrast images, suffer from
various noises. The methods may lead to oversegmentation
or undersegmentation. From above analysis, one can see that
light intensity and cell shape information should be integrated
to perform a more efficient segmentation, rather than being
utilised solely.

Some efforts have been put to combine the shape and light
intensity information (Lin et al., 2003; Wahlby et al., 2004;
Ali & Madabhushi, 2012; Dewan et al., 2014). These methods
normally rely on some assumptions, either from shape or from
light intensity point of view. For example, in the gradient-
weighted distance transform method, it is assumed that in-
ternuclei gradients are higher than intranuclei gradients (Lin
et al., 2003). In the synergistic boundary and region-based ac-
tive contour model, nuclei are assumed to be roughly elliptical
in shape (Ali & Madabhushi, 2012). The assumptions limit
their applications and reduce their robustness.

Aiming at developing a clustered cell segmentation method
coping with the complexity of live cells either on shape or
light intensity in negative phase contrast images, we focus
on fusing the light intensity and cell shape information. It
gives an improved performance for clustered cell segmenta-
tion. Specifically, the fusion of the two information solves two
issues existed in negative phase contrast image segmentation.
One is the pseudo light intensity peaks caused by intracellular
organelles, which could cause oversegmentation. The other is
the reversed image contrast for cells with larger height (like
cells under division), which could cause undersegmentation.

The rest of the paper is organised as follows. In the Experi-
mental section, experimental details is introduced, including
cell culturing, cell imaging and programming software. In the
section of Principle of the clustered cell segmentation, the de-
tailed process of clustered cell detection and separation are
presented. In the Results and discussion section, the clustered
cell segmentation using the proposed method is demonstrated,
followed by the comparison and evaluation of clustered cell
segmentation among different methods.

Experimental

In this study, an established nontumorigenic breast epithe-
lial cells MCF 10A (Michigan Cancer Foundation 10A) were
cultured for the experiments. The cells were maintained in
47.5% Dulbecco’s modified Eagle’s medium and 47.5% F-12
medium supplemented with 5% horse serum, EGF (Epidermal
Growth Factor) (20 ng mL–1), hydrocortisone (0.5 µg mL–1),
Cholora toxin (0.1 µg mL–1), NaHCO3 (0.2 nM), and 1% peni-
cillin/streptomycin.

Negative phase contrast images were acquired using a phase
contrast microscope (IX71, Olympus, Japan) equipped with a
10× negative phase contrast lens. The image size is 1344 ×
1024, corresponding to the actual field of view of 900 µm ×
686 µm.

All algorithms developed in this study, including prepro-
cessing, suspected clustered cell detection and skeleton-based
clustered cell separation, were implemented in Matlab (Ver-
sion 2016b, The Mathworks, Inc., USA).

The principle of the clustered cell segmentation

In this study, the shape and light intensity information are
integrated to segment the clustered cells. The schematic of the
segmentation is shown in Figure 1. For a simulated image
shown in Figure 1(A), the preliminary cell shape information
is obtained by thresholding operation to the cell image. Then
a binarised image which indicates the preliminary shape of
cells is obtained, as shown in Figure 1(B). The boundary of
the mask can then be used to represent cell shape. Meanwhile,
light intensity of cell bodies within the preliminarily segmented
mask area can also be extracted (Fig. 1C). After that, the light
intensity information and distance transform information are
fused (Fig. 1D).

For the sake of the clustered cell separation, a skeleton-
based separation algorithm is employed. The Skeleton (green
line in Fig. 1E) of the preliminarily segmented area repre-
sents the distribution of cells in the region. The mask area can
then be separated with assistant of the graph theory. The fi-
nal step is the refinement of cell boundary detection using a
contour expansion method (Wang et al., 2015), as shown in
Figure 1(F).

Results and discussion

In this section, the detailed procedure of the proposed method is
first demonstrated, followed by the evaluation of the proposed
method.

Construction of grey-weighted distance transform

In this study, the grey-weighted distance transform (GWDT)
(Soille, 1994) was operated on the raw images to integrate
cell shape and light intensity information. For the preparation
of GWDT, cell shape information was first extracted. Instead
of using the thresholding method with a global fixed thresh-
old value, here the adaptive binarisation method was applied
(Roth & Gerhard, 2007). A raw cell image and correspond-
ing result after adaptive binarisation are shown in Figures
2(A) and (B), respectively. After that, the obtained binary im-
ages were processed by morphological close operation to re-
move the burrs near cell borders. The areas of less than 200
pixels were filtered out. The areas selected by rectangles in
Figure 2(A) are two examples of the clustered cells.
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Fig. 1. Schematic diagram of the proposed segmentation scheme. (A) A simulated image showing three contacting cells in an area. (B) The binary image
of (A), indicating the preliminary shape of the clustered cell area. (C) Mesh plot of light intensity in the area, where a spurious peak is detected. (D) Mesh
plot of the grey-weighted distance transform by integrating shape and light intensity information, where the spurious peak is eliminated. (E) The skeleton
of the clustered cell region and corresponding cell separation result. (F) Refined contours are obtained with an active contour method.

Fig. 2. Adaptive binarisation of cell images. (A) Raw negative phase contrast cell image. (B) Binary image with the adaptive threshold method. Cell shape
information is obtained by the preliminary segmentation.

The detailed process of GWDT construction is demonstrated
as follows. In a grey scale image f, take a path P going from
pixel p0 in a foreground area to pixel pm in a background area
as a m tuple (p0, p1, . . . , pm). The time tf (P) is the accumulation
of the mean intensity for any two neighbouring pixels along
the path P, given by:

t f (P ) =
m∑

i=1

f ( pi−1) + f ( pi )
2

= f ( p0)
2

+ f ( pm)
2

+
m−1∑

i=1

f ( pi ). (1)

The geodesic time tf(p0, pm) between p0 and pm is defined as
the smallest value of time for all the possible paths from pixel
p0 to pixel pm, given as

t f ( p0, pm) = min{t f (P )|P links p0 to pm}. (2)

With the definition of geodesic time, the value g(p0) at pixel
p0 in a foreground area to the background Y is defined as the
smallest value of geodesic time linking p0 to any pixel y in Y,
given as

g( p0) = t f ( p0, Y) = min
y∈Y

t f ( p0, y) . (3)

For three clustered cells shown in Figure 3(A), the cell
shape information was first extracted through the threshold-
ing method. A mask area containing the three clustered cells
was obtained, as shown in Figure 3(B). Within the mask area,
the light intensity can also be extracted (Fig. 3C). The GWDT
can then be obtained using Eq. (3), as shown in Figure 3(D).

Clustered cells detection

Before the operation of clustered cell separation, one needs
to determine clustered cells. In raw negative phase contrast
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Fig. 3. Demonstration of the construction of grey-weighted distance transform. (A) A raw image of clustered cells. (B) Binary image of the clustered cells
with a preliminarily detected mask area used to represent cell shape information. (C) Light intensity within the preliminarily detected mask area for the
three clustered cells. Within the areas, two pseudo-peaks were detected, which normally cause oversegmentation. (D) Grey-weighted distance transform
obtained by integrating cell shape and light intensity information. With the method, peaks can be correctly detected for each cell.

images, the light intensity achieves its higher value around nu-
cleus area and gradually decreases towards cell boundaries.
Therefore, cell locations can be determined by detecting the
maximum value (peaks) (Wang et al., 2015). However, due
to the existence of cell organelles, which have higher light
refractive index and hence cause higher light intensity in cell
images, the pseudo-peaks may be detected if only light inten-
sity is considered, as shown in Figure 3(C). This will lead to
oversegmentation.

In this study, instead of using light intensity, the GWDT was
applied to detect clustered cells through peak detection. The
regional maximum points were detected and taken as peaks.
The peaks were then used to represent locations for individ-
ual cells. For the clustered cells shown in Figure 3(A), three
peaks were detected with GWDT, as shown in Figure 3(D).
One can see that the integration of shape and light intensity
information helps to reduce oversegmentation.

The detection of clustered cells is demonstrated in
Figure 4. For a raw image shown in Figure 4(A), the thresh-
olding method was first applied to get the preliminary segmen-
tation. The GWDT was then constructed in the preliminarily
detected mask areas. The mask areas of clustered cells were
detected through peak detection, as shown in Figure 4(B).

Masks containing only one peak were taken as individual cell
regions, whereas the ones containing multiple peaks were
taken as clustered cell regions. In the figure, the yellow and
green mask areas correspond to the detected individual and
clustered cells, respectively.

Region skeleton-based clustered cell separation

After clustered cell detection, the next step is to perform sep-
aration of them. Here a region skeleton-based method was
proposed to separate clustered cells, including skeleton ex-
traction, skeleton thinning, graph model representation, split-
ting points searching, dividing path searching and contour
expansion.

A region skeleton is a curved line going through a mask
area and normally has the equal distance to the boundary
of the mask area. It is used to represent the topological fea-
tures of clustered cells. In this study, augmented fast march-
ing method (AFMM) (Telea & Van Wijk, 2002) was used to
extract skeletons in the mask areas. The method relies on the
evolution of the parameterised boundaries of the mask areas.
In the method, pixels along a boundary of a mask area are
first coded to be parameterised. The parameterised boundary
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Fig. 4. Detection of the clustered cells. (A) A raw negative phase contrast image. (B) Result of clustered cell detection in the grey-weighted distance map.
Green mask areas refer to suspected clustered cells whereas yellow areas refer to individual cells.

pixels are then evolved inward the mask area under a velocity
field constructed by solving an Eikonal equation. When two
pixels in the evolving boundary encounter each other and the
difference of their codes is larger than a threshold value, the
encountered pixels are transformed into a skeleton point. By
doing so, the parameterised boundary will be converted into a
skeleton for the mask area.

Take the clustered cells shown in Figure 3(A) and the pre-
liminary segmentation shown in Figure 3(B) as examples. For
the mask area, the skeleton was first obtained using the AFMM
method, as shown in Figure 5(A). The skeletons directly ob-
tained by AFMM are normally not single-pixel width, as shown
in the inset enlarged figure. Here a modified thinning algo-
rithm (Zhang & Suen, 1984; Chin et al., 1987; Holt et al.,
1987) was used to transform the preliminarily obtained skele-
tons into 8-connected components. In the thinning process-
ing, each foreground pixel is compared with eight different 3
× 3 templates (Fig. 5B). In the templates, P is the centre of the
templates, 0 and 1 are the pixels in the background and fore-
ground, respectively, and X means the value can be either 0
or 1. When a pixel in the preliminarily detected skeletons pixel
is superimposed with the centre of a template and the eight
neighbourhood pixels in the image are also matched with that
of the template, the pixel will be deleted. The eight templates
scan the foreground pixels in the image until no more fore-
ground pixel can be deleted. The remaining skeleton will be
taken as the final one for the mask area. Figure 5(C) shows the
obtained skeleton after the thinning processing.

With the obtained skeletons, the graph theory is applied to
better represent the relationship among different regions in
the mask area. Figure 5(D) shows the diagrammatic form of
the graph corresponding to the skeleton shown in Figure 5(C).

The graph is consisted of vertices and edges. The contigu-
ous vertices are linked by edges. In the construction of graphs,
the pixels in the extracted skeleton are divided into three types:
end-points, junction-points and connecting-points (Bai & Late-
cki, 2008). An end-point (V1, V2, and V3 in this case) is a pixel
at the end of a skeleton branch with only one pixel from the

skeleton in its eight neighbourhoods. A junction-point (V4) is
the intersection of different skeleton branches, with at least
three pixels in its eight neighbourhoods. All the rest pixels in
the skeleton are defined as connecting-points. The end-points
and junction-points are called vertices. The skeleton branches
connecting any two vertices are defined as edges (e1, e2 and e3).

The constructed graphs can be represented by three ele-
ments, numbered vertex set V = {V1, V2, V3}, edge set E =
{e1,e2,e3} and relations ϕ among vertices and edges, which is
given as ϕ:E→E(V) = {(u,v)|u,v � V}. In this study, a modi-
fied graph G is proposed. In the graph, the values of the GWDT
along the detected skeleton are taken as the fourth element.
The modified model G can then be expressed as

G = (V, E , ϕ, W). (4)

In the equation, W = {w(e1), w(e2), w(e3)}, where w(ei)
represents the distribution of GWDT along a skeleton branch
linking two vertices:

w(e1) = {d (V1), d ( p1), d ( p2), . . . , d ( pn), d (V4)}, (5)

where {p1,p2, . . . ,pn} are the connecting-points along the
skeleton path, and d(pi) is the value of GWDT.

In order to suppress the noise of the region boundary, the
width vector W is smoothed by a local regression and a second
order polynomial model. The local minimums of the smoothed
width vector w(ei) correspond to the turning points of the
GWDT values along the skeleton ei and are likely to be the
contacting points of cells. The distribution of GWDT values
along the three edges (e1, e2 and e3) is shown in Figure 5(E).
Two local minimums were found along the curves of w(e1) and
w(e2), corresponding to two splitting points in the cell region.
Because cells have certain size, here the skeleton branches
with length smaller than 10 pixels are ignored, like the red
curve w(e3) in Figure 5(E).

With the detected splitting points, the dividing paths were
searched to split the clustered cells by searching slope-lines
(Serrat et al., 2000). In hydrology, the water flow runs
downhill along the steepest slope, which is called slope-lines.
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Fig. 5. Demonstration of the region skeleton-based clustered cell separation. (A) A skeleton of the mask area in Figure 3b is obtained (orange curve) with
AFMM method. The inset in the bottom left corner is the enlarged area of the green dashed box. (B) Templates for the skeleton thinning operation. In the
templates, P is the centre of the templates, 0 and 1 are the pixels in the background and foreground, respectively, and X means the pixel can be either
0 or 1. (C) The skeleton after thinning operation. V1, V2 and V3 are end-points of the skeleton, and V4 is the node-point. The inset in the bottom left
corner is the enlarged area of the green dashed box. (D) Graph diagram of (C), where vertices are linked by edges of e1, e2 and e3. (E) Width distribution
curves of lines e1, e2 and e3. Two local minimums are detected on curves w(e1) and w(e2), whereas w(e3) is ignored due to its short length. (F) Dividing
paths are searched on the smoothed grey-weighted distance map. (G) Enlarged area selected by the dashed box in (F). The star mark represents the start
pixel corresponding to the local minimum of w(e1) in (E), and the points of the path are searched one by one, as shown by arrows. The right half of the
curve represents the path behind the surface. (H) 2D plot of smoothed grey-weighted distance map and dividing paths. Clustered cells are separated by
the skeleton-based method with the fused information of intensity and shape.

In morphology, slope-lines refer to the paths along which
the light intensity gradient achieves its highest values
along the path. Assuming that the GWDTs are mountains,
slope-lines split the mountains and realizes the optimal

separation of contacting cells. In this paper, slope-lines are
determined by searching the pixels with minimal intensity
level in their eight-neighbourhood. The path searching
starts from the splitting points. Two opposite pixels in the
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Fig. 6. Comparison of cell segmentation with grey-weighted distance transform and Euclidean distance transform. (A) Raw negative phase contrast
image of an elongated cell. (B) Binary image of the elongated cell with only shape information. (C), (F) Mesh plot of Euclidean distance transform (C) and
grey-weighted distance transform (F). (D), (G) Distribution of values along the skeleton in Euclidean distance transform (D) and grey-weighted distance
transform (G), which corresponds to the red curves in (C) and (F). A local minimum was detected in (D). (E), (H) Segmentation results with distance
transform and grey-weighted distance transform, respectively. The distance transform causes oversegmentation, whereas the grey-weighted distance
transform gives a correct segmentation.

eight-neighbourhood which have smallest intensity value
will be taken as the next point on the path, leading the
directions of the path. Along the two directions, pixels with
minimal intensity in eight-neighbourhood of current pixels
will be added onto the path until it reaches the background, as
shown in Figure 5(G). The separation results for the clustered

cells in Figure 3(A) are shown in Figures 5(F) and (H) for 3D
and 2D images, respectively.

Compared with the methods which solely rely on the shape
or light intensity, the combination of GWDT and cell skeleton
reduces oversegmentation and improves cell separation accu-
racy. Here we take a cell in Figure 6(A) as an example. The
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Fig. 7. Optimisation of cell boundary detection. (A) Initial contours extracted from preliminarily segmented mask areas. Yellow contours refer to the
initial contours of individual cells, while the green ones refer to the initial contours of clustered cells after the skeleton-based separation method. (B) Result
of the optimised contour detection after contour expansion operation.

Table 1. Comparison of clustered cell separation with four different methods.

Methods
Number of

cells
Correct seg-
mentation Oversegmentation Undersegmentation Accuracy rate PPV Recall

Watershed method (Meyer,
1994)

279 93(23.7%) 20(5.1%) 71.0% 75.00% 93.31%

Intensity-based method
(Wang et al., 2015) 393

315 37(9.4%) 40(10.2%) 80.2% 89.49% 88.73%

Marker-controlled
watershed method (Song
et al., 2015)

269 97(24.7%) 29(7.4%) 68.5% 73.50% 90.27%

The proposed method 337 24(6.1%) 31(7.9%) 85.8% 93.35% 91.58%

preliminarily detected mask area is shown in Figure 6(B). The
mesh plot of the distance transform is shown in Figure 6(C).
One can see that there is a local minimum of the width dis-
tribution along the detected skeleton (Fig. 6D), which induces
oversegmentation (Fig. 6E). However, in the proposed method,
which combines GWDT and cell skeleton, the oversegmenta-
tion can be avoided. The mesh plot of the GWDT of the mask
area for the cell is shown in Figure 6(F). Within the mask
area, only one peak is detected. Accordingly, the result shows
that there is no local minimum for the grey-weighted distance
transform value along the skeleton (Fig. 6G). Therefore, the
cell can be successfully detected (Fig. 6H).

After the preliminarily segmented mask areas were sepa-
rated with the proposed method, the contours of the separated
subareas are first extracted, as shown in Figure 7(A). To get
the optimised cell boundary detection, the contour expansion
method was applied to the contours, as what we did previously
(Wang et al., 2015). In the contour expansion method, the con-
tours are first parameterised. An energy function involving
light intensity and geometries of the contours are constructed.
The final contour is obtained by iteratively minimising the to-
tal energy of the evolving contour. Driven by the field of light
intensity, the contour converges towards and will stop at the

actual cell boundary. The optimised cell boundary detection is
shown in Figure 7(B).

Comparison with other methods

To validate the proposed method, a comparison of clustered
cell segmentation was implemented with several other popu-
lar methods, including the watershed method (Meyer, 1994),
an intensity-based method (Wang et al., 2015), a marker-
controlled watershed method (Song et al., 2015), and the pro-
posed method with 393 clustered cells. The result is shown in
Table 1.

Among the four methods, the proposed method achieves
85.8% accuracy rate, followed by the intensity-based method,
which gives 80.2% accuracy rate. The other two methods
provide a lower accuracy rate of around 70%. Authors want
to note here that all cells involved in the evaluation in this study
(Table 1 and whole cell evaluation in Fig. 9) were manually
confirmed one by one. Because all the sample images were
captured using time lapse phase contrast microscope with a
certain time interval, all cells can be manually distinguished
with the assistance of their adjacent frames. This guarantees
the validity of the ground truth selected for evaluation.
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Fig. 8. Comparison of cell segmentation with different methods. (A) Raw negative phase contrast images of candidate clustered cells. (B)–(E) Segmentation
results by watershed method (Meyer, 1994), marker-controlled watershed method (Song et al., 2015), intensity-based method (Wang et al., 2015) and
the proposed method, respectively.

Compared with the other three methods, especially the wa-
tershed method and the shape-based method, the proposed
method has much lower oversegmentation rate. Figure 8
shows the comparison of some typical examples of clustered
cell separation. The first column shows the raw images of typ-
ical clustered cells, including mitotic cells, elongated cells and
clustered cells.

Among the four methods, the watershed method (Meyer,
1994) and the marker-controlled watershed method (Song
et al., 2015) can easily induce oversegmentation. Both meth-
ods are shape-based methods. The light intensity informa-
tion within the mask areas is ignored. This will cause over-
segmentation, especially when it comes to the mitotic cells
which normally have much higher image contrast. The light
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Fig. 9. Whole cell evaluation of the proposed method. The stacked bars
show cell number of correct segmentation, under segmentation and over
segmentation, scaled by the left vertical axis. The line plots show the PPV
and recall, scaled by the right vertical axis.

intensity-based method (Wang et al., 2015) took only the
light intensity information into account. When there are mul-
tiple pseudo-peaks, especially to elongated cells, the method
will cause oversegmentation. The proposed method integrates
both light intensity information and the shape information and
achieves the improved segmentation results, as shown in the
fifth column in Figure 8.

Whole image evaluation

The proposed method was implemented on the whole image of
40 negative phase contrast images. Undersegmentation, over-

segmentation, corresponding positive predictive value (PPV)
and recall were shown in Figure 9. The overall accuracy rate,
PPV and recall of cell segmentation using the proposed method
are 97.16%, 98.82% and 98.64%, respectively.

The image segmentation of four negative phase contrast im-
ages is demonstrated in Figure 10. For four raw phase contrast
images shown in Figure 10(A), corresponding segmentation
results are given in Figure 10(B). Under segmentation and
over segmentation are marked by yellow and green arrows,
respectively.

The accuracy rate of the algorithm is limited by the initial
segmentation of binarisation and the skeleton-based separa-
tion method. The performance of adaptive binarisation in the
initial segmentation needs to be improved, especially when cell
density is high. A possible way to further improve the accuracy
rate of the clustered cells could be the application of the deep
learning or machine learning methods.

Conclusion

In summary, we have developed a new method for clustered
cell segmentation in negative phase contrast images of MCF
10A human breast cells. This is done by fusing cell shape and
light intensity information through the construction of grey-
weighted distance transform (GWDT). The method consists
of two steps. In the first step, the clustered cells are detected
by peak detection in GWDT. This avoids the pseudo-peaks in-
duced by intercellular organelles and reversed image contrast
for cells with large height. The second step is the separation of

Fig. 10. Cells segmentation results on whole cell images. (A) Raw negative phase contrast images of MCF 10A cells. (B) Segmentation results with the
proposed method. Under segmentation and over segmentation are pointed by yellow and green arrows, respectively.
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clustered cells. To do this, a modified region skeleton method
was proposed. The value of GWDT along the detect skeletons
was used to separate clustered cells. Compared to the widely
applied shaped-based or light intensity-based methods, the
proposed method provides more accurate detection and hence
better separation of clustered cells. The achieved accuracy rate
is 85.8% and 97.16% for clustered cells and all cells, respec-
tively, in negative phase contrast images.
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