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Abstract The expansion of Neolithic stable isotope studies in France now allows
distinct regional population-scale food patterns to be linked to both local environment
influences and specific economic choices. Carbon and nitrogen isotope values of more
than 500 humans and of animal samples also permit hypotheses on sex-biased human
provenance. To advance population scale research, we here present the first study that
draws together carbon (C), nitrogen (N), sulphur (S) and strontium (Sr), dental calculus,
aDNA, and palaeoparasitology analysis to infer intra-population patterns of diet and
provenance in a Middle Neolithic population from Le Vigneau 2 (human = 40; fauna =
12; 4720–4350 cal. BC) from north-western France. The data of the different studies,
such as palaeoparasitology to detect diet and hygiene, CNS isotopes and dental calculus
analysis to examine dietary staples, Sr and S isotopes to discriminate non-locals, and
aDNA to detect maternal (mtDNA) versus paternal lineages (Y chromosome), were
compared to anthropological information of sex and age. Collagen isotope data suggest
a similar diet for all individuals except for one child. The provenance isotopic studies
suggest no clear differences between sexes, suggesting both males and females used the
territory in a similar pattern and had access to foods from the same environments.

Keywords Dietary reconstruction . Human provenance . Isotopes . Dental calculus .

Palaeoparasitology . Ancient DNA

Introduction

Regional Background

Over the last 15 years, the diet of individuals and populations from the Neolithic period
in France has been studied with stable isotope analyses on human remains. Carbon
(δ13C) and nitrogen (δ15N) stable isotope data have been used to define distinct regional
food patterns linked to both local environment and specific economic choices, which
has led to hypotheses of differential mobility of females during the Middle Neolithic
(ca. 4500–3900 cal BC) (Goude 2007; Goude et al. 2013). Carbon and nitrogen stable
isotope ratios of livestock vary due to local climate and substratum (e.g. temperature,
precipitation, forest cover, N availability in soil, soil pH). ‘These point to a gradual
change of values (from southern to northern latitudes) that impact the signals of
environment and food choice (Goude and Fontugne 2016), thereby suggesting that in
France, Middle Neolithic human groups have a significant intake of animal protein
from terrestrial ecosystems, but also highlighting intra- and inter-group variability.
Isotopic profiles from several individuals, mainly located in the western part of the
French Mediterranean, have aligned more toward agriculture with minimal animal
protein consumption (Herrscher and Le Bras-Goude 2010; Le Bras-Goude et al.
2009). High animal protein intake was commonly recorded in central (Goude et al.
2013) and northern France (Rey et al. 2017). Although no ichthyological remains were
found, aquatic resources are an isotopically detectable part of human diet during the
Middle Neolithic, but high freshwater protein diets have only been detected in a few
individuals, and this is still in dispute (Rey et al. 2017). As demonstrated in other
European regions, marine resources appear neglected at the beginning of the Neolithic
(Richards and Schulting 2003; Salazar-García et al. 2018). However, recent data from
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Southern France re-evaluated such hypotheses; stable isotope data on a few individuals
support the consumption of marine protein (Provost et al. 2017), and are compatible
with previous work performed in the region on shells and fish remains (e.g. Cade 1998;
Desse-Berset and Desse 1999). In other Western European regions, and unlike the
Early Neolithic, the Middle Neolithic shows a wider variety of subsistence patterns
(e.g. Salazar-García et al. 2016). In northern France at the sites of Gurgy and
Pontcharaud (Fig. 1), it has been argued that stable isotope variation between males
and females shows food specificities and/or of different geographic origin (e.g. wider
range of resources exploited by female) (Goude et al. 2013; Rey et al. 2017). In
southern France, in addition to carbon and nitrogen data, preliminary strontium isotope
analysis (87Sr/86Sr) supports the hypothesis of different mobility patterns (Goude et al.
2012). These results can be linked to an economic system (i.e.more mobile pastoralists
in the Garonne area versus less mobile agriculturalists in the Languedoc area) in
agreement with archaeological (e.g. presence of milling material) and burial (domestic
versus funerary) observations (Loison and Schmitt 2009; Tchérémissinoff et al. 2005).
The quantity and preservation of human remains allows researchers to study the
biological and social effects of Middle Neolithic agropastoralism intensification. In
particular, the question of variation in protein intake between groups and within groups
suggests a link between access to local resources and mobility/origin of individuals.

The Archaeological Site of Le Vigneau 2

The necropolis site of Le Vigneau 2 (Pussigny, department of Indre-et-Loire, Centre Val
de Loire region; Fig. 1), excavated in 2013, was an opportunity to investigate human
diet and mobility owing to the location (area not previously studied with biochemical
methods) and biological and economic records available. The site is established on a
White Tuffeau substrate, a micaceous Turonian chalk commonly used for local con-
struction, ca. 4 km from the current path of the La Vienne stream. Several features
associated with funeral activities were discovered during a development-led archaeol-
ogy campaign along the new TGV line Tours–Bordeaux. These features are located on
a south-western slope of a dry valley, near a portal tomb on the valley floor. The earliest
phase of the site consist of 102 graves dated to the Middle Neolithic (4720–
4350 cal BC), and include a dog’s burial. They belong to the Chambon culture
according to the associated goods, especially the pottery, and provide direct dates from
human bone collagen 14C (Coutelas et al. 2015). Ninety-two graves contained a single
individual, and ten others contained two individuals. The graves were clustered in three
groups probably reflecting socio-economical aspects rather than a geographical distri-
bution: (a) a sophisticated internal arrangement such as a cist or wooden frame,
corresponding to the ‘richest’ with most of the grave goods, (b) an average ‘family’
graveyard, and (c) simple pits with graves of children and females in a pit without any
grave goods. Ovis remains were also present as funeral offerings, with up to three bones
per an individual grave. This Middle Neolithic graveyard was interpreted as a cemetery
of shepherds, buried with their domestic animals, lithic tools for butchering and
skinning activities, arrowheads for hunting, and some ceramics for more domestic
purposes (Coutelas et al. 2015).

To reconstruct subsistence strategies and provenance from the Middle Neolithic
population of Le Vigneau 2, we carried out a multi-proxy study: bone collagen carbon
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(C), nitrogen (N), and sulphur (S) stable isotope ratio analysis, palaeoparasitological
study, microremains from dental calculus study, aDNA tests, and teeth enamel Sr
isotope ratio analysis. This represents the first time that all of these different approaches
are carried out together, which considerably strengthening our knowledge of first
farmers’ dietary behaviour, while building life histories of individuals, particularly of
male versus females. The potential of such multi-proxy comparison for future investi-
gations in the region will also be evaluated.

Bioarchaeological Materials and Methods

Anthropological and Archaeozoological Remains

The Le Vigneau 2 archaeological necropolis yielded 102 tombs with 112 individuals
including adults and juveniles. Osteological and funerary feature descriptions were
performed in situ during the excavation, but a few traits were only identified during
laboratory work (details on individuals sampled for this study can be checked at supp.
Mat. 1). When possible, we performed sex diagnosis of coxal bone by using morpho-
metric and probabilistic methods (Bruzek 2002; Murail et al. 2005). Among the

Fig. 1 Location of the site and sites mentioned in the text for comparison: 1 — Gurgy, Paris basin area (Rey
et al. 2017), 2 — Gougenheim, Alsace area (Goude et al. 2015), 3 — Pontcharaud, Auvergne area (Goude
et al. 2013)
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68 adults excavated in the necropolis, 26 had preserved coxal bones and were found to
be 14 females and seven males. Adults’ age was estimated from coxal bones too
(Schmitt 2005), and juveniles’ age was estimated from both tooth growth pattern
(Moorrees et al. 1963) and bone maturation (Scheuer and Black 2000). Sixty-eight
adults and 37 juveniles were identified, but the collection had no individuals from 15 to
19 years, and three aged less than 1 year. Other biological features were also identified,
such as teeth non-metric traits (Scott and Turner 1997). Forty percent of the individuals
present shovel shape incisors, found in five double burials that could be argued to
belong to family groups. Calculus deposits and dental caries were identified on several
individuals (Dobney and Brothwell 1987; S. W. Hillson 2001), but in general the
impact of these pathologies on the human group from Le Vigneau 2 was low. Animal
remains were only found in a specific context, i.e. they are buried alone (dogs) or
associated with the deceased, even in the same content. Only a few species were
identified, mainly sheep including new-born specimens (Barone 1999). The lambs
are mainly found as funerary deposit in female tombs (one of them even had three
contemporary offerings), but the low ratio of human gender determination does not
allow us to associate all fauna species with human gender. Additionally, one dog was
buried individually; a burial of a child had a young squid buried with it, and wild
animal remains were only identified as grave goods: two perforated pendants in a split
canine of a boar, a complete one, and a bear tooth (Coutelas et al. 2015). Absence of
consumed animals makes it difficult to interpret the economic and dietary information
usually discussed from archaeological faunal remains.

Stable Isotope Ratios from Bone Collagen

Bone collagen is a protein in which the chemical composition originates mainly from
dietary protein (e.g. Ambrose and Norr 1993); therefore, its analysis will give infor-
mation on protein consumption. It is also important to take into consideration when
interpreting collagen data that bone remodeling during the life of the individual,
involving phases of bone resorption and bone formation, and regulated by hormonal
and local factors, can influence the resulting values (Hill and Orth 1998). Bone-
remodeling velocity is dependent on sex, age, and genetic characteristics (Han et al.
1997). The remodeling of growing sub-adults is faster than that of adults (Valentin
2003), implying that chemical components of food and environments are registered
faster in younger individuals, and that bone composition reflects a shorter time span for
juveniles than for adults (ca. 15–20 years for adults) (Hedges et al. 2007).

Carbon and nitrogen isotope ratios (δ13C, δ15N) have been used widely in studying
the Neolithic (e.g. Salazar-García et al. 2018). In bone collagen, carbon and nitrogen
isotope ratios help to detect the environment from which food resources are coming
(e.g. terrestrial versus aquatic) and the proportion of animal protein in the individual
diet (e.g. DeNiro and Epstein 1978; van der Merwe 1982; Schoeninger and DeNiro
1984; Bocherens and Drucker 2003). The interpretation of aquatic resource consump-
tion should be made with caution if stable isotope values are not clearly from a marine
source, as fish from estuarine or brackish waters can have lower nitrogen isotopic
values than expected (Salazar-García et al. 2014). Applied to different past human
communities, this method has allowed researchers to track the Neolithisation dietary
transformation (e.g. Richards and Schulting 2003), to differentiate female and male
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dietary practices (Ambrose et al. 2003), or to detect specific social status (Prowse et al.
2005). More recently, sulphur isotope analysis (δ34S) was recognized as another useful
tool in complementing carbon and nitrogen (Nehlich 2015), particularly to document
the provenience of individuals (Richards et al. 2001; Vika 2009) and the potential
consumption of marine or freshwater resources (Nehlich et al. 2010). The combination
of these three isotopic ratios in bone collagen has shown its relevance to study the
potential access to freshwater resources (Drucker et al. 2016), as well as cultural
behaviors (de Becdelievre et al. 2015; Nehlich et al. 2011).

The preservation of osteological material at Le Vigneau 2 site allowed sampling of
40 humans (11 females, six males, 13 non-sexed adults, and six juveniles > 4 years old)
and remains from 12 animals (ten lambs, one adult sheep, and one dog) for carbon and
nitrogen isotope ratio analysis. From this initial corpus, 34 humans and 12 animal
remains successfully provided enough collagen to get sulphur isotope ratios (cf. suppl.
Mat. 1). Collagen was extracted according to a combination of Longin (1971),
Bocherens (1992) and Richards and Hedges (1999) methodologies at the UMR 7269
LAMPEA laboratory in Aix-en-Provence (France). After demineralization of bone in
HCl (0.5 M, 5 °C), samples are rinsed in H2Od and soaked in NaOH (20 h, room
temperature). Collagen pieces are then rinsed in H2Od and solubilized in weak acid
(HCl pH 2; 48H, 70 °C). Solubilized collagen is then filtered with an EzeerFilter®
device, and the filtered residue is frozen (−65 °C, a few hours) and freeze-dried.
Between 0.90 and 1.10 mg of freeze-dried collagen is loaded separately into aluminum
tin capsules for carbon and nitrogen, and ca. 10 mg for sulphur (plus vanadium
pentoxide catalyst). Elemental composition and stable isotope ratios are analyzed by
EA-IRMS (Europa scientific elemental analyzer) and 20–20 IRMS (Iso-Analytical Ltd.
Crewe, UK). Laboratory standards used are calibrated against the IAEA international
standard for all measurements; measurement error is 0.1‰ for carbon and nitrogen and
0.2‰ for sulphur.

Strontium Isotope Ratios from Teeth Enamel

Strontium isotopic ratio (87Sr/86Sr) analysis of skeletal material is a common method
for detecting provenance and mobility among past humans (e.g. Strauss et al. 2015;
Sarasketa-Gartzia et al. 2018; Villalba-Mouco et al. 2018). Since radiogenic isotope
87Sr forms by radioactive decay from rubidium (87Rb), the 87Sr/86Sr signature of a
specific location is determined by the underlying bedrock age and its Rb content. Older
geological formations such as granite rocks have higher 87Sr/86Sr values than younger
geological formations such as volcanic rock. Strontium enters ecosystems and mammal
tissues without fractionation (Faure and Powell 1972; Graustein 1989), being a specific
geological strontium signature incorporated into body hard tissues by substituting
calcium (Ericson 1985). The strontium is ultimately derived from the Sr of the bedrock,
soils, and water where individuals were living when the teeth were formed, as they
have incorporated the Sr mainly through food but also water (Bentley 2006).

Among skeletal tissues, tooth enamel is the preferred substrate, since it is resistant to
diagenesis from the burial environment (Budd et al. 2000; Hoppe et al. 2003). Enamel
is highly mineralized (96%), mainly composed of apatite, and has no turnover during
life (Nanci 2013). Therefore, tooth enamel stores information from its formation during
childhood (Humphrey et al. 2008). This means that it is potentially possible to identify
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various changes occurring during infancy and childhood such as birth, breastfeeding,
weaning, provenance, and territorial mobility (e.g. Humphrey et al. 2008). Specifically,
in the case of provenance and territorial mobility it is useful to compare teeth from a
single individual that reflect different moments of its life. For example, by comparing a
P2/M2 with an M3, it is possible to detect differences in 87Sr/86Sr if the individual lived
during childhood (P2/M2) in a geological substrate different to that in which it lived
during early adulthood (M3). Furthermore, the analysis of the 87Sr/86Sr ratio in tooth
enamel from a large number of individuals from one population can tag possible non-
locals. However, and ideally, in order to retrieve more detailed information on territorial
mobility, bioavailable Sr mapping is necessary (Price et al. 2002; Evans et al. 2010).
Unfortunately, the prohibitive cost of this type of analysis makes it difficult to carry out
local detailed bioavailable Sr mapping.

From Le Vigneau 2, we selected 31 individuals (ten females, six males, 14 non-
sexed adults and one individual aged between 10 and 14 years old) for Sr isotope ratio
analysis on enamel. We made sure that we sampled two teeth per individual: one that
mineralized during an early stage of life (P2 or M2; childhood) and one that mineral-
ized later during early adulthood (M3). We defined tooth crown age formation using the
London atlas of human tooth development, specifically the median data published with
the beginning of the crown starting at Coc (cups outline complete) and the end of the
crown finishing at Crc (crown completed) (S. J. AlQahtani et al. 2010): P4 crown
growing between 3.5 and 7.5 years old, and M2 crown growing between 4.5 and
8 years old. The M3 growth pattern is variable (e.g. Engstrom et al. 1983; Liversidge
2008; Tuteja et al. 2012); here we consider that, generally but not exclusively, the
crown grows between 8.5 and 17.5 years of age, even though eruption can appear in
later adulthood stages or not happen at all (cf. supplementary material 2).

Sample preparation and analysis was carried out directly in dedicated facilities at the
Department of Geology of the University of Cape Town (South Africa), as described
herein. Enamel samples were taken longitudinally to average the time formation of the
entire dental piece. Prior to analysis, enamel surfaces were cleaned by abrasion, rinsed,
and ultrasonicated for 20 min in MilliQ water. Diamond drill bits were cleaned with
ethanol and ultrasonicated in MilliQ water between samples to avoid cross-
contamination (Budd et al. 2000). After this, ca. 20 mg of cleaned enamel sample
was digested with 2 mL of distilled 65% HNO3 in a closed Teflon beaker placed on a
hotplate at 140 °C for an hour. Digested samples were then dried and dissolved again in
1.5 ml of 2 M distilled HNO3. These redissolved samples were centrifuged at 4000 rpm
for 20 min, and the resulting supernatant was later used for strontium solution separa-
tion chemistry. A separate fraction for each sample was used to calculate the Sr
concentration; 88Sr intensity (V) regression equation was built with the SRM987
standard from the NIST (National Institute of Standards and Technology, Gaithersburg,
MD, USA).

Strontium atoms were isolated with 200 μl of Eichrom Sr Spec resin loaded in 2 ml
Bio-Spin Disposable Chromatography Bio-Rad Columns following the method de-
scribed in Pin et al. (1994). The separated strontium fraction for each sample was dried
down, dissolved in 2 ml 0.2% distilled HNO3, and diluted to 200 ppb for isotope
analysis. 87Sr/86Sr ratios were measured using a NuPlasma HR multicollector
inductively-coupled-plasma mass spectrometer (MC-ICP-MS). Sample analyses were
referenced to bracketing analyses of SRM987, using a 87Sr/86Sr reference value of
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0.710255 from the NIST. All strontium isotope data are corrected for isobaric rubidium
interference at 87 amu using the measured signal for 85Rb and the natural 85Rb/87Rb
ratio. Instrumental mass fractionation was corrected using the measured 86Sr/88Sr ratio,
the exponential law, and a true 86Sr/88Sr value of 0.1194. Results for repeated analyses of
an in-house carbonate standard processed and measured with the batches of samples in
this study (87Sr/86Sr = 0.708936; 2 sigma 0.000041; n = 33) are in agreement with long-
term results for this in-house standard (87Sr/86Sr; 0.708915; 2 sigma 0.000047; n = 125).

Dental Calculus Microremains

Dental calculus— oral plaque that has been hardened by salivary calcium phosphate—
is an increasingly important material used for several techniques in the fields of
prehistory and archaeology. Dental calculus is predominantly composed of mineralized
plaque biofilm. This material has been shown to contain environmental and dietary
remains such as starch grains, phytoliths, lipids, proteins, and DNA from plant and
animal foods. Once environmental and dietary remains have been detected, in many
cases they can be identified molecularly or morphologically to the plant or animal taxa
(family, genus, and sometimes species) that produced them (e.g. Armitage 1975; Henry
and Piperno 2008; Warinner et al. 2014; Power et al. 2015a). As dental calculus is a
stable context that is believed to be sealed from taphonomy, environmental and dietary
remains are believed to be relatively isolated from taphonomic processes. Dental
calculus allows a unique insight into diet, including foods underrepresented by conven-
tional approaches and also other types of materials that leave the mouth after being
masticated (Power et al. 2015b).

For this study, 11 samples of dental calculus were taken (sup. Mat. 3) and then later
processed at the Plant Foods in Hominin Dietary Ecology laboratory in the Max Planck
Institute for Evolutionary Anthropology. After weighing, we added 25 μl of 10%
hydrochloric acid to the calculus samples for 0.5 to 3 h. The samples were then
centrifuged at 1691×g (Heraeus MEGAFUGE 16 with a microcentrifuge rotor) for
10 min, and then about 100 μl of supernatant was decanted and replaced with distilled
water. This was repeated three times to remove the hydrochloric acid. After the second
decanting, they were refilled with a 25% glycerine solution. We examined each slide
under brightfield and cross-polarized light on a Zeiss Axioscope microscope at 400×
magnification. To address the possibility of contamination, processing was done in a
lab subject to a weekly regime of laboratory cleaning in addition to sediment and blank
slide testing (see more specifically Power et al. 2015b, Power et al. 2016).

Palaeoparasitology

Standard palaeoparasitological analyses were conducted to retrieve eggs of gastroin-
testinal parasites, with the aim of accessing the health status of the population, and
providing data on the lifestyle (e.g. diet, hygiene) of the individuals. Ten sediment
samples taken from under the pelvis of the skeletons were prepared following the three-
step RHM protocol (Rehydration-Homogenization-Microsieving), as recommended in
Dufour and Le Bailly (2013). Sample analyses were performed using light microscopy
(Olympus BX-51) with magnifications between ×100 and ×600 (UMR 6249 Chrono-
environnement, France).
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Ancient DNA

Ancient DNA analysis was performed in order to assess maternal (mitochondrial DNA)
vs. paternal (Y chromosome) lineages, aiming to reconstruct matrilocal or patrilocal
systems. Ancient DNA analyses were not anticipated before the excavation, so Le
Vigneau 2 individuals were not excavated with aDNA precautionary care. Since
petrous bones were targeted to obtain maximal aDNA recovery, only three individuals
delivering enough preserved petrous bone were submitted to palaeogenetic analyses (cf.
supplementary material 1). The petrous bones sampled were systematically
decontaminated, i.e. scraped, cleaned with bleach, and subsequently exposed to UV
radiation for 20 min on each side. All established aDNA guidelines were then followed
to minimize contamination during all subsequent steps of analyses conducted in the
aDNA facilities of the UMR PACEA (Bordeaux University). Fine-textured powder was
collected from the inner part of the petrous bone by grinding it with an engraving cutter
burr attached to a Dremel® drill. Powder was decontaminated through bleach incuba-
tion (15 min incubation with rotation at room temperature in 1 ml of 0.5% sodium
hypochlorite solution) and then washed 3 times with 1 ml water to remove residual
bleach. Powder was then incubated overnight in lysis buffer (0.5 M EDTA, pH 8,
25 mg/ml proteinase K, and 0.5% N-Lauryl sarkosyl). The procedure of Allentoft et al.
2015, which uses the MinElute kit from Qiagen, was then followed to extract the DNA.
A combination of 18 mitochondrial and 10 Y chromosome SNPs, permitting the
characterization of major maternal and paternal lineages known in European popula-
tions, were typed through one multiplex using MALDI-TOF MS-based SNP genotyp-
ing (iPLEXTM Gold technology, Sequenom, Inc., San Diego, CA, USA). All primers
used for these experiments and procedure details are available in Rivollat et al. (2015).
The mitochondrial first hypervariable region (HVR-I, nps 16,024–16,380) was targeted
using four overlapping fragments (HVR-Ia/b/c/d), following the procedures described
in Rivollat et al. (2015), to determine the maternal haplotypes of the individuals.
Samples were assigned to mitochondrial haplogroups and haplotypes using the com-
bined information of HVR-I and coding region variation, following the phylogenetic
classification updated by van Oven and Kayser (2009) (PhyloTree Build 17;
http://www.phylotree.org).

Results and Discussions

Diet

Ancient diet was assessed in this study by comparing results from stable isotope,
calculus, and palaeoparasitological analysis. These different methodologies have the
advantage of exploiting various bioarchaeological materials (bone, teeth calculus,
burial sediment) to increase the probability (i) of detecting food behaviour signals,
and (ii) of providing evidence of a wide range of food sources. All 52 bone collagen
samples provide both elemental composition and C:N elemental quality control ratios
compatible with the range we are using (DeNiro 1985; van Klinken 1999) (supp. Mat.
1). Faunal carbon and nitrogen stable isotope ratios are normally used to establish a
reference baseline for the local environment and chronological period (e.g. Goude and
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Fontugne 2016). In the case of Le Vigneau 2, several fauna species were found in the
burials (young sheep dominating the assemblage), some of which appear symbolically
deposited and therefore challenging the interpretation of human data. The isotopic data
of the newborn lambs (δ13C: −22.8 to −21.5‰; δ15N: 7.1 to 7.3‰; n = 4) are consistent
with the adult sheep individual (18 months; δ13C: −21.4‰; δ15N: 6.7‰). Both carbon
and nitrogen values of these domestic specimens are consistent with herbivore data
commonly recorded in northern France for C3 terrestrial environments (Goude and
Fontugne 2016). The range of values of the other lambs (3 and 9 months) is wider
(δ13C: −23.4 to −21.4‰; δ15N: 4.7 to 7.4‰; n = 6). For these age categories, we would
have expected higher nitrogen ratios due to milk consumption (Balasse et al. 1997), or
at least similar values (already weaned) to those of adult and neonates. However, part of
the animals of these age categories show lower nitrogen values (Fig. 2). To investigate
this observation, a specific zooarchaeological study would help (see e.g. Balasse et al.
2002; Balasse 2003). In any case, for this human-focused study we will simply argue
that this group of fauna is potentially from weaned specimens that might have
consumed plants/fodder with low δ15N values, such as legumes such as lucerne,
clover, vetch. or lupine (Virginia and Delwiche 1982). The case of the dog (lower
δ15N than the human group) indicates similarities with several Middle Neolithic sites,
and could reflect a consumption of human refuse with less animal protein than human
food (Goude and Fontugne 2016).

Human data highlights limited isotopic variability independent of the sex, age, or
other biological (tooth wear, calculus presence) and archaeological (ornaments, pres-
ence of shell) criteria: δ13C: −21.2 to −20.1‰; δ15N: 9.1 to 11.9‰; n = 40 (supp. Mat.
1). These isotope values show that humans based their diet on terrestrial resources.
Except for a juvenile individual, the rest of the human group also shows a higher
trophic position than that of the fauna studied (Δ13C: 1.8‰;Δ15N: 3.1‰), indicating a
significant consumption of animal protein (Fig. 2). These results agree with preliminary
observations proposed by the zooarchaeological study, highlighting an economy turned
toward pastoralism and sheep herding instead of agriculture.

An immature individual (LVH28), aged ca. 6 years old, shows a higher δ15N (+1.9‰)
compared with the rest of the human group. In general, the juvenile groups of 3–5 and 6–
9 years old show a range of data slightly wider (Δ13C: 1.1‰; Δ15N: 2.5‰; n = 6) than
the adolescents and adults. The biological characteristics of these age categories, such as
their generally low body mass index (egg. Rolland-Cachera et al. 1991; Cole et al. 2000;
Martinson et al. 2015), could be one of the explanations for the variability observed,
knowing that growth and physiological factors can have an impact on protein synthesis
(e.g. de Luca et al. 2012). The bone and skull remains of the immature LV H28 were not
well-preserved enough to provide health status data, so physiological/pathological hy-
pothesis can be suspected but not supported by any evidence. Another explanation for
these values, from the dietary point of view, could be that the immature consumed
resources with high δ15N, such as meat of other terrestrial animals not consumed by
the rest of the population (e.g. pig, commonly recorded in other northern Neolithic sites)
and/or freshwater fish. None of these resources was found on the site during the
excavation, but it should be kept in mind that the funerary context may misrepresent
the economical practices from the population buried at the funerary site.

The eleven samples of calculus analyzed produced a variety of microremains
including starches, phytoliths, calcium oxalate, and fungal and invertebrate remains.
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The remains derive from Triticeae seed, an unidentified non-Triticeae starchy plant, a
form of leafy vegetable, fungi, mites, micro-charcoal, and various other non-dietary
particles. As this technique is an emerging method, there is no Neolithic population to
compare results with; however, the samples suggest a relatively homogenous diet. If
assemblages are compared with reference populations from other earlier European
foraging populations (Henry 2010; Power et al. 2016), Le Vigneau 2 shows on average
a higher intensity in plant foods than Chalcolithic calculus per mg (Fig. 3; Power et al.
2014) but lower than Magdalenian samples (Henry et al. 2014; Power et al. 2015a). In
terms of diversity, Le Vigneau 2 has the least diversity, although the small sample size

Fig. 2 a and b. Bone collagen stable isotope ratios
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must be kept in mind (Fig. 3). The relative homogeneity observed in Le Vigneau 2
samples is consistent with a consumption pattern focused on few species, probably
associated to agricultural practices, although wild species probably were consumed too.
Palaeoparasitological microscopy did not allow the detection of parasite eggs. The
abundance of mineral particles and the absence of organic matter in the prepared
samples suggests taphonomic processes are responsible for the lack of results.

Mobility and Provenance

In order to assess both provenance and territorial mobility from these populations, we
coupled sulphur stable isotope with strontium isotope analysis. The first gives infor-
mation on geography and proximity to the coastline, while the second give information
about the association of humans to specific geologies and can help discern locals from
non-locals. We also carried out aDNA analysis to get information on ancestry from the
individuals studied.

We assessed S isotopic values from 46 collagen samples. Of them, 41 exhibited
good preservation indicators (%S, C:S, N:S) (Nehlich and Richards 2009); the remain-
ing five (two animals and three humans) are excluded from the interpretation (supple-
mentary material 1). Animal sulphur isotope values vary by age (Fig. 2b): adult sheep,
dog, and two lambs of 3 months show the lowest values (from 9.4 to 11.5‰), while the
rest of the lambs show values ranging from 12.5 to 15.2‰. Moreover, there is a
significant correlation (p < 0.05; Pearson correlation; Statistica 9.1 ®) between δ34S

Fig. 2 (continued)
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and δ15N for all ovis samples; the animals with lowest nitrogen values also show the
lowest sulphur isotopic ratios, which could be related to different breeding/feeding
areas, and is perhaps explained by animal trade.

For humans, the sulphur isotope ratios range from 8.0 to 14.9‰, with slight
distribution variations according to sex and age, but with no significant statistical
difference. Most of the human values fall within the onsite fauna range. When this
data set is compared with published data from Mesolithic sites and modern food
samples (only data available) from elsewhere in France (Camin et al. 2007;
Schellenberg et al. 2010; Drucker et al. 2016), we observe higher ratios than what
was known up to now in this inland context (Fig. 2b). The local geology
(http://infoterre.brgm.fr/viewer/MainTileForward.do#) does not provide any clue as to
why the existence of this high δ34S is recorded in most of the archaeological samples.
High δ34S ratios can be found in geological contexts rich in gypsum or barite (O.
Nehlich 2009), or in coastal environments. The Le Vigneau 2 site is located ca. 192 km
from the Atlantic coast, ca. 150 km away from main gypsum deposits of the Paris
basin, and ca. 90 km away from the closest barite deposit still exploited today
(Chaillac). The presence of nearby agricultural lands and the potential use of modern
chemical fertilizers could be an argument for local sulphur pollution in soils. However,
neither %S, C:S nor N:S ratios (still in the range of accepted values) are statistically
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correlated together, nor the δ34S to the burial depth (supplementary materials 1). In
such a context, the interpretation of archaeological sulphur isotope ratios must be
cautious. Both animal and human present important δ34S variability, reflecting either
a wide local range of δ34S in soils or a significant trading network of this group across
different territories with different sulphur isotopic compositions.

Strontium isotope ratios were obtained from 61 teeth from 31 individuals, and range
from 0.708 to 0.714 (supplementary materials 2). The 87Sr/86Sr database of continental
France (Willmes et al. 2014) was used to assess bioavailable Sr from the region. The spots
in it measured (n = 3; 20 to 27 km away from the Le Vigneau 2 site) indicate variability
among plant samples (from 0.708 to 0.714; http://80.69.77.150/), with no specific spatial
gradient. These plant values are similar to the archaeological human ratios from this study.
This high variability in the broader region, together with the lack of a specific mapping of
the immediate surrounding of the site, makes it difficult to define territorial mobility.
However, provenance can be approached by analyzing the data from the actual population
analyzed by comparingM2 values from all individuals, and individual life histories can be
approached by individually comparing M2 values to M3 values. Overall, the variation
observed (at both inter- and intra-individual levels) is not homogeneous, and could be the
result of different behaviors, provenance, or territorial mobility.

In the human group, the M3 mean ± 2 sd of the 87Sr/86Sr is of 0.7098 ± 0.0029, and
the M2/P4 mean ± 2 sd of the 87Sr/86Sr is of 0.7101 ± 0.0037. The two are similar, and
would define the local range where most of the population lived. At an intra-individual
level, the difference of 87Sr/86Sr between early adulthood (M3) and childhood (M2/P4)
is small (≤ 0.001; n = 6) for males, and small as well but wider for females (Δ87Sr/86Sr
from |0.000| to |0.004|; n = 10) when compared to the rest of the group (supplementary
materials 2; Fig. 4). A noteworthy pattern observed is that in the case of the males, M3
values are always higher than M2/P4 values, while for females M3 values are most of
the time lower than the M2/P4 values (Fig. 4), suggesting perhaps a pattern in which
males and females came from different areas or consumed different resources from the
overall region. In any case, the Sr variation recorded between early adulthood and
childhood is not statistically significant when comparing male/female/unsexed individ-
uals (p > 0.05; non-parametric U Mann–Whitney test, Statistica 9.1 ®). As a curiosity,
the site delivered several double burials with individuals showing shovel shape incisors
and thus a potential family group. One of the double burials has Sr data available for
both individuals (H11 and H12; Fig. 4), showing that both could have spent childhood
and early adulthood in the same environment, potentially away from the site.

With regard to aDNA analysis and the information this reveals on genetic prove-
nance, Table 1 presents the mitochondrial haplogroups (SNPs typing) retrieved from
the human remains. SNPs typing made it possible to assign one individual (LVH3, male
< 60 years old) to maternal lineage K (or derivatives), and another individual (LVH12)
to lineage H (or derivatives), whereas the low number of SNPs recovered for the last
sample (LVH26) did not make it possible to assign any haplogroup. No Y chromosome
SNP, as well as no reproducible result for HVR-I sequences, could be obtained for any
Le Vigneau 2 individual. Unfortunately, major DNA degradation prevents precise
identification of the maternal and paternal lineages, and these two mitochondrial
haplogroups do not allow any assessment about female mobility. However, we can
note that maternal lineages characterized in the Le Vigneau 2 site are quite common in
Neolithic farmer groups and fit within the French Middle Neolithic variability (from 14
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to 25.5% for haplogroup K and from 7.9 to 40.9% for haplogroup H; Beau et al. 2017),
including farmers from the Paris Basin (35% of H and 18.33% of K for the Gurgy site;
Rivollat et al. 2015).

Human Behaviors

The data obtained about animal consumption (carbon and nitrogen isotope ratio, the
record of animal remains) and the plant foods (calculus microremains) indicate an
homogenous specialized diet. The collagen isotope ratios and the low variability of
plant species identified indicate a diet dominated by animal resources, along with an
economy centred on pastoralism rather than agriculture. The ritual deposition of lambs
in female tombs strengthens this hypothesis. The fact that no female–male differences
have been reported could be linked to the targeted activities on sheep breeding and
exploitation of secondary products such as wool (Coutelas et al. 2015). If sheep
constitute the main economic resource, males and females (even if performing differ-
entiated activities, which is unknown) have access to the same animal products, in line
with a less gender-based variability. In the absence of archaeological data on dwelling
sites, our discussion was based on partial funerary observations and bioarchaeological
analyses.

Fig. 4 Radiogenic strontium isotope ratios from human teeth
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It is difficult to compare the whole dataset to other Middle Neolithic populations, as
no previous study has combined these techniques. Despite this, the available stable
isotope database (CN) on animal and human bone collagen from the centre and the
north of France (Goude et al. 2015; Goude et al. 2013; Rey et al. 2017) allows partial
regional comparison of dietary practices. Despite being near aquatic resources, the
people of Le Vigneau 2 differ from other French and Iberian Middle Neolithic
populations in that they did not exploit aquatic foods (Goude et al. 2013; Rey et al.
2017; Salazar-García et al. 2016) (Fig. 5). The immature outlier’s values we found are
probably more related to physiological phenomena than a specific diet; this period of
child growth is poorly documented in stable isotope studies, even though medical
literature warns about skeletal growth heterogeneity until pubertal age (Szulc et al.
2000). Compared to other regional sites (Fig. 5), Le Vigneau 2 sites are differentiated
by (1) the low variability of carbon and nitrogen data and the absence of gender-based

Fig. 5 Comparison of Le Vigneau 2 carbon and nitrogen ratios with those from other Middle Neolithic and
Late Neolithic sites in Northern France (from Goude et al. 2013; Goude et al. 2015; Rey et al. 2017). Dotted
line represents hypothetical delineation between individuals consuming mainly terrestrial resources (below),
with various amount of animal protein intake and individuals including other resources (above) such as
freshwater fish/young animal proteins in diet
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difference, and (2) the low diversity of animal species potentially exploited. However,
gender-based differences in stable isotope data on other Neolithic sites from the region
do exist, as is the case at the Gurgy and Pontcharaud sites, and could indicate either
different access to food resources (in terms of species preferentially exploited) and/or
different mobility patterns (inferred from consumption of resources from different
ecosystems and isotopic variability). On Gurgy and Pontcharaud funerary sites, several
animal species were found (mainly pig, cattle, sheep, and goat), but sheep are not
considered as the dominant resource in these areas, as mentioned by regional
archaeozoological data (Bréhard 2011) and stable isotope analysis (Goude et al.
2013; Rey et al. 2017).

Discussion about territorial mobility patterns also suffers from the lack of studies
and regional databases (Willmes et al. 2014). Previous works using Sr isotope analysis
in southern French Middle Neolithic individuals from five sites (Goude et al. 2012)
have highlighted a potential greater mobility for pastoralists than for agriculturalists.
Furthermore, at the Middle Neolithic site of Pontcharaud, a patrilocal society in which
adolescent females came from abroad into the study groups has been suggested, based
on significant isotopic variability (CN) recorded in female bone collagen (Goude et al.
2013). Sr data from neighboring regions in Central Europe support the presence of
patrilocal systems from the beginning of the Neolithic, as males indicate lower Sr
variability compared to females (Bentley et al. 2012). As we have seen, this is not clear
for the Le Vigneau 2 population, neither for carbon and nitrogen nor for strontium
isotope data, which shows there is no strong trace of this purported patrilocal social
structure in the Middle Neolithic of northern France. However, female Sr variability
(0.71018 ± 0.00171; Δ = 0.00591; n = 20) is greater than what was observed in Early
Neolithic Alsatian sites, and agrees with the European patrilocal pattern proposed by
authors (Bentley et al. 2012). Ethnographic evidence frequently shows that female
exogamy is a common trait (e.g. Murdock 1967; Wrangham 1987), and publications
refer to this pattern to highlight the role of female mobility for trade (Brown 2016).
However, we should not simply blindly project ethnographic evidence into a deep
prehistoric past that might have well had very different social structures and mind-sets
to those we have recorded in living communities.

Conclusions and Perspectives

Recent years have seen significant expansion of archaeological science specialization.
This broadening field is now targeting many facets of the lives of ancient people.
Continuing a data-rich trajectory is important for advancing our knowledge about
human societies. However, with the growing specialization available in archaeological
science, there is a danger that large amounts of data are created that fail to solve the
biggest questions about ancient human societies, due to the lack of optimally multidis-
ciplinary research. It may not at a later stage always be possible to address uneven
application of multiple disciplinarity. We show in this study how different techniques
can be applied to target a singular research question. The goal of identifying intra-
population variability in diet and mobility variation is still an elusive challenge in
Neolithic archaeology, and we hope that our study provides a dataset that helps
researchers appropriately address this challenge.
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Conducting this specific multi-proxy study allowed us to identify different types of
foods consumed byNeolithic human groups. Stable isotope data, archaeological artifacts,
and anthropological and zooarchaeological information together support the hypothesis
of an economy mainly focused on pastoralism, with no visible gender-related difference
in terms of food consumption. Dental calculus analysis revealed the exploitation of wild
plants, not observed before in Neolithic anthropological studies. The comparison with
archaeological hunter–gatherer groups also made it possible to document the variability
of plant species exploited, potentially reduced for these agropastoralists in comparison.
We observe no food differences between males and females, and our isotopic provenance
study suggests no strong trace of a patrilocal social structure, thus the use of the territory
by this population is not clearly linked to gender. As a next step, the individuals from Le
Vigneau 2 will be studied through dental wear to document whether specific economic
activities were carried out (e.g. wool, fibre processing) and if males and females had
comparable behaviors.

Our ambitious multi-proxy study encountered limitations, particularly for sensitive
bioarchaeological material (mainly aDNA, parasite eggs), but further investigations can
be considered in the future, such as to test the presence of the human pathogenic
amoeba (Entamoeba histolytica) in the samples; palaeogenetics could also be per-
formed to test the presence of other type of parasite markers (Côté et al. 2016; Le
Bailly and Araujo 2016). We propose that S isotope data may also be able to
corroborate palaeogenetic evidence of mobility, as well as providing new information
on its timing. This highlights the necessity to further develop archaeological geograph-
ical databases and mapping of current soil use and modern potential contaminants.
However, it seems necessary to continue such a multi-proxy approach to determine the
best archaeological context for this kind of investigation.
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