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’ Anisotropic membrane in large displacements and small strains.
Application to sail design.
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We recall a non-linear membrane model in large displacements and small strains. The
anisotropic constitutive material is approached by the superposition of several layers, one being
isotropic, the others being made out of different unidirectional materials. The equilibrium equation is
solved by the finite element method. The application part concerns the computation of a Genoa under

a given wind pressure.
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Introduction.

A membrane is a very thin structure. The strains are supposed constant over its thickness,
therefore the bending effects are neglected. We study the large displacements case. This needs a non-
linear strain measure, which gives a non-linear partial differential equation (PDE) to solve. We
consider small strains over the membrane, the stiffness of the constitutive material being high in
respect to the applied stress.

Our main idea to compute anisotropic membrane is to approximate its material, like a tissue,
with the superposition of an isotropic layer with several layers built in different unidirectional fibers.
Therefore we have to lie the real elastic coefficients with the virtual elastic coefficients of each layer.

First we recall the continuous membrane problem. Afterwards four finite element assumptions are
done to solve the above PDE numerically. We recover the Haug-Powell (1971b) finite element.
Finally an orthotropic genoa is computed for a given aerodynamical lift. The orthotropic sailcloth is
approached by a three layered composite positioned along the warp-weft directions.

1. The anisotropic non-linear membrane model.
The mechanical variables are integrated through the thickness of the membrane. The Young
modulus and stress unit is the Newton / meter (N/m).

Let @ be a surface of the natural space Ej3 , which represents the initial position of a
membrane. Its boundary T'=dw consists of two subsets :

do =Tguly (1.1)

where I'( is the fixed part of the membrane. The membrane is loaded by the force field f defined on

©. We study the dead load case : f is independent of the structural displacement. We use the
lagrangian variables. A membrane displacement u is called admissible if the boundary condition u
|T0=0 holds. For such displacements, however large they are, we measure the strain with the
Green tensor X :

Vme o x(u)(m) = %(ndu + mdu + du du) (m) (1.2)

where du is the differential of u , (E is the transpose of du ,and m the orthogonal projection

on T(m) the tangent planeat ® in m,
We model the anisotropic constitutive material by the superposition of several layers. The first
one is isotropic , the n others are made of unidirectional fibers oriented by the fiber directions of the

real material. Fj(m) are the unit vector field , defined on ® , tangent at ® , which indicates the

fiber direction of the layer i ( 1<i<n) at m . The deformation of the fiber layer i is given by
the real

Vme ® xj(u)(m) = < x(u).Fj , F; >(m) (1.3)
where <, > denotes the scalar product of E3 .

The plane stress in the isotropic layer is measured by the second Piola-Kirchhoff stress tensor ¢
defined in terms of x(u) via the constitutive law

o@m) = ——{ xm) + ——tr (x@@) Iy } . (1.4)
1+v 1-2v

E is the Young modulus of the isotropic layer, v the Poisson ratio, 1T(m) is the identity operator
of T(m) and ir is the trace operator .
The stress in the fiber layer i is measured at m € @ by the real



oi(u)(m) = Ej . xj(u)(m)

(1.5)

E; is the Young modulus of the fiber layer i .The stress-strain relations (1.4) and (1.5) are linear,

which is valid only in the limit of small strains.
Let the internal strain energy e stored in the deformed membrane be

n
¥V u (admissible) e(u) = ep (u) + 2, ei(u) .
i=1

where e( is the internal strain energy of the isotropic layer

oW = 5 | (@) do
w

and e; is the internal strain energy of the layer i

6@ = 5 | (Gixp@m) do
()]

The potential energy lost by the applied force f is given by the linear functional 1

W = [<fu>m)do
w
With the above definitions we obtain the membrane equilibrium equation

J? u (adm.) | V v (adm.) c?—uf:(u).v = I(v)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

This means that u is the displacement of ® under the applied force f if u is a critical point of
the total potential energy e -1 in the admissible displacement space. Note that the non-linearity

of (1.10) stems only from the Green strain tensor x .

For the isotropic membrane case (n = 0) Muttin (1989) justified mathematically the equation
(1.10) in respect to the three dimensional elasticity model. This justification stems from an

extrapolation of Destuynder (1980) results for linear thin shells.

2. Finite element approximations .

Usually we can not solve analytically the equation (1.10). Approximations are needed to transfer
the continuous problem into a discrete one which can be solved numerically. Here we describe the
four approximations incorporated in the non-linear quadrilateral layered membrane finite element of

Haug and Powell (1971b) (1972) .

2.1 Approximation of .

@ is approach by a set of mid-surfaces we , quadrilateral and warped in space,
ne

W = Wh = U ne is the number of finite elements.

1

The mapping ¢ of each wg is described by




4
®: me®=(]LI[)2 — m=¢m = Y mShi(me E;,
j=1

where mej is the position of the comer j (1<j<4) of the element e . Each mej is chosen in a set

N of nodes judiciously marked on @ (finite element nodes). hJ (j=1...4) are the bilinear basis
functions

W: ELE)e d S WELE) = g (1EED (1)

We denote by ng (total) the number of finite element nodes, by np (blocked) the number of
nodes on I'g,and by nf =n¢— np (free) the number of free nodes.

2.2 Approximation of the displacement of @y, .
We search the displacement field up of wh under the following form :

4
upiry=0 , Vee{l.ng} unle(9®) = X ue(m®) hi
Fi= 1
ue(mej) denotes the displacement of the node j of the element e . The same functions hi define
¢® and up g » SO the obtained finite element will be isoparametric. Classically one remarks that
the unknown u of the continuous membrane problem is converted for the discrete problem in the
unknown vector U = { ue(mej) 1<e<ne 1<j<4 mejes To} of (}53)“f .

2.3 Numerical integration scheme .

Let f® be an integrable function defined on we . To compute the sum of € on we we use
the four node Gauss numerical integration scheme

L

[ o(m) doe = Z(fﬂ\/gT)ocpe(i@,i%> ,

We
where g€ is the determinant of the metric tensor of e .

2.4 Fiber orientation in a finite element midsurface .
The fiber orientations Fj(m) used to formulate the continuous membrane problem are converted
in the following set of reals to formulate the discrete membrane problem

A={ a%(0,0) € [0,2r] 1<e<n, 1<i<n } A
where o (0,0) is at the centroid m =@®(0,0) of the element e, the angle between the fiber layer i

Jo®
, and the first basis vector -a&%(0,0) of the tangent plane at ¢ .

Starting from the data A , Haug and Powell [1971b] define the fiber orientation o (E1E2) of
the fiber layer i in any point (pc(r?l) of we , with the following relation




Be (£1,0) - &% (E1,€2) = Be(0,0) - @ (0,0) (2.1)

where B® 1£2) is the angle between the two basis vector -i(g 52) z’;l £2) of the tangent

agl ag’l
plane TS(E1E2) at we in ¢S(ELE2). The unit vector in TE(EL,E2), tangent at the fiber layer i
in @°ELE2) isnoed FeELEZ).
3. Formulation of the membrane discrete equilibrium equation and its solution.
3.1 Formulation of the discrete problem.

An approximation of the continuous problem is made by the following statements.

Let oh (N),T0,fh, E.v.E{,vi,A={0%(©00) },n,ng

3?7 up (@dm.) |V vp (adm.)

n
d d
qupeholunlve + 2 gr-enilunlvn= Tnlval , 3.1
i=1
where en0 (Un) = Y €0.e(Uhin,)
e=1
ne
en,i (Un) = Y €ie(Unio,)
e=1

n
In (up) = ) le(unioy)
e=1

with (Uhlg, = Ue )

€0,e(Ue) = 2 { tr(c.x)(ue). \fge} 0 Q% % %)
€ielue) = 2 { (oi.x)(ue). '\IE 0 (x \[— %)
L) = 2, ( < fhiog » v >V g 000 )

x(ug) and o(ug) are defined by equations (1.2) and (1.4) applied to we . xj(ue) and oj(ue)
are the strain and the stress in the fiber layer i. They are defined by equations (1.3) and (1.5) in
which Fj is remplaced by F%; . f}, is the force field applied on @}, .

Now we put the discrete problem under a more intuitive form. Note that e () andepj are
twice continually differentiable and that 1y is lincar. Obviously ¢Qe ,¢je and lg have the same
properties. On one hand it is equivalent to know the displacement field up and the vector




Ue (1?,3)nf of the free node displacements. On the other hand the functions % e h [upl.vh and 1

h [vh] are linearin vy, . Hence we obtain

V Uh , Vh (adm) : 3! U 3 V ’ FIDLO (U) 1] Fiﬂt,i (U) ] FBX[ = (ES)nf

d
qup € ho[onlve = < Fineo(U), V> (3.2)

dim;eh,;[uh].vh = < Fnui(U), V> Vie {l.n} (33)

Inlval] = < Fext, V> ; (3.4)

Starting with these three relations, we obtain two fundamental interpretations.
n
(1) The components of the vector Fint,0(U) + X Fipe,i(U) are the
i=1
forces that we have to apply at the free nodes to balance the internal stress in the
set of layers when the displacement of the free nodesis U .

(2) The components of the vector Fext are the resultants at the free
nodes of the force field fj, appliedon oy .

According to the equations (3.2) (3.3) and (3.4) , the discrete problem becomes
n

3?7 Ue E)D™M | Fino )+ X Finti(U) = Fext (3.5).
i=1

The equilibrium of the discretized membrane is obtained when the nodal forces, which balance the
internal stress, are the applied forces.
3.3 Solution of the discrete problem.

‘The non-linear equation (3.5) is solved by the Newton-Raphson method. The iterative sequence
(UJ) is constructed by

U =0

dFlntaO

Vizl [ EdF”‘"‘](UJ h {Uui-Ur} =

n

= { Fint:O(Uj'l) + 2 Fint,i(Uj'l) — Fext } .
i=1

dFmt 0 dFlnm

[ = qi-1y ] =28kt (Uj'l) ] are respectively the tangent stiffness operator of the

isotropic layer and of the unidirectional layer i, when the displacement of the free nodes is ui-l.




4. Description of a genoa as an orthotropic membrane.

A genoa is a lightweight structure which may have great displacements under the wind pressure.
The chosen sailcloth is an isotropic thin sheet in terphane thermoforming with a tissue in Kevlar.
This material is represented by an isotropic layer and two unidirectional layers oriented along the
warp and the weft .

(1) Geomelry : A genoa is approximatively a bulging triangle with concave bounds. The shape ©
is given by the CAO software FABRIC (c) CRAIN . Figure (4.1) shows ® . Figure (4.2) shows
®h . Itis a genoa number 3 of a 12 J.I. meters.

(2) Boundary conditions : The boat and the rig of the genoa are taken as rigid. The backward
boundary (leech) and the bottom (foot) are free. Along the foremost boundary (luff) the normal
component of up at this curved boundary is set to zero (the tangential component is free). The tack
point is blocked. The backward corner (clew) is connected to a prestressed cable named the sheet. This
one is represented by a single Haug-Powell [1971a] non-linear cable finite element. The head point is
also connected to a prestressed cable, the Halyard.

(3) Wind pressure: We do not take into account the wind/structure interaction. To compute the
wind pressure, we consider the sail as rigid and we use its initial shape. The wind pressure is then
considered as a "constant load field". It is computed by the software AEROK (c) CRAIN , author M.
Kermarec (1986). The real wind speed is 24 knots with an angle of 32 degrees to the boat direction.

Inertial effects are neglected in the applied forces.

(4) Fiber layers orientation : Figure (4.3) shows the warp orientation (layer i=1) of the
constitutive orthotropic material on each finite element. The weft and the warp are orthogonal. To
obtain this orientation, we have computed this sail with a virtual isotropic material of high

modulus, which gives the natural orientations of the two principal stress (eigen vectors of o) for
small sail strain. The high modulus of Kevlar fibers do not give small strain in the genoa, if there is
shear strain in the tissue.

(5) Elastic coefficients of the isotropic, warp and weft layers : Experimental stress-strain measures

on sailcloth give the elastic coefficients E 1, E2 ,G12,v12,v21 which lie stress (611,022.05)
and strain (£11,€22.€5) in an orthonormal basis :

£ 11 EEory

» o
E] E2 .11

exn |=| M 1 G,22
B EB

Eg | 0 0 -GIE— Oy

We can identify the elastic coefficient E, v of the isotropic layer and E1 ,E2 of the warp and
weft layers by using the following relation (m=1-vi2v21):

E VE 0
Er vak2 AP E1 0 0 00 0
m m
vLEi B -—vE;Ez o |*{ 000 |+ 0Eo0
m~ m Y 1-(‘)’ g e 000 00 0
0 0 Gu—= [ 2(1+v) —

After some algebraic calculation we obtain



s Vi E | E=2(1+Vv)G2
vi2E1 +2Giom

Eir E E> E
T R

This sail is made out of several tissues which correspond to the following coefficients.

Tissue number 1 2 3 4 5 6 7

E (N/m) 3E+6 3E+5 3E+5 3E+5 3E+5 3E+5 3E+5
v ; 0.26 0.26 026 026 026 026 0.26
E; (N/m) 0 3E+6 2.5E+6 2E+6 2.5E+6 2E+6 1.5E+6
E2 (N/m) 0 SE+5 SE+5 S5SE+5 1E+6 2E+6 1.5E+6

Figure (4.4) shows the patchwork.

5. Numerical results.

When the displacement increment ui-ui-y especially for the first iteration, is to large, we
multiply its components by a small scalar to put them within a data bound, typically 5 to 10 cm.

Unphysical compressive stress can be obtained with the model. It is the case for o2 near the tack.
Thus the localisation off the warp stress concentration near the tack is not in agreement with real-life
observations.

Figure (5.1) and (5.2) show the contour-values of the warp and the weft stress ©1 and 62 . The
main flow stress concerns the warp. It starts from the head , decreases along the leech , to increase
near the clew. At the front of the sail the warp and the weft stress are equals. Note that elsewhere the
stress is mainly unidirectional. So in sail design unidirectional tissues are often used. We obtain the
following internal forces at the three corners of the sail , halyard : 1175 Kg. , sheet : 1925 Kg. , tack

: 570 Kg . The equilibrium shape wp+up is in good agreement with real-life observations.

Such computations have been used by the sailmakers of the two French syndicates for the
America Cup 87 : "French Kiss" and "Challenge France".
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Figure 4.3  Orientation of the Fibers of the warp layer .
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Tissue 1

Tissue 5

Tissue 6

Figure 4.4 Patchwork of the Genoa
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Figure 5.1  Stress in the warp layer.

Figure 5.2 Stress in the weft layer.




