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Abstract  

Background: Whether hippocampal subfields are differentially vulnerable at the earliest 

stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic 

of debate.  

Methods: We prospectively included 56 persons with clinically isolated syndrome (CIS) 

suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at 

baseline. Participants were tested for memory performance and scanned with 3T MRI to 

assess the volume of 5 distinct hippocampal subfields using automatic segmentation 

techniques.  

Results: At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume 

significantly smaller than controls (p<0.01). After one year, CA4/dentate gyrus atrophy 

worsened (-6.4%, p<0.0001) and significant CA1 atrophy appeared (both in the stratum-

pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p<0.001 and -6.2%, 

p<0.01) respectively. CA4/dentate gyrus volume at baseline predicted CA1 volume one year 

after CIS (R2=0.44 to 0.47, p<0.001, with age, T2 lesion-load and global brain atrophy as 

covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis 

during follow-up, independently of T2-lesion load and demographic variables (p<0.05). 

Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 

atrophy was an independent correlate of episodic verbal memory performance one year after 

CIS (ß=0.87, p<0.05).  

Conclusion: The hippocampal degenerative process spread from dentate gyrus to CA1 at the 

earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS 

and will ultimately impact hippocampal-dependant memory performance. 
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Introduction 

 

Patients with multiple sclerosis (MS) are often afflicted with episodic memory impairment 

and, over the past decade, a growing number of studies have investigated how hippocampal 

abnormalities might be related to this deficit [Sicotte et al., 2008; Dutta et al., 2011; Hulst et 

al., 2015; Planche et al., 2017a]. Post-mortem anatomopathological analyses of MS brains, 

together with studies on animal models of MS, have described early microglial activation, 

neuronal loss, synaptic dysfunction and demyelination within different regions of the 

hippocampus [Dutta et al., 2011; Papadopoulos et al., 2009; Planche et al., 2017b]. However, 

the time course of these alterations and the inter-relations between the different types of 

cellular modifications during the evolution of the disease remain largely unknown. 

One way to isolate pathogenic mechanisms within the hippocampal circuit is to study its 

regional vulnerability [Small, 2014]. Indeed, the hippocampus is composed of distinct 

subfields whose morphological, cellular, molecular, functional and connectivity profiles are 

very different: the dentate gyrus, the cornu ammonis (CA, with subdivisions from CA1 to 

CA4) and the subiculum. Initially used to study Alzheimer’s disease and physiological aging 

[West et al., 1994], this approach of interrogating differentially the malfunctioning 

hippocampal circuit has been adapted more recently to investigate MS [Sicotte et al., 2008; 

Gold et al., 2010; Longoni et al., 2015; Rocca et al., 2015].  

Regarding MRI studies, the differential vulnerability of one hippocampal subfield compared 

to the others during the course of MS remains controversial. Indeed, some authors have 

highlighted the differential vulnerability of CA1 [Sicotte et al., 2008; Longoni et al., 2015] 

and others the vulnerability of CA3/CA4/dentate gyrus [Gold et al., 2010; Rocca et al., 2015]. 

The reasons for discrepancies between studies remain speculative but they might be explained 
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by the heterogeneity of the measurement methods used (surface-based mesh modelling and 

volumetric analyses) and/or by the heterogeneity of the populations studied (relapsing MS 

with different disease durations and/or progressive MS). This latter point seems crucial if we 

postulate that the pattern of atrophy of hippocampal subfields changes according to disease 

progression. Previous studies have so far been unable to test such timing and the dynamics of 

differential hippocampal subfield damage because of cross-sectional design. It is also 

important to note that none of these works investigated clinically isolated syndrome (CIS), 

which is required to address the question of the differential vulnerability of hippocampal 

subfields to the earliest pathophysiological mechanisms in MS. Indeed, CIS is the first 

demyelinating event suggestive of a future relapsing-remitting MS, that will be formally 

defined later on by the dissemination in time and space of demyelinating lesions [Polman et 

al., 2011; Miller et al., 2012]. Thus, studying persons with CIS offers a unique opportunity to 

understand the “first steps” of the pathophysiological mechanisms leading to MS. 

By analogy with other neurodegenerative diseases [Maruszak and Thuret, 2014; de Flores et 

al., 2015], we hypothesize here that hippocampal degeneration in persons with CIS and early 

MS is not uniform and that pathological alterations will spread from one hippocampal 

subfield to the others in a process leading to diffuse hippocampal atrophy. To test this 

hypothesis, we measured the volumes of five distinct hippocampal subfields longitudinally, 

using advanced 3T MRI-based automatic segmentation techniques, and analysed the 

dynamics of atrophy of these subfields together with their clinical and neuropsychological 

correlates.  
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2. Methods 

 

Participants 

Fifty-six persons with CIS (PwCIS) were prospectively enrolled between 2 to 6 months after 

an initial clinical event compatible with a demyelinating inflammatory syndrome: a 

monofocal and monophasic neurological symptom that can be related to an optic nerve, spinal 

cord, brainstem, cerebral hemisphere or cerebellum lesion [Miller et al., 2012]. Patients were 

assessed by neuropsychological testing and MRI at baseline and at 1-year follow up. At 

baseline, at least two clinically silent lesions with a minimum diameter of 3mm were required 

for inclusion. One of these lesions had to be cerebral (ovoid or periventricular), while the 

other could be located in the spine or brain. None of the patients were treated with disease-

modifying therapy at inclusion. Contraindications to MRI, the presence of other neurological, 

psychiatric or systemic diseases, steroid treatment within one month, starting or stopping 

antidepressants or anxiolytic treatments within 2 months of MRI and neuropsychological 

examination, were considered as exclusion criteria. During the follow-up period of one year, 

the diagnosis of multiple sclerosis was confirmed (or not) by the treating physician according 

to the 2010 McDonald criteria [Polman et al., 2011]. 

Fifty-five healthy controls (HC), free of neurological, psychiatric, or systemic diseases, and 

drug or alcohol abuse, were also included. They were tightly matched for age, gender and 

educational level to PwCIS, to calculate cognitive z-scores both at baseline and one year after 

(see below). Among these 55 controls, a subgroup of 38 HC (still matched with the CIS 

group, see Table 1) underwent MRI at baseline but they were not re-scanned at year 1.  

All subjects were prospectively enrolled from 2012 to 2015 at our MS centre. Written 
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informed consent was obtained prior to participation. This study was approved by the local 

institutional ethics review board and registered in Clinicaltrial.gov (NCT01865357). 

 

Neuropsychological testing 

In order to assess hippocampal functions, PwCIS and HC performed the Selective Reminding 

Test (SRT) for episodic verbal memory performance and the Brief Visuospatial Memory Test 

(BVMT-R) to test episodic visuospatial memory performance. Each PwCIS was compared 

with the HC group at the appropriate time point to calculate a z-score for each test at each 

time point. To take into account practice effects, the scores of PwCIS at baseline were 

compared with the mean score of the HC group obtained at baseline, while the scores of 

PwCIS at 1 year were compared with the mean score of the HC group obtained during their 

second session of neuropsychological testing at 1 year. The z-scores of each SRT and BVMT-

R subtest were averaged in order to calculate one composite verbal memory score and one 

composite visuospatial memory score. Lower z-scores indicate lower performance. A patient 

was considered impaired in a given cognitive domain if his/her score was below the fifth 

percentile (i.e. z-score < -1.64). 

 

MRI acquisition and analyses 

Participants were scanned on a 3T MRI system at our MS centre (either Philips Achieva or 

GE Medical Systems Discovery MR 750w). Thirteen patients (out of 46, i.e. 28%) were not 

scanned on the same machine at baseline and after one year (Philips Achieva at baseline and 

GE Discovery after 1 year). The imaging protocol was harmonized between magnets and 

included the same 3D gradient-echo T1-weighted sequence (TR/TE/TI/flip 
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angle=8.2ms/3.5ms/982ms/7°, resolution 1x1x1mm, 256mm FOV) and a 2D axial Fluid 

Attenuated Inversion Recovery (FLAIR) sequence (TR/TE/TI=11000ms/140ms/2800ms, 

resolution 1x1.1x3mm, 230mm FOV). Preliminary analyses (not shown) using the type of 

scanner as a covariate did not show any effect of the magnet on volumetric analyses. 

Lesion load was determined by the lesion growth algorithm as implemented in the Lesion 

Segmentation Tool (LST) version 2.0.15 (http://www.applied-statistics.de/lst.html) in 

Statistical Parametric Mapping (SPM12) [Schmidt et al., 2012]. To do this, T1 images were 

co-registered with FLAIR images to calculate lesion belief maps, thresholded with the same 

parameters for each patient (kappa=0.3). Binary maps of lesions were reviewed and corrected 

manually by two blinded experts (MR engineer and neurologist), using 3D Slicer 4.4.0 

(www.slicer.org).  

For the volumetric analyses of brain structures and hippocampal subfields, T1-weighted 

images were processed using the volBrain system (http://volbrain.upv.es) [Manjón and 

Coupé, 2016]. After denoising with an adaptive non-local mean filter [Manjón et al., 2010], 

images were affine-registered in the Montreal Neurological Institute (MNI) space using 

ANTS software [Avants et al., 2011], corrected for image inhomogeneities using N4 

[Tustison et al., 2010] and finally intensity-normalized [Nyúl and Udupa, 1999]. Then, the 

hippocampal subfields were segmented based on a multi-atlas framework combining 

nonlinear registration and patch-based label fusion [Romero et al., 2016; Romero et al., 2017]. 

This method uses a training library composed of 5 high resolution T1-weighted images 

labelled manually according to the protocol proposed by Winterburn and colleagues 

[Winterburn et al., 2013] which is one of the rare freely available atlases that specifically 

separate CA4/DG from CA2/3 on the one hand and CA1 neuritic and pyramidal layers on the 

other hand [Yushkevich et al., 2015]. The 3D-T1-weighted images of the subjects considered 

in this study (1x1x1mm3) were up-sampled to the image resolution of the training library 



Planche	et	al.	8	
	

(0.5x0.5x0.5mm3) using the local adaptive super-resolution (LASR) method [Coupé et al., 

2013]. The method finally provided automatic segmentation of hippocampal subfields 

gathered into 5 labels: Subiculum, CA1-SP (stratum pyramidale), CA1-SRLM (stratum 

radiatum-lacunosum-moleculare), CA2/3 and CA4/dentate gyrus (Fig. 1), allowing us to test 

our a priori hypotheses regarding the selective vulnerability of the dentate gyrus or CA1, as 

suggested in the literature from animal, neuropsychological (using pattern separation tasks) 

and MRI studies [Planche et al., 2017b; Planche et al., 2017c; Rocca et al., 2015; Sicotte et 

al., 2008]. In our previous paper, the hippocampal subfield segmentation accuracy using T1-

weighted has been estimated to be 62% for the Winterburn protocol in terms of average DICE 

coefficient. Moreover, the whole hippocampus segmentation accuracy has been estimated to 

88% in term of DICE coefficient. Finally, it has been shown that super-resolution enables to 

obtain an accuracy close the one obtained when using high resolution T1 [Romero et al., 

2017]. Every up-sampled image and every subfield label were quality-controlled and 

manually corrected by a blinded neurologist if needed (in the case of inappropriate inclusion 

of para-hippocampal T1-hypointense lesions (Suppl. Fig. 1), choroidal plexus and/or CSF 

“pockets”, using 3D Slicer 4.4.0 (www.slicer.org)). To control for variations in head size, the 

volumes of hippocampal subfields were normalized using the intracranial cavity volume of 

each subject [Manjón et al., 2014]. Normalized brain volume (NBV) was also calculated as 

the sum of cerebral white and grey matters, divided by the intracranial cavity volume of each 

subject. 

 

Statistical Analyses 

Statistical analyses were performed with Prism software 6 (Graphpad) and XLstats 19.4 

(Addinsoft). The distribution of all continuous data was tested with the Shapiro-Wilk 

normality test. We first compared clinical, neuropsychological and imaging characteristics 
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between HC and PwCIS at baseline by using Fisher’s exact tests for categorical variables, and 

unpaired t-tests or Mann-Whitney tests for ordinal variables. The comparisons of baseline and 

1-year characteristics of PwCIS were done with paired t-tests or Wilcoxon tests, as 

appropriate.  

To compare the volumes of the 5 hippocampal subfields between groups, we first performed 

an analysis of variance, followed by a Sidak multiple comparisons test. Cohen’s d was used to 

measure the effect size of atrophy between patients and HC whereas annualized rate of 

atrophy was used to compare PwCIS at year 1 and baseline.  

Then, because the decreases in subfield volumes were consistent between right and left 

hippocampi, further statistical analyses were performed on the sum of right and left subfield 

volumes to avoid multiple comparisons. Relationships between neuropsychological scores, 

demographic, clinical and imaging variables were assessed using correlation coefficients 

(Pearson or Spearman according to statistical distribution). The associations were further 

tested in multivariate context. To this end, (i) hippocampal subfields volumes at year 1, (ii) 

MS diagnosis after 1-year follow-up and (iii) memory performance (dependent variables) 

were predicted with hierarchical regression models, including two hierarchical blocks. In the 

first block, relevant demographical, clinical and general MRI features known as nuisance 

variables were systematically forced into the model. In the second block, the volumes of 

hippocampal subfields were added to the variables of the first block. The predictive power of 

the two blocks was compared by using the Akaike information criterion (AIC). A linear 

regression model was used whenever possible while logistic regression was seen as the 

appropriate alternative for categorical/binary outcome variables. All tests were two-tailed, 

with a global type I error set at α=0.05.  
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Results 

 

Demographic, clinical and general MRI features of participants  

A total of 56 PwCIS and 55 HC were included. At baseline, all PwCIS and HC were tested 

with the neuropsychological battery while all PwCIS but only a subgroup 38 HCs were 

assessed with MRI. At year 1, because 10 patients were lost to follow-up, 46 PwCIS were re-

tested with the same neuropsychological battery and re-scanned with the same imaging 

protocol. All the 55 HCs were re-tested with the same neuropsychological battery but they 

were not re-scanned at year 1.  

The CIS and HC groups were comparable for age, sex and educational level (Table 1). In this 

cohort of patients, after one year, 65.2% of PwCIS were diagnosed with MS according to the 

2010 McDonald criteria.  

In PwCIS, there was no significant difference between baseline and 1-year follow-up 

regarding disability (Expanded Disability Status Scale, EDSS) and T2-lesion load. 

Neuropsychological testing was also rather stable between baseline and 1-year follow-up, 

except for the episodic visuospatial memory score that had even slightly increased (p=0.02) 

(Table 1). Normalized brain volume (NBV) significantly decreased during this period (-1.4%, 

p=0.012).  

 

Dynamics of regional hippocampal vulnerability 
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At baseline, hippocampal volumes were significantly lower in PwCIS compared to controls 

only in the CA4/dentate gyrus subfield (Fig. 2). This was consistently true for the left (-6.5%, 

d=0.53, p<0.05) and for the right hippocampus (-7.7%, d=0.54, p<0.01) and when both sides 

were pooled together (-7.2%, d=0.58, p<0.01). In PwCIS, this atrophy of CA4/dentate gyrus 

was not correlated with age, disability or T2 lesion-load at baseline. 

Follow-up data after one year compared to baseline measures showed that the normalized 

volumes of CA4/dentate gyrus (-6.4%, p<0.001), CA1-SP (-5,6%, p<0.01) and CA1-SRLM (-

6,2%, p<0.05) significantly decreased in both sides. No significant atrophy was found in the 

subiculum or CA2/3 subfields (Fig. 3). 

As the atrophy of CA1 subfield chronologically succeeded the atrophy of CA4/dentate gyrus, 

this suggests that the same pathophysiological process spreads from CA4/dentate gyrus to 

CA1 in individual patients. To test this hypothesis, we designed a hierarchical linear 

regression model to test how CA1-SP, CA1–SRLM and whole hippocampus volumes at year 

1 (dependent variables) can be predicted by the volume of CA4/dentate gyrus at baseline 

(while first taking into account confounders such as age, T2 lesion-load and NBV in the 

model). We found that CA4/dentate gyrus at baseline improved the statistical prediction of 

CA1 volumes at year 1 from R2=0.19 (when considering usual factors such as age, T2 lesions 

and NBV) to R2=0.44 (AICblock2 < AICblock1). It also predicted the whole hippocampal volume 

one year afterwards independently of age, T2 lesions or NBV (Table 2). CA4/DG remained a 

significant and independent correlate of CA1 and whole hippocampal volumes at year 1, 

although other hippocampal subfields (subiculum and CA2/3) were introduced in the model 

(ß=0.34, p=0.018 for CA1-SP and ß=0.39, p<0.001 for the whole hippocampus, respectively). 

Altogether, a smaller focal volume at baseline predicted smaller global volumes at year 1, 

which points to a pathological continuum starting within CA4/dentate gyrus and spreading 

progressively and more globally to CA1. 
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Relationship between the atrophy of hippocampal subfields and clinical outcomes  

In order to study the link between the early vulnerability of CA4/dentate gyrus and the 

pathophysiological process specific to MS, we first investigated whether CA4/dentate gyrus 

volume at baseline would be able to predict MS diagnosis at year 1. Using univariate 

analyses, we found that both T2-lesion load and CA4/dentate gyrus volume were significantly 

associated MS diagnosis after 1-year follow-up (p=0.002 and p=0.014, respectively). A 

multiple logistic regression model showed that the volume of CA4/dentate gyrus at baseline 

was the only factor independently associated with future MS diagnosis (ß=0.57, p=0.025 and 

R2=0.28, p=0.016) while age, gender, EDSS, T2-lesion load and NBV were not predictive. 

Finally, we investigated whether early hippocampal regional vulnerability had a clinical 

impact on episodic memory performance. The results of univariate correlations and regression 

models between memory scores and demographic, clinical and imaging data at baseline and 

year 1 are presented in Table 3. According to multivariate analyses, no model was able to 

explain memory performance at baseline. The volume of CA1-SP and the educational level of 

patients were independent predictors of the episodic verbal memory composite score at year 1 

(ß=0.87, p=0.042 and ß=0.51, p=0.031, respectively).  
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Discussion 

We demonstrated in this study that the CA4/dentate gyrus subfield of the hippocampus is the 

first subfield to be atrophied across the course of MS, at the stage of CIS. This pattern of 

regional hippocampal atrophy worsens during the first year of disease evolution and spreads 

within CA1 (both in the cell bodies layer CA1-SP and the neuritic layers CA1-SRLM). 

CA4/dentate gyrus volume at baseline was associated with diagnosis of MS one year 

afterwards. Whereas isolated CA4/dentate gyrus atrophy at the stage of CIS failed to correlate 

with memory scores, it predicted the extension of the pathological process within CA1 one 

year later, which was in turn correlated with episodic verbal memory performance, 

independently of usual confounders.  

Our main finding of a “natural history” of hippocampal subfield degeneration in MS, from 

dentate gyrus to CA1, is supported by anatomical and functional studies in both human and 

animal models of the disease. First, we previously reported that pattern separation 

performance - a cognitive task critically dependant on dentate gyrus function [Bakker et al., 

2008] - was decreased in patients with CIS and early MS, when conventional visuospatial 

episodic memory tests (BVMT-R) were not yet altered, suggesting an early and isolated 

dentate gyrus dysfunction during the course of the disease [Planche et al., 2017c]. Such 

functional alterations suggested by the pattern separation task are therefore consolidated by 

the anatomical alterations observed in the present MRI study. Second, our findings are also 

supported by a previous work showing that dentate gyrus structure and function are 

selectively disrupted by microglial activation at the early stage of experimental autoimmune 

encephalomyelitis (EAE, the animal model of MS) [Planche et al., 2017b]. The independent 

association we found here between CA4/dentate gyrus volume at the stage of CIS and the 

diagnosis of MS one year after CIS also suggests this link between dentate gyrus damage and 

the early diffuse pathophysiological process specific to MS. Third, the vulnerability of the 
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dentate gyrus, prior to other hippocampal subfields at the early stage of MS, could be 

explained by its particular anatomical location. Indeed, it is adjacent to cerebrospinal fluid 

(CSF) spaces (third ventricle in rodents and choroidal fissure in humans) where cytokines and 

immune cells preferentially penetrate the hippocampus, as suggested experimentally in EAE 

[Habbas et al., 2015]. We postulate that the hierarchical vulnerability of hippocampal 

subfields in MS might be better explained by their anatomical contiguity rather than by a 

network-dependent disposition, as in Alzheimer’s disease for instance [Kerchner et al., 2013]. 

A gradient of infiltrating immune cells and cytokines would diffuse progressively from the 

CSF to the dentate gyrus, then to CA1, and probably to the whole medial temporal lobe. In 

this model, the progression of the disease from the dentate gyrus to CA1 might be slowed 

down by the presence of the vestigial intrahippocampal sulcus, potentially explaining the 

delay between dentate gyrus and CA1 atrophy reported in this study. Additional experiments 

will be needed to test these mechanistic hypotheses.  

From the anatomopathological point of view, our study also highlights the striking 

vulnerability of the hippocampus to neurodegeneration in the context of neuroinflammation. 

Indeed, the annualized rate of atrophy during the first year of the disease’s evolution ranged 

from -5.6% to -6.4%, respectively for CA1 and CA4/dentate gyrus, whereas it was ‘only’ -

1.4% for the normalized brain volume in our population of PwCIS (which was in the upper 

range of what was usually observed in the literature on CIS and relapsing MS, i.e. from -0.5% 

to -1.35% [Pérez-Miralles et al., 2013; De Stefano et al., 2014]). This selective and 

disproportionate hippocampal volume loss, in excess to global brain atrophy, has already been 

observed in a seminal cross-sectional study on patients with relapsing and progressive MS 

[Sicotte et al., 2008]. The annualized rate of hippocampal atrophy we report here (-5.9%) is 

even in the upper range of what has been reported for patients with Alzheimer’s disease or 

mild cognitive impairment (-3.5% to -6%/year) [Jack et al., 2000; Wang et al., 2003; Du et 
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al., 2004] and far beyond what has been reported for physiological aging (-0.8% to -

2.3%/year) [Jack et al., 2011]. 

Besides these anatomical considerations, we also questioned the link between the early 

regional vulnerability of the hippocampus and memory impairment in MS. On the one hand, 

the CA4/dentate gyrus atrophy observed at baseline was not correlated with episodic memory 

performance in our cohort. Although we have to take into account that the memory abilities of 

the PwCIS included in this study were not severely affected (regarding the median z-scores 

and the percentage of impaired patients), we postulate that CA4/dentate gyrus atrophy at the 

stage of CIS is “not enough” to explain the memory decline observed in “global” episodic 

memory tests such as the SRT or the BVMT-R. Perhaps more specific tests such as the 

behavioural pattern separation task [Stark et al., 2013] would have allowed us to pinpoint 

such a subtle memory decline related to CA4/dentate gyrus damage [Planche et al., 2017c] 

and future studies should address this point. On the other hand, we found that CA1 atrophy 

explained part of the “global” episodic verbal memory decline one year after inclusion, when 

diagnosis of MS was finally observed in 65.2% of the patients. This suggests that CA1 

atrophy is the best anatomical correlate of memory performance in MS, as previously 

described in cross-sectional studies including patients with relapsing and progressive MS 

[Sicotte et al., 2008; Longoni et al., 2015].  

A recent cross-sectional study found an “expansion” of the dentate gyrus during MS [Rocca et 

al., 2015]. The divergences between our findings and this previous work may be attributed to 

various points. Indeed, contrary to our work, this study investigated patients at a later stage of 

the disease, with relapsing and progressive MS, and it used a surface-based mesh modelling 

technique to study the shape of the hippocampus [Thompson et al., 2004]. Using this 

technique, the authors found an outward displacement of the supero-medial hippocampal 

surface and concluded on a larger radial distance of the dentate gyrus in patients with MS. 
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However, it should be borne in mind that when using such a method, measuring external 

surface modifications does not enable the direct characterization of the inner alterations of a 

particular subfield. It is not clear how the atrophy of the deepest regions of the hippocampus 

(such as the dentate gyrus, which is curled inside the Cornu Ammonis) would impact the 

outer surface of the structure. For instance, the expansion of CSF pockets due to atrophy 

within the hippocampal fissure/sulcus might result in tissue “expansion” on the supero-medial 

side of the hippocampus despite there being no real dentate gyrus “hypertrophy”. We also 

hypothesized that a shift of rotation of the hippocampus due to atrophy would induce an 

outward displacement of part of the surface, introducing contradictory results. Thus, radial 

mapping provides valuable information on hippocampal surface change (i.e. CA1 and the 

subiculum) but should be interpreted with caution for inner structures such as the dentate 

gyrus [La Joie et al., 2010]. The limits of these surface-based modelling strategies to assess 

hippocampal subfield anatomy have been discussed extensively in the field of Alzheimer’s 

disease and aging [de Flores et al., 2015; Morra et al., 2009], even by the authors who 

pioneered the method [Thompson et al., 2004; Frisoni et al., 2008]. Therefore, proper 

volumetric analyses with manual or automatic segmentation are now considered more 

relevant than radial mapping to investigate hippocampal regional vulnerability, although they 

have their own limitations and require protocol harmonization to clearly define subfield 

boundaries [Wisse et al., 2017]. For instance, we acknowledge that the Winterburn protocol 

we used here mainly delineates CA2/3 in its dorsal portion to increase segmentation 

reliability, although it can lead to volume underestimations. Therefore, our results might have 

differed by using other definitions of the hippocampal subfields boundaries. From the 

technical point of view, we also acknowledge that we only used T1-weighted images to label 

hippocampal subfields, whereas both T1 and T2-weighted images are often preferred to 

delineate internal boundaries, especially for very thin layers such as CA1-SRLM. However 
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pooling CA1-SRLM with the bigger CA1-SP wouldn’t have changed our main conclusions. 

Furthermore, we have recently validated that the single use of T1-weighted images up-

sampled with local adaptive super-resolution leads to reliable hippocampal subfield labeling, 

compared to the combination of T1 and T2-weighted images [Romero et al., 2017].  

The main limitation of our study is the lack of MRI follow-up for our healthy control group to 

clearly disentangle the contribution of time-dependant versus disease-dependant processes in 

our longitudinal measures of atrophy in the CIS group. However, our results on the dynamics 

of progressive hippocampal subfield atrophy are likely related to the disease process because 

they are specific (i.e. CA4/dentate gyrus and CA1 but not CA2/3 and the subiculum) and 

because the annualized rate of hippocampal atrophy measured (-5.9%/year) is clearly above 

what can be observed on average in the healthy population (-0.4%/year in people less than 55 

years old) [Fraser et al., 2015]. Another limitation is the short follow-up period (1-year), 

which was nonetheless long enough to capture the sequential progression of hippocampal 

subfield atrophy. We also acknowledge that we did not assess the potential microstructural 

damage that underlies or precedes hippocampal regional atrophy, with sequences such as 

diffusion-tensor imaging or magnetization transfer MRI, but these techniques are difficult to 

implement at the spatial resolution required to study hippocampal subfields. The final 

limitation was that, although no area of T2-hypersignal or T1-black hole was clearly detected 

within the hippocampus on our conventional sequences, we did not assess potential subtle 

demyelinating hippocampal lesions with specific double inversion recovery sequences.  
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Conclusion 
 

We demonstrated that CA4/dentate gyrus is the first subfield of the hippocampus to be 

atrophied during the course of MS, from the stage of CIS. This regional pattern of 

hippocampal atrophy rapidly spread to CA1. This dynamic vulnerability is associated with 

future diagnosis of MS and contributes to hippocampal-dependant memory performance.  
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Figure 1: Segmentation of the five hippocampal subfields.  

Super-resolution T1-weighted images (0.5x0.5x0.5mm3) centred on the left hippocampus of a 

patient with clinically isolated syndrome (PwCIS) in the sagittal plane (A), in an oblique axial 

cut parallel to the plane of the hippocampus (B) and in the coronal plane (C). Five 

hippocampal subfields were automatically segmented (and manually corrected if needed) 

according to the atlas of Winterburn et al.: the subiculum, the stratum pyramidale of CA1 

(CA1-SP), the stratum-lacunosum-moleculare of CA1 (CA1-SRLM), CA2/3 and CA/4dentate 

gyrus (CA4/DG).  
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Figure 2: Comparison of the normalized volumes of hippocampal subfields between 

healthy controls and persons with clinically isolated syndrome (CIS) at baseline (y0).   

Histograms represent the cumulative volumes of all the left hippocampal subfields (in red), of 

all the right hippocampal subfields (in blue) and of all right&left hippocampal subfields (in 

orange). The colour gradient represents individual hippocampal subfields. ns = non-

significant, *p<0.05, **p<0.01 (corrected for multiple comparisons). 
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Figure 3: Comparison of the normalized volumes of hippocampal subfields between 

persons with clinically isolated syndrome (CIS) at baseline (y0) and 1-year follow-up (y1).   

The histograms represent the cumulative volumes of all the left hippocampal subfields (in 

red), of all the right hippocampal subfields (in blue) and of all right&left hippocampal 

subfields (in orange). The colour gradient represents individual hippocampal subfields. ns = 

non-significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (corrected for multiple 

comparisons). 
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 Controls  
with MRI 

(n=38) 

CIS baseline 
(n=56) 

CIS 1-year 

(n=46) 
p-value 

Demographic and clinical features     

Mean age, years [SD] 36.6 [10.7] 36.5 [11.2] - 0.94 

Sex ratio (F/M) 26/12 46/10 - 0.14 

Education level, (High/Low§) 27/11 39/17 - 0.88 

Median EDSS score [range] - 1.0  [1.0 to 6.0] 1.0  [1.0 to 6.0] 0.63 

Conversion to MS  - - 30/46 (65.2%) - 

Neuropsychological features     

Median verbal memory z-score [range]  

{% impaired} 

 
0.10 [-4.9 to 1.0] 

{7.4%} 

-0.13 [-3.7 to 1.2] 

{10.7%} 

0.91 

Median visuospatial memory z-score [range] 

{% impaired} 

 
-0.20 [-5.2 to 0.82] 

{17.9%} 

0.10 [-3.5 to 1.0] 

{6.5%} 

0.02 

Imaging features     

Median T2 lesion volume, mL [range] - 0.73 [0.02-63.12] 1.08 [0.06-67.74] 0.67 

Mean normalized brain volume, % [SD] 86.4 [3.2] 85.1 [3.9] 83.9 [4.1] 0.21#/0.012† 

Table 1: Clinical, neuropsychological and general MRI features of the studied populations. CIS = 
Clinically Isolated Syndrome; EDSS = Expanded Disability Status Scale; MS: Multiple Sclerosis; SD 
= Standard Deviation. § Education level was considered as high or low according to French 
baccalaureate (equivalent to A-level).  # Controls vs CIS baseline. † CIS baseline vs CIS 1-year.  
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1 year volume 

 Explanatory 
variables 

(at baseline) 

Univariate 
analysis (r) 

Multivriate 
analysis (ß) 

Adjusted 
multivariate 
model (R2) 

CA1-SP 

Block 1 

Age 

T2LL 

NBV 

-0.16 

-0.21 

0.44** 

ns 

ns 

0.47* 

0.19* 

Block 2 

Age 

T2LL 

NBV 

CA4/DG 

-0.16 

-0.21 

0.44** 

0.63*** 

ns 

ns 

ns 

0.40*** 

0.44***# 

CA1-SRLM 

Block 1 

Age 

T2LL 

NBV 

-0.06 

-0.16 

0.48*** 

ns 

ns 

0.64*** 

0.27** 

Block 2 

Age 

T2LL 

NBV 

CA4/DG 

-0.06 

-0.16 

0.48*** 

0.62*** 

ns 

ns 

0.40* 

0.47*** 

0.47***# 

Hippocampus 

Block 1 

Age 

T2LL 

NBV 

-0.16 

-0.26 

0.56*** 

ns 

ns 

0.65*** 

0.32** 

Block 2 

Age 

T2LL 

NBV 

CA4/DG 

-0.16 

-0.26 

0.56*** 

0.71*** 

ns 

ns 

0.37* 

0.58*** 

0.61***# 

Table 2: Univariate correlations and hierarchical linear regression models between volumes of CA1 
subfields or whole hippocampal volume at year 1 (dependent variables) and volume of CA4/dentate 
gyrus at baseline. Age, T2LL and NBV were entered into an initial model (block 1) as nuisance 
variables. CA1-SP = CA1-stratum pyramidale, CA1-SRLM = CA1-stratum radiatum-lacunosum-
moleculare, CA4/DG = CA4/dentate gyrus, NBV = Normalized Brain Volume, T2LL = T2 Lesion-
Load. ns = non-significant, *p<0.05, **p<0.01, ***p<0.001. # AICblock2 < AICblock1. 
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Explanatory 

variables 
Univariate 
analysis (r) 

Multivariate 
analysis (ß) 

Adjusted 
multivariate 
model (R2) 

Baseline      

Episodic verbal memory Block 1 

Age 

T2LL 

NBV 

Education level 

-0.04 

-0.20 

0.12 

0.32* 

ns 

ns 

ns 

0.38* 

ns 

Block 2§ - - - - 

Episodic spatial memory Block 1 

Age 

T2LL 

NBV 

Education level 

-0.18 

-0.18 

0.17 

0.32* 

ns 

ns 

ns 

ns 

ns 

Block 2§ - - - - 
1 year      

Episodic verbal memory 

Block 1 

Age 

T2LL 

NBV 

Education level 

-0.15 

-0.14 

0.17 

0.24 

ns 

ns 

ns 

ns 

ns 

Block 2 

Age 

T2LL 

NBV 

Education level 

CA1-SP 

CA1-SRLM 

-0.15 

-0.14 

0.17 

0.24 

0.30* 

0.24 

ns 

ns 

ns 

0.51* 

0.87* 

ns 

0.26* 

Episodic spatial memory Block 1 

Age 

T2LL 

NBV 

Education level 

-0.35* 

-0.17 

-0.03 

0.14 

ns 

ns 

ns 

ns 

ns 

Block 2§ - - - - 
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Table 3: Univariate correlations and hierarchical regression models between memory composite 
scores at baseline or after 1-year follow-up (dependent variables) and demographical, clinical and 
MRI features. Age, T2LL, NBV and educational level were entered into an initial model (block 1) as 
nuisance variables. Covariables related to hippocampal subfields were added in a second model (block 
2) according to univariate correlations (p-value <0.2) to predict memory scores. CA1-SP = CA1-
stratum pyramidale, CA1-SRLM = CA1-stratum radiatum-lacunosum-moleculare, T2LL = T2 Lesion-
Load. NBV = Normalized Brain Volume. ns = non-significant, *p<0.05. §: Block 2 was equivalent to 
Block 1 because no correlation (p<0.2) was found between the volume of any hippocampal subfields 
and the memory score. 
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