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Abstract. This paper presents the interest of an original absorber of vibration in order to reduce 

chatter vibration in turning process. The device is composed of a linear oscillator corresponding to a 

flexible cutting tool – subject to chatter – strongly coupled to a Nonlinear Energy Sink (NES), with 

purely cubic stiffness. The novelty of this work is the use of a nonlinear cutting law, more accurate 

for modeling the cutting process. The delayed equations of motion are analyzed using a 

combination of the method of multiple scales and harmonic balance. Different types of responses 

regimes are revealed such as periodic response and also Strongly Modulated Response (SMR). 

Analytic results are then compared with numerical simulations. Finally, the potential of the NES is 

demonstrated to control chatter in turning process. 

Introduction 

Surface quality of parts produced by machining operation is strongly affected by the well-known 

regenerative chatter. The chatter instability is induced by the time delay between two consecutive 

workpiece revolutions. By the effect of some external disturbance, the tool start damped oscillations 

relative to the workpiece, and the surface roughness is undulated. For two consecutive workpiece 

revolutions, the chip thickness is modulated. This regenerative mechanism is well known and was 

presented first by Tobias [1]. Since this work, many researchers have improved the knowledge by 

the stability lobe representation, see e.g. [2,3,4,5]. The behavior of a cutting tool on a lathe has also 

been studied using the method of multiple scales [6]. 

Various techniques for chatter suppression have been investigated. In [7], a variable spindle 

speed in milling was used to disturb the time delay. Another approach to reduce chatter is the use of 

linear tuned vibration absorbers. Recently, an analytical optimized method was presented for linear 

absorbers in the context of chatter [8]. These linear absorbers are successfully applied on boring 

process [9]. Active absorbers have been also proposed with piezoelectric tool [10]. However all 

these linear absorbers are limited by the small frequency bandwidth, and in practice their efficiency 

is not interesting for the machinist. 

The idea of attaching a nonlinear oscillator to a lathe is relatively new [11,12]. In recent studies, 

it has been demonstrated that addition of a small mass attachment with a strong nonlinear coupling 

(i.e. a nonlinear energy sink) to a linear oscillator can be benefit for vibration mitigation [13,14], 

even in presence of gravity [15]. In [16], a general analytical procedure was presented. The 

possibility to control self-excitation regimes in a Van der Pol oscillator with a NES has been 

demonstrated in [17]. Systems with NES exhibit regimes that are not related to fixed points, and 

cannot be explained using local analysis [18]. These regimes are related to relaxation oscillations of 

the slow flow and are also interesting for passive control [12]. 
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In this paper, the possibility of controlling regenerative chatter using a nonlinear energy sink is 

analyzed for turning process, including a nonlinear cutting law. Theoretical predictions are 

compared with numerical integration. In the next section, the model considered is described. In the 

third section, the asymptotic analysis of the equation of motion is performed. Then, the different 

response regimes accompanied with numerical simulation are presented. 

Mechanical model 

The model developed herein consists of a cutting tool on a lathe with an embedded NES. The 

cutting tool is assumed to vibrate only on its first flexible mode and the workpiece is considered to 

be rigid. A schematic of the model is given in Fig. 1. 

Figure 1. Scheme of the model. 

The governing equation of motion is as follow: 

�� ���
��� � �� ��

�� � 	�
 � �� � ��
�� � ��

���  � 	��
 � ��� � ��� (1a) 

m� ���
��� � c� ���

�� � r ��
��� � k��y � rx�� � 0 (1b)

where x and y represent the tool tip and NES displacement respectively. m#, c# and k# (i � 1, 2) are

the mass, damping and stiffness of the tool and NES. r is the influence coefficient, depending on the

position of the NES on the tool. Finally, F� is the cutting force taking into account the regenerative

effect. The cubic polynomial form due to Shi and Tobias [19] is expressed as follow: 

F�)h�t�, � p�ρ�h�t� � ρ�h�t�� � ρ�h�t��� (2)

where p is the chip width (depth of cut), h�t� is the chip thickness and ρ# (i � 1, 3) are specific

cutting coefficient obtained by fitting the experimental cutting force measurement with a third order 

polynomial. The chip thickness h�t� is expressed as follow:

h�t� � h0 � ∆h�t� (3)h0 represent the nominal chip thickness in the absence of vibration and ∆h�t� is the chip thickness

variation gives by: 

∆h�t� � x�t� � x�t � τ� (4)

where x�t � τ� is the delayed position of the tool and τ is the time delay between two workpiece

revolutions τ �  2π/Ω, with Ω the spindle speed. In the steady state, x �t�  �  x0, y �t�  �  y0.

Substituting Eq. 3 and Eq. 4 into Eq. 1a, Eq.1b gives: 

k�x0 � �p)ρ�h0 � ρ�h0� � ρ�h0�, (5)
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In the unsteady state, the displacement would be the sum of the steady state component and an 

unsteady component: 

x�t� = x0 + u�t�,										y�t� = y0 + v�t�	 (6)

Substituting Eq. 3, Eq. 5, Eq. 6 into Eq. 1a, Eq. 1b gives: 

m�
���
��� + c� ��

�� + k�x + c� �r ��
�� −

��
��� r + k��rx − y��r = −p�α�∆h�t� + α�∆h�t�� + α�∆h�t���

(7a) 

m�
���
��� + c� ����� − r ��

��� + k��y − rx�� = 0		 (7b) 

where α� = ρ� + 2ρ�h0 + 3ρ�h0
�, α� = ρ� + 3ρ�h0, α� = ρ�. Changes of variables are

introduced as follow: 

9ω��, ω��, μ�, μ�, ε, η, κ, β�, β�@ = ABCDC
, B�D�

, EC
�DCFC

, E�
�D�FC

,D�
DC

, GHC
DCFC�

,F��

FC�
, H�
HC

, HI
HC
J		 (8)	

The time is rescaled t̃ = ω�t, τL = ω�τ. The nonlinear terms of the cutting law are also rescaled

β� = εβ�M,β� = εβ�M. Dropping the tilde, the compact form of equation of motion are as follow:

uN + 2μ�uO + u + 2εμ��ruO − vO �r + εκ�ru − v��r + η�∆h�t� + β�∆h�t�� + β�∆h�t��� = 0	 (9a)	

εvN + 2εμ��rvO − uO � + εκ�rv − u�� = 0	 (9b)	
where the dots denotes differentiation with respect to time. 

Analysis of the linear system 

The linear uncoupled system is obtained by setting ε = 0 in Eq. 9a:

uN + 2μ�uO + u + η)u�t� − u�t − τ�, = 0	 (10)	
Eq. 10 admits solution of the form: 

u�t� = u0e�QR#F��	 (11)	
where ω is the frequency of the oscillations, γ is the grow or decay rate and u0 depends on initial

conditions. Substituting Eq. 11 into Eq. 10 gives: 

�γ + iω�� + 2μ��γ + iω� + 1 + η)1 − eTU�QR#F�, = 0	 (12)	
At the stability boundary, γ = 0. It is possible to prove that this bifurcation �γ, η, ω� 	= 	 �0, ηE, ωE�
is a Hopf bifurcation because it results from two complex conjugate eigenvalues. Splitting Eq. 12 

into real and imaginary parts and setting γ = 0 yields:

1 − ωE� + ηE�1 − cosωEτ� = 0	 (13a)	

2ωEμ� + ηE sinωEτ = 0	 (13b)	
Solving Eq. 13a, Eq. 13b for cosωEτ and sinωEτ and using trigonometric identity, the frequency of

the bifurcated periodic orbit is obtained as: 

ωE� = 1 + ηE − 2μ�� ±Z�ηE − 2μ���� − 4μ��	 (14)	
The stability boundary is often plot in the space of parameters �Ω, η� and is called stability lobes.

Analysis of the coupled system 

In this section the system with the NES is studied. First, a new coordinate representing the internal 

displacement of the NES is introduced: 
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w�t� = ru�t� − v�t� (15) 
Substituting Eq. 15 into Eq. 9a, Eq. 9b gives: 

uN � 2μ�uO + u + 2εμ�wO r + εκw�r + η�∆h�t� + β�∆h�t�� + β�∆h�t��� = 0 (16a) 
ε�ruN − wN � − 2εμ�wO + εκw� = 0 (16b) 

System Eq. 16a, Eq. 16b cannot be analyzed using standard approach such as the method of 

multiple scales or the method of averaging due to the lack of linear stiffness in the NES equation. A 

mixed multiple scale/harmonic balance method proposed by Luongo [20] is used. 

A detuning parameter representing the nearness of η to the critical value ηE is introduced as:

η � ηE � εσ (17) 
A first order uniform approximation in the vicinity of the Hopf bifurcation has the form: 

u�t; ε� = u0�T0, T�� + εu��T0, T�� + ⋯ (18a) 
w�t; ε� = w0�T0, T�� + εw��T0, T�� + ⋯ (18b) 

where Ta � εat (n �  0, 1, …). The time delay is considered of O�1� which is rather natural, since

the most interesting zone for the machinist is close to the first Hopf lobe. The delayed position of 

the tool is expressed as: 

u�t − τ; ε� = u0�T0 − τ, T� − ετ� + εu��T0 − τ, T� − ετ� + ⋯ (19) 
which upon expansion for small ε becomes:

u�t − τ; ε� = u0�T0 − τ, T�� + εu��T0 − τ, T�� + ⋯ (20) 
Substituting Eq. 18a, Eq. 18b, Eq. 20 into Eq. 16a, Eq. 16b and equating coefficients of like power 

of ε yields:

order ε0:

D0�u0 � 2μ�D0u0 + u0 + ηE�u0 − u0U� = 0 (21) 
order ε�:

D0�u� � 2μ�D0u� + u� + ηE�u� − u�U� = −2D0D�u0 − 2μ�D�u0 − 2μ�rD0w0 − ηEτD�u0U −
σ�u0 − u0U� − ηEeβ��u0 − u0U�� + β��u0 − u0U��f − κrw0

�  (22a) 
D0�w0 � rD0

�u0 + 2μ�D0w0 + κw0
� = 0 (22b) 

where DaD � ∂D/ ∂TaD and uaU = ua�T0 − τ, T��. The general solution of Eq. 21 can be expressed

as: 

u0 = A�T��e#Fijk + ∑ mAa�T��e�QnT#Fn�jko + ccp
aq�  (23) 

where cc stand for the complex conjugate of the preceding terms, ωE is the critical frequency of the

oscillation at the boundary of Hopf bifurcation given in Eq. 14. �γa − iωa� are the remaining roots

of Eq. 21. Close to the Hopf bifurcation, all the roots have negative real parts except one which 

change sign at the stability boundary as explained in [21]. After transient, all the roots decay with 

time and the long time behavior at O�1� is given by:

u0 = A�T��e#Fijk + cc (24) 
To study the effect of the NES and nonlinear terms, Eq. 22a, Eq. 22b at O�ε� are now analysed. Eq.

22b is first considered. Since this equation does not admit exact solution and since we are interested 

in the behavior of the system in the vicinity of the 1: 1 resonance, we seek a solution in the form of

a one term Harmonic Balance expansion: 

w0 = B�T��e#Fijk + cc (25) 
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Substituting Eq. 24, Eq. 25 into Eq. 22b and balancing term of ωE frequency gives:

2iμ�BωE + 3κB�Bt − BωE� + rAωE� = 0 (26) 
Expressing A and B in polar form:

A � Re#v,          B � Ne#x (27) 
Substituting Eq. 27 into Eq. 26, splitting into real and imaginary part and rearanging gives: 

cos Δ = z)Fi�T�{z�,
|}Fi�

 (28a) 
sin Δ = − �~�z

Fi|}
 (28b) 

R� � z�
|�Fi� e�3κN� −ωE��� + 4μ�

�ωE�f (28c) 
where Δ � δ � θ. Setting Y � R� and Z � N�, Eq. 28c is rewritten as follow:

Y � �
|�Fi� e�3κZ − ωE��� + 4μ�

�ωE�f (29) 
Eq. 29 defines the Slow Invariant Manifold (SIM) of the problem. Depending on the value of μ�,

the SIM can consist either in one monotonous branch or admit extremums. To determine the critical 

value of μ�, the derivative of the right hand side of Eq. 29 is equated to zero and solved for Z:

Z# �
C
I��

IFi±C
I�Fi�T��~���Fi

{  (30) 
Consequently, the SIM will admit extremums if μ� < �

�√�. By conducting a standard stability 

analysis, it can be shown that if μ� > �
�√�, the SIM will be constituted of only one stable branch, but 

if μ� < �
�√�, the SIM will be constituted of two stable divided by one unstable branch. This scenario 

is typical with system that can perform relaxation-type oscillation. To investigate this possibility, 

Eq. 22a at 0�ε� will be analysed.

Substituting Eq. 24, Eq. 25 into Eq. 22a and eliminating terms that produce secular terms with 

respect to e#Fijk gives:

−D�A)2iωE + 2μ� + ηEτeT#FiU, − σA)1 − eT#FiU, − 3κrB�Bt − 2iμ�rωEB +
3ηEβ�A�At)e#FiU − 1,�eT�#FiU = 0 (31) 

Expressing A and B in polar form, splitting into real and imaginary parts and rearranging gives:

ΨD�R �
Nre3κN��2ωE − sin�ωEτ�ηEτ� − 2μ�ωE�cos�ωEτ�ηEτ + 2μ��f sin Δ + Nre−3κN��2μ� +
cos�ωEτ� ηEτ� + 2μ�ωE�sin�ωEτ�ηEτ − 2ωE�f cos Δ − R�−σ + 6R�ηEβ� cos�ωEτ� −
6R�ηEβ���τηE cos�ωEτ�� − cos�ωEτ�τηE + 2 cos�ωEτ�μ� + τ sin�ωEτ��ηE − 2ωE sin�ωEτ� −
2μ�� (32) 

where 

Ψ � �4ηEτ sin�ωEτ�ωE + 4ηEτ cos�ωEτ�μ� + ηE�τ� sin�ωEτ�� + ηE�τ� cos�ωEτ�� + 4ωE� + 4μ�� (33) 
Substituting Eq. 28a, Eq. 28b into Eq. 32 and multiplying by R the following equation governing

the evolution of Y is obtained:

���Ψ��� � �2�����ecos�������� − 2 cos������� − ��� + 2�� sin����� + 2��f +
12����������cos����� − 1�ecos�������� − 2 cos������� − ��� + 2�� sin����� + 2��f +
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4����
��e2����� cos����� � 4���� � 2��

� � ��� sin�������f � 6��� ��e2μ��� � 4���� �
4���� sin�������� � cos����� ����� � 2�� sin����� ���f � 18����e2�� � cos��������f (34) 

In order to understand the dynamics of the system qualitatively, it is only necessary to know how 

the fixed points are located on the SIM. This can be understood graphically as the intersection of the 

SIM and the two parabola obtained by setting the right hand side of Eq. 34 to zero and solving for 

Y. 

Analysis of some response regimes 

The behavior of an embedded NES on a lathe cutting tool has been previously studied in [12], it 

was shown that passive control of chatter by using a NES is possible and good correspondence 

between analytical prediction and numerical integration was observed. However, only a linear 

cutting law was considered. The aim of this section is to highlight the changes in the behavior due 

to the nonlinear terms in the cutting law. The integration scheme used for numerical simulation is 

the Matlab dde23 algorithm. First, the three passive control mechanisms for a linear cutting law are 

presented, and next, the behavior of the system comprising a nonlinear cutting law will be 

presented. 

Linear cutting law. The linear cutting law is obtained by setting β� � β� � 0. The parameters used 

for the numerical simulations are: 

ε � 0.01,     μ� � 0.05,     μ� � 0.1,     κ � 1,     ηE � 0.12,      τ � 3.94,     r � 1 (35) 

When a linear cutting law is considered, three control mechanisms are possible, depending on 

the value of the detuning parameter: complete suppression of chatter, stabilization of chatter and 

passive control of chatter through relaxation oscillation, also called Strongly Modulated Response 

(SMR). 

The SIM of a small value of the detuning parameter (σ � 0.1) is presented in Fig. 2(A). Two 

fixed points exists, one is stable and is located on the origin (denoted with a red circle), and the 

other one is unstable (red cross) and is located on the second stable branch of the SIM (not showed 

on the figure for visibility reason). The red circle and cross represents the stable and unstable fixed 

points, and the green line represents the projection of the temporal integration of the equations of 

motion on the SIM. In this case, the slow flow is repelled to the origin and chatter is fully 

suppressed. This scenario is confirmed by numerical integration presented in Fig. 2(B). 

Figure 2. Case of complete suppression of chatter for the set of parameters (Eq. 35) and σ = 0.1 (A) Structure 

of the SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM respectively. 

’o’ and ’+’ denotes stable and unstable fixed points. Green line represents the projection of numerical 

integration of the coupled system on the SIM. (B) Numerical verification; blue line : coupled system, green 

line: uncoupled system. 

(A) (B) 
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For a higher value of the detuning parameter (σ � 0.3 in Fig. 3(A)), the fixed points located at 

the origin becomes unstable, and a stable fixed points is now located on the first stable branch of the 

SIM. This corresponds to the stabilization of chatter, which induce small amplitude periodic 

oscillations of the tool. The numerical integration corresponding to this case is presented in 

Fig. 3(B). 

Figure 3. Case of stabilization of chatter for the set of parameters (Eq. 35) and σ = 0.3. (A) Structure of the 

SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM respectively. ’o’ and 

’+’ denotes stable and unstable fixed points. Green line represents the projection of numerical integration on 

the SIM. (B) Numerical verification. 

Increasing the value of the detuning parameter to � � 0.9, the previously stable fixed point cross 

the folded point ��, and the only way for the slow flow is to perform relaxation oscillation, that is 

passive control of chatter through SMR. This response regime is also verified numerically in 

Fig. 4(B). 

Figure 4. Case of passive control of chatter via SMR for the set of parameters (Eq. 35) and σ = 0.9 (A) 

Structure of the SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM 

respectively. ’o’ and ’+’ denotes stable and unstable fixed points. Green line represents the projection of 

numerical integration on the SIM. (B) Numerical verification. 

Nonlinear cutting law. The nonlinear contribution of the cutting law (β� and β�) are sets to non-

zero values. The same set of parameters (Eq. 35) is used and the nonlinear terms are: β� � β� � 10. 

The SIM for σ � 0.15 is presented in Fig. 5(A), the black dashed line represents the SIM at time 

scale T�. 

(A) (B) 

(A) (B) 
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Figure 5. Case of complete suppression of chatter for the set of parameters (Eq. 35) and σ = 0.15 (A) 

Structure of the SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM 

respectively. ’o’ and ’+’ denotes stable and unstable fixed points. Green line represents the projection of 

numerical integration on the SIM. (B) Numerical verification. 

It is observed that four fixed points are now located on the SIM. The stable fixed point is located 

at the origin, two unstable fixed points are located on the two stable branch of the SIM and another 

unstable fixed point is on the unstable branch of the SIM. In this case, if the initial conditions are 

below first unstable fixed points, the slow flow will be attracted directly by the stable fixed points 

and if the initial conditions are above the first unstable fixed points, the flow will perform a 

relaxation cycle before being attracted by the stable fixed point. This corresponds to complete 

suppression of chatter.  

Increasing σ to σ � 0.2 again for the same set of parameters, the SIM is presented in Fig. 6(A). 

The unstable fixed points on the first stable branch of the SIM is now located below the landing 

point Z�. In this case, with initial conditions above the first unstable fixed points, since the landing 

point is higher than the unstable fixed points, the flow will be repelled to the unstable branch of the 

SIM, and the perform relaxation oscillation. This is confirmed by numerical integration in Fig. 6(B). 

Figure 6. Case of passive control of chatter via SMR for the set of parameters (35) and σ = 0.2 (A) Structure 

of the SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM respectively. 

’o’ and ’+’ denotes stable and unstable fixed points. Green line represents the projection of numerical 

integration on the SIM. (B) Numerical verification. 

Another different configuration can be obtained with the following set of parameters (all the 

others parameters remain unchanged): κ � 20,					β� � 10,					β� � 100. 

The SIM in this case is displayed in Fig. 7(A). In this case, two stable fixed points are located on 

the first stable branch of the SIM. Depending on the initial conditions, the flow will be either 

attracted by the fixed points located at the origin, which correspond to a complete suppression of 

chatter, or by the other fixed points, which correspond to the stabilization of chatter. These 

scenarios are confirmed by numerical integration in Fig. 7(B). 

(A) (B) 

(A) (B) 
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(A) Structure of the SIM. Solids and dashed blue lines represents the stable and unstable branch of the SIM 

respectively. ’o’ and ’+’ denotes stable and unstable fixed points. Green and purple line represents the 

projection of numerical integration on the SIM. (B) Numerical verification. 

Conclusion 
In this paper, the interest of a nonlinear absorber to reduce chatter vibration in turning process was 

studied. 

The original device was composed of a linear oscillator corresponding to a flexible cutting tool, 

strongly coupled to a Nonlinear Energy Sink (NES). The NES was composed of a small mass 

attached with a purely nonlinear cubic stiffness. The originality of this work was the use of a 

nonlinear cutting law, in order to model the turning process. The model takes into account the delay 

term of the regenerative effect, the nonlinear term of the cutting law and the nonlinear stiffness of 

the NES. The whole system has been studied using a combination of the method of multiple scales 

and harmonic balance method. Different responses regimes were also discussed by studying the 

location of the fixed points on the Slow Invariant Manifold (SIM). Regimes are characterized by a 

complete suppression of chatter, a stabilization of chatter and a chatter control through relaxation 

cycle oscillations called SMR response. This study show that taking into account a nonlinear cutting 

law induces a more complex behavior compare to a linear cutting law, however passive control of 

chatter is still possible. Analytical prediction and numerical simulation are in good qualitative 

agreement. 

The control of regenerative vibration with a nonlinear energy sink variation was clearly 

presented by analytical and numerical simulation; machining chatter was suppressed by a proper 

NES. 
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