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AS7G06-T6 cast aluminum alloy is tested under tension fatigue loading for two load ratios. After the quantification of the Secondary Dendrite Arm Spacing 
(SDAS) and grain size of the material, fatigue tests are analyzed through fractographic Scanning Electron Microscope (SEM) observations in order to reveal 
the type of defects at the origin of the failure. The quantification of the defect size is performed for each defect and Kitagawa type diagrams are produced 
for each load ratio. It is shown that the critical defect size that does not lower the fatigue strength is close to the grain size of the material. The Defect Stress 
Gradient (DSG) approach that aims to simulate defect influence on the fatigue strength is presented in a multiaxial context. DSG approach is finally 
implemented in a finite element simulation of a structural component in order to show that such an approach can provide a defect size map. The latter can 
be used to define allowable defect size for industrial components.

1. Introduction

The fatigue design of a metallic cast part is strongly linked to

the casting process. The designer needs to compromise between

the fatigue resistance of the component and the allowable defect

size due to the process. In order to perform this optimization, a cri-

terion that takes into account defect influence on the fatigue

strength is necessary. Murakami [1] proposed an empirical ap-

proach where the defect is measured in relation with loading direc-

tion with the so called ‘area’ defect parameter. This approach can

be applied for different defect morphologies and gives interesting

results for steels. The designer needs a general methodology that

can be applied on a real component in order to evaluate quantita-

tively the defect size at each point of the component for a given

stress and fatigue life. The objective of this paper is to present

the Defect Stress Gradient (DSG) method applied to cast aluminum

parts in order to show that such methodology can strongly help to

define the defect size map on structural components.

Many approaches have been proposed in order to assess the

influence of a defect on the fatigue life. An overview of that prob-

lem can be found in [2]. The influence of a defect on fatigue life can

be determined by 4 parameters:

– Defect type (inclusion, pore, shrinkage, oxide. . .).

– Defect morphology (spherical, elliptical, complex . . .).

– Defect position (internal, sub surface or surface).

– Defect size (function, or not, of loading direction).

For cast parts, defects are typically from fewmicrons to 1–2 mm

long so that the microstructure surrounding the defect is of the

same order that the defect size because cast microstructure is gen-

erally rough. Some authors tended to propose modeling using a

microstructural modeling [3] and short crack arrest theories. This

approach is relatively limited to uniaxial tension and also in term

of R ratio effect due to the use of fracture mechanics. McDowell

and coworkers [4] suggested considering 3 scales around the de-

fect in order to describe microstructural influence close to the de-

fect, short crack and finally long crack. This approach using a

probabilistic framework is extremely powerful and very realistic

from a physical viewpoint. However, it needs a large and reliable

experimental data base on fatigue behavior and a good knowledge

on fatigue mechanisms for the identification of all parameters. Re-

lated to the morphology of the defect, the full 3D analysis of Buff-

ière et al. [5] aims to understand the role of complex local

geometry of the defect related to the microstructure. The analysis

proposed by Nicoletto et al. [6] adds important information to the

3D damage analysis obtained by X-ray tomography (XR): the vari-

ation of stress concentration factor as a function of complex
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shrinkage geometry and loading. Therefore, a criterion based on lo-

cal stresses gets realistic.

From a mechanical point of view, several approaches are sum-

marized as follows. The Critical Distance Method proposed by Sus-

mel and Taylor [7] to describe notch effect on fatigue leads to very

good results in the case of small defects as shown by Leopold and

Nadot [8]. More recently Pommier and coworkers [9] suggested, in

the framework of enriched fracture mechanics, that the T stress

could be a way to make a continuous link between small defects

and large defects on a Kitagawa type diagram [10]. Other empirical

approaches based on Murakami’s proposal try to extend the area

parameter to multiaxial loading [11].

In order to assess the fatigue life of a part submitted to multiax-

ial loading, we have proposed a general methodology in the past

[12,13,8] to represent the effect of a defect by the stress gradient

surrounding the defect like suggested by Papadopoulos [14] or

Morel et al. [15]. This general methodology, called Defect Stress

Gradient (DSG), can consider explicitly the type, the morphology

and the size of the defect. A finite element (FE) submodel is intro-

duced to describe directly the defect at the mesoscopic scale [16].

Nomenclature

a radius of the spherical inclusion, m
b material parameter describing the type of defect and its

influence in Defect Stress Gradient (DSG) approach, m
h shortest distance between the specimen free surface

and the defect edge, m
fi grain area percentage of grains within a certain grain

size range

k
P
avg amplifier of mean stress at point P

k
P
amp amplifier of stress amplitude at point P

m number of summits of a polygon surrounding a defect

piði ¼ 1;2; . . . ;mÞ summits of a polygon surrounding a defect

pt point on defect surface
t time, s
xi coordinates of the point in the matrix, m

(xi, yi) summits coordinates of a polygon surrounding a defect,
(m, m)

I ellipsoidal inhomogeneity

I1ð~xÞ mathematical function involved in Dð~xÞ

I2ð~xÞ mathematical function involved in Dð~xÞ, m�2

J1 first invariant of the stress tensor, MPa
J1,max maximum value of the first invariant of the stress tensor

over a loading cycle, MPa
JP1 first invariant of the stress tensor at point P, MPa
J2,a amplitude of the second invariant of the deviatoric

stress tensor over a loading cycle, MPa2

P point material or crack initiation site
R load ratio between minimum and maximum stresses of

the loading cycle
Rp0.2 yield strength at 0.2% plastic deformation, MPa
Rm tensile strength, MPa
SC area of the polygon C, m2

T loading period, s
a material parameter in the Crossland equivalent stress
b material parameter for a given number of cycles N in

Crossland criterion, MPa
dij Kronecker symbol
m Poisson’s ratio
m0 Poisson’s ratio of the matrix
r1
11 only non-zero component applied at infinity, MPa

ra stress amplitude, MPa
rCR Crossland equivalent stress, MPa
rCR,max maximum Crossland equivalent stress on the defect sur-

face, MPa
rpt
CR Crossland equivalent stress for a point on the defect sur-

face
rP
CR Crossland equivalent stress at point P, MPa

r1
CR Crossland equivalent stress at infinity, MPa

rD fatigue strength corresponding to 5 � 106 cycles, MPa
rte
D�1 fatigue strength in tension with the load ratio R = �1,

MPa

rD0 previous stress amplitude at which the specimen passed
5 � 106 cycles, MPa

rte
D0:1 fatigue strength in tension with the load ratio R = 0.1,

MPa
req,max maximum equivalent stress at the defect surface, MPa
r1
eq equivalent stress at infinity, MPa

r�
eq equivalent stress including ‘gradient’ effect in DSG crite-

rion, MPa
rmax maximum stress
rP�
11;r

P�
22;r

P�
33 components of the stress tensor at point P in the
principal coordinate system, MPa

rP
ij component of the stress tensor at point P corresponding

to a unit load, MPa
x angular velocity, s�1

Dr variation of stress amplitude between two steps in the
‘‘step loading’’ procedure, MPa

C polygon
U grain size, m
Ui average grain size of grains within a certain grain size

range, m
Uavg average grain size in the observation zone, m
X infinite matrix
~u displacement vector, m
~x vector position of a point in the matrix, m

C0 stiffness tensor of the matrix, MPa

CI stiffness tensor of the inhomogeneity, MPa

Dð~xÞ fourth-order tensor at point x in the matrix

I fourth-order identity tensor

P Hill fourth-order tensor (MPa)�1

S deviatoric stress tensor, MPa

SP� Deviatoric stress tensor at point P (principal coordinate
system), MPa

S Eshelby fourth-order tensor
e strain tensor
e0 strain tensor in the matrix at infinity
e� fictitious equivalent eigenstrain
eI strain tensor in the inhomogeneity
r stress tensor, MPa
r0 stress tensor in the matrix at infinity, MPa
rloc;max stress tensor at the most loaded point on the spherical

void surface, MPa
rpt stress tensor at each point on the defect surface (side

matrix), MPa
rP stress tensor at point P, MPa
rP
g:c: stress tensor at point P in the geometric coordinate sys-

tem, MPa
ffiffiffiffiffiffiffiffiffiffi

area
p

Murakami parameter describing defect size, square root
of the defect surface projected on a plane perpendicular
to the direction of the maximum principal stress, m
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The DSG approach gives very good results [8,17] for defects ranging

from 100 lm to 1 mm but it is limited for application to full scale

components by the use of the local FE submodel. To face this prob-

lem, an analytical submodel based on the Eshelby’s theory is here

employed to compute stresses around the defect. The paper ad-

dresses the following points:

– Microstructure of the cast Aluminum alloy AS7G06-T6.

– Influence of natural and artificial defects on the fatigue strength

under tension for two load ratios (Kitagawa type diagrams).

– Defect Stress Gradient approach, with Eshelby submodel, for an

equivalent spherical defect.

– Implementation of the DSG approach as a post treatment of FE

numerical analysis of a real industrial part in order to illustrate

the capabilities of the DSG criterion to define the defect size

map on the part.

2. Material

The material is a cast aluminum alloy AS7G06-T6. Its chemical

composition is given in Table 1.

Fig. 1 shows the microstructure of the bulk material, located on

the cross section of fatigue samples. Electron Backscatter Diffrac-

tion (EBSD) measurements were performed on the specimen sur-

face. EBSD scans were performed in beam control mode with a

spatial resolution of 5 lm/step. An area (6.0 � 5.0 mm2) was

scanned in EBSD measurement, and contained 1449 grains. The

grain size (diameter U of a disk having the same area as the grain)

varies from 28 to 1305 lm. The average grain size is 259 lm, with

a standard deviation of 215 lm. The distribution of grain area per-

centage for different grain sizes is also shown. The total area of the

grains within each grain size class is cumulated and divided by the

total grain area in the observation zone. It can be seen that the

grains between 500 and 600 lm occupy 17.4% of the total area,

and the grains in the class U e [300,800 lm] occupy about 3=4 of

the total grain area. The average grain size considering the grain

size percentage can be calculated below:

Uavg ¼
X

i

Ui � fi ð1Þ

where Ui is the average grain size of grains within a certain grain

size class and fi is the corresponding grain area percentage. The

average grain size considering grain area percentage is 573 lm.

The grain size may play an important role in fatigue mechanisms.

Indeed, the grain boundaries may act as natural barriers of crack

propagation and thus, an additional energy is required to propagate

the crack from one grain to another [18,19].

The observation by optical microscope reveals the microstruc-

ture of the material at a smaller scale. A dendritic structure is ob-

served (solid solution primary a and eutectic Al–Si surrounding),

as seen in Fig. 2a. Shrinkage cavities can also be seen in Fig. 2a.

Fig. 2b shows the measurement of the Secondary Dendrite Arm

Spacing (SDAS). The measurement was done by dividing the dis-

tance of several secondary dendrite arms by the total number of

arms. Only the dendrites with at least 6 arms have been used in

the measurement in order to reduce the measurement error. 155

dendrites were measured and the distribution of SDAS is shown in

Fig. 3. The SDAS varies between 26 and 57 lm, following a normal

distribution. 3/4 of the SDASes are located in the range [31,43 lm].

The average SDAS is 38 lm, with a standard deviation of 6 lm.

3. Experimental procedure and results

3.1. Preparation of materials and specimens

As for the casting procedure, the cast aluminum alloy AS7G06

T6 was obtained by gravity die casting. 95 kg 100% new ingots

were cast in each casting, which correspond to 40 specimens. An

electric furnace was used. The casting temperature was 720 �C+/

�10 �C and the mold temperature was 350 �C when closing die.

Opening and shake-out lasted 120 s after filling. Hydrogen degas-

sing and oxide removing were done by argon injection into alumi-

num bath (5–7 l/min during 7 min, before and after composition

corrections) with 0.1% deoxidation flux COVERAL GR 2410 and a

0.05% degassing flux.

Besides composition, the temperature, porosity (fraction of the

volume of voids over the total volume of the casting) and density

(mass per unit volume of the casting) were also controlled during

casting.

The thermal treatments in the T6 condition were: heating to

solution at 540 �C for 10 h, quenching in cold water, aging at room

temperature for 24 h, and then aging at 160 �C for 8 h.

The material was supplied as cast as a bar of 270 mm length and

30 mm diameter (Fig. 4). Two cylindrical specimens were ma-

chined off the bar, following the sketch given in Fig. 4.

3.2. Nondestructive testing

The specimens were observed by Non Nondestructive Testing

(NDT): XR and Dye Penetrant Liquid. The numerical X-ray detec-

tion has been done using the specification NF EN 12681 and the

equipment Tube Yxlon Y.TU/320-D03. The detecting thickness

was 30 mm. The voltage was 90 kV. The focus-to-film distance

was 1 m; the geometric unsharpness was 0.15 mm; and the an-

gle of incidence was 90�. The specimen was exposed for 30 s in

the intensity 5. The visible Image Quality Indicator (IQI) was

W12 (0.25 m) following the specification NF EN 462-1. The

Dye Penetrant Liquid detection was done following specifications

NF EN 571-1 and NF EN 1371-1. Both visible and ultraviolet

lightings were used. The residual of the Dye Penetrant Liquid

had an illuminance of 6 lux under UV for visible lighting, and

an irradiance of 14 W/m2 for ultraviolet lighting. A fluorescent

penetrant of sensibility S2 was adopted. The impregnation time

was 20 min and the temperature was 22 �C. The penetrant was

later eliminated with water and air, under a pression below 2

bars. After a drying procedure under 45 �C for 3 min, a dry rev-

elator was applied. After 10 min, the specimen was ready for

examination. The recording time was controlled to be under

30 min.

7 specimens have been used to analyze the size distribution and

the porosity ratio of shrinkage cavities. The pluging Fiji ‘‘Labeling

3D’’ was adopted to identify the size of each cavity in the stack,

whereas the pluging ‘‘fracz’’ which ran through each slice of a stack

(there are about 2500 slices per stack) was used to analyze the vol-

ume fraction of shrinkage cavities. Fig. 5 shows the size distribu-

tion of 5088 shrinkage cavities. It can be seen that the pore

frequency decreases as its volume increases. Over 2/3 of the ana-

lyzed pores are smaller than 200,000 lm3. As for the porosity ratio,

17,947 slices in 7 stacks were analyzed. The pore ratio in terms of

volume fraction is 0.0243.

Samples tested are classified as grade 1 according to ASTM

E155 [20], Al alloy, shrinkage cavity, 1=4 inch. Samples have there-

fore a minimum amount of shrinkage. Dye Penetrant can reveal

some oxides at the free surface. All samples containing oxides

were rejected for fatigue tests, as done for the industrial

components.

Table 1

Composition of the AS7G06-T6 used in this study (wt.%).

Si Mg Fe Cu Mn Ni Zn Pb Sn Ti

7.00 0.56 0.097 <0.015 <0.03 <0.01 <0.01 <0.003 <0.01 0.13
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3.3. Tensile test

Monotonic tensile tests were done following the specification

NF EN ISO 6892-1 on a machine ZWICK BT1.FR100THW.A2K,

whose capacity is 100 kN. 3 cylindrical specimens with a diameter

of 10 mm and a useful length of 50 mm were tested. The exten-

someter ZWICK BTC-EXMACRO.011 has a basic length of 50 mm.

Fig. 6 shows the stress–strain curve. The material has a yield

strength Rp0.2 = 275 MPa and a tensile strength Rm = 335 MPa. The

linear elastic part was used for the identification of Young’s mod-

ulus. The identification was made with tensile experimental results

for three specimens. The average value of Young’s modulus over

the three specimens is 73 GPa and the Poisson’s ratio m is 0.3.

3.4. Fatigue test

Tension fatigue tests were performed by the means of Amsler

vibrophore (electromagnetic resonance machine) under force con-

trol using the samples presented in Fig. 4. The test frequency was

108 Hz. The drop of test frequence (5 Hz) was adopted as the stop

condition of fatigue tests. When a test is stopped under this condi-

tion, the sample is almost broken and contains a macroscopic crack

deeper than half diameter of the sample. Fatigue tests were con-

ducted at two load ratios: R = �1 and 0.1. Fatigue strengths are gi-

ven using the stress amplitude defined as the maximum stress

minus the mean stress over the load cycle. The fatigue strengths

mentioned in the following of the paper correspond to 5 � 106 cy-

cles of fatigue loading. In order to be able to produce Kitagawa type

diagrams [10] for different defect sizes and different types of de-

fect, the ‘‘step loading’’ procedure was used to evaluate the fatigue

strength of a sample [21]. The fatigue test was started on a sample

at a given load for 5 � 106 cycles. If the sample was broken at the

initial stress amplitude, the fatigue strength was lower than the

applied stress amplitude. Of course this is a deterministic view of

the result that does not take into account the scatter. It is therefore

possible to have a sample failed below the average fatigue

strength. In absence of any failure, it was considered that the cor-

responding fatigue strength is higher than the recent stress ampli-

tude and the sample was loaded again at a higher stress level. In

this study the increase of stress amplitude was 10 MPa. This proce-

dure was repeated until failure. In this case, the fatigue strength

can be calculated as below:

rD ¼ rD0 þ
Dr
2

ð2Þ

where rD0 is the previous stress amplitude at which the specimen

did not break in 5 � 106 cycles, and Dr is the variation of stress

amplitude between two steps (Dr = 10 MPa here).

Bellows et al. [21] used the procedure on Ti64. It is the only pro-

cedure to evaluate the fatigue strength of a sample for a natural de-

fect because it is impossible to generate an S–N curve for a set of

samples containing the same defect type, location and size. The

a

b

Fig. 1. Grain size of the cast aluminum alloy AS7G06-T6: (a) EBSD micrograph of a zone (6.0 � 5.0 mm2) and calculation of the grain size disk; (b) distributions of grain

number percentage (1449 grains) and of grain area percentage.
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analysis of the set of results will inform whether or not the mate-

rial is sensitive to the famous coaxing effect [22]. For the AS7G06-

T6 tested, there is no evidence of the effect of loading history. It

seems therefore that the step loading is appropriate to make an

estimation of the fatigue strength using one sample.

As presented in the literature [5,23–25], the aluminum alloys

have no evident fatigue limit. So we use the Basquin’s law to mod-

erate the Wöhler curves in Fig. 7. The least square approximation

was used to fit the Wöhler curve to the experimental points. 15

and 10 experimental points were used for fitting the Wöhler curve

for the load ratio R = �1 and 0.1, respectively. Results obtained in

Fig. 7 are supposed to be ‘‘defect free’’ in the sense of an industrial

classification: class 1 ASTM E155 Al alloy, shrinkage cavity, 1=4 inch

a

b

Fig. 2. (a) Microstructure of the cast aluminum alloy AS7G06-T6; (b) measurement of SDAS.

Fig. 3. Distribution of SDAS size (based on 155 measured results).

Fig. 4. As cast cylindrical bar and specimen location.

Fig. 5. Size distribution of shrinkage cavities.
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plus Dye Penetrant surface examination. They will be used in the

following as the reference ‘‘defect free’’ material on the Kitagawa

diagram to study the influence of the defect. These results are in

agreement with results in the literature on very similar materials

[5,26–29].

Before analyzing the fracture surface, it is interesting to study

the mean stress effect on this material. For this purpose, the Haigh

diagram is plotted in Fig. 8 where the evolution of the fatigue

strength is plotted against the mean stress. It is interesting to re-

mark that the mean stress effect can be described by Goodman ap-

proach, as suggested by Sonsino and Grubisic [30]. Recent results

obtained by Koutiri et al. [28,29] confirm this behavior. Fig. 9

shows the Haigh diagram proposed by Koutiri et al. [28,29] for

an alloy Al7SiCu05Mg03, very close to the material AS7G06-T6.

The experimental data based on different load ratios (from 0 to

0.92) have been shown. The stress amplitude decreases linearly

as the mean stress increases, following the Goodman’s law. In

the following, a multiaxial criterion will be used to describe the

influence of a defect on the fatigue behavior. It is interesting to

note that the Crossland criterion [31], identified using two fatigue

strengths (rte
D�1 ¼ 91 MPa, rte

D0:1 ¼ 66 MPa for N = 5 � 106), has a

very similar behavior to Goodman’s straight line (Fig. 8). It is there-

fore a good approximation to use Goodman approach to determine

the mean stress sensitivity of the cast aluminum alloy. Therefore,

when no other experimental data is available, we only need to

know rte
D�1 and Rm as material parameters.

3.5. Analyze of fracture surface

In order to identify the crack initiation sites, the fracture surface

has been observed after failure. Fig. 10a shows a characteristic frac-

ture surface viewed by optical microscope. Three parts can be dis-

tinguished: a crack initiation site marked by P where all the

propagation rivers converge; a bright zone 1 around the crack ini-

tiation site which corresponds to the stable fatigue crack propaga-

tion phase; a ductile zone 2 far from the crack initiation site which

corresponds to the final ductile fracture. The feature of the crack

initiation site P can be very different from a sample to another as

mentioned by [32]. It could be:

– A crystallographic initiation without defect, probably in the pri-

mary a phase from a crystallographically well orientated slip

system in a surface grain (Fig. 10b).

– A shrinkage cavity (Fig. 10c).

– An oxidized skin (Fig. 10d and e). Fig. 10e indicates that the

defect zone in Fig. 10d had a different chemical composition

from that of the matrix. This defect has an appearance of an oxi-

dized skin. The oxidized defect in Fig. 10d and e was formed

during casting process. It was not revealed by the dye penetrant

non destructive examination because it is a subsurface defect.

3.6. Defect size measurement and Kitagawa diagram

In this study, the parameter
ffiffiffiffiffiffiffiffiffiffi

area
p

proposed by Yukitaka Mura-

kami [1] was adopted to calculate the defect size.
ffiffiffiffiffiffiffiffiffiffi

area
p

is the

Fig. 6. Stress–strain curve for the cast aluminum alloy AS7G06-T6.

Fig. 7. Wöhler curves for the cast aluminum alloy AS7G06-T6 with two different

load ratios.

Fig. 8. Haigh diagram for the cast aluminum alloy AS7G06-T6.

Fig. 9. Haigh diagram for alloy Al7SiCu05Mg03 (Plane Bending) [29].
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square root of the defect surface projected on a plane perpendic-

ular to the direction of maximum principal stress. For a defect

with an irregular shape, for example the defect shown in

Fig. 10d and e, it is important to develop a method to measure

the size. Moreover, the position of a defect relative to the speci-

men surface varies. The calculation of the defect size should con-

sider this parameter, too. As shown in Fig. 11a, for a surface

defect, we enclose the defect with a polygon. The area of the con-

tour can be calculated and then the parameter
ffiffiffiffiffiffiffiffiffiffi

area
p

can be de-

rived. For the cases of Fig. 11b and c, we first calculated
ffiffiffiffiffiffiffiffiffiffi

area
p

by

surrounding the defect with a polygon. Then the parameter
ffiffiffiffiffiffiffiffiffiffi

area
p

was compared to the shortest distance between the spec-

imen free surface and the defect edge, noted h in Fig. 11b and c.

If h <
ffiffiffiffiffiffiffiffiffiffi

area
p

(case of Fig. 11b), the ligament between the defect

and the specimen free surface is very weak because of the stress

concentration and has to be considered in the calculation of
ffiffiffiffiffiffiffiffiffiffi

area
p

. So a new polygon surrounding the defect and the ligament

was defined to calculate the new parameter
ffiffiffiffiffiffiffiffiffiffi

area
p

. If h >
ffiffiffiffiffiffiffiffiffiffi

area
p

(case of Fig. 11c), the defect was considered as an isolated inter-

nal defect and the ligament was not taken into account in the

calculation of
ffiffiffiffiffiffiffiffiffiffi

area
p

. This way to separate surface and internal

defects is also supported by [33].

The analytical method due to [34] was adopted to calculate the

area of a polygon from the coordinates of its summits. The area of

the polygon Cwith m summits pi (i = 1,2, . . .,m) whose coordinates

are noted (xi,yi), is given by [34]:

Fig. 10. (a) General specimen fracture surface (optical microscope); (b) initiation from primary a (SEM); (c) shrinkage cavity (SEM); (d) oxide (SEM); (e) oxide (SEM,

Backscattered Electrons).

Fig. 11. Measurement of defect size. (a) surface defect; (b) defect close to the free surface; (c) defect far from the free surface.
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SC ¼ 1

2

Xm

i¼1

ðxi � yiþ1 � xiþ1 � yiÞ ð3Þ

with xm+1 = x1, ym+1 = y1.

All the fracture surfaces were observed and it was not possible

to make any correlation between fatigue life and defect size in

Fig. 7. The defect population in the samples tested to build the

Wöhler curves in Fig. 7 is therefore the one that can be encoun-

tered in the defect free material, with no impact on the fatigue

strength nor on fatigue life. It seems that another parameter gov-

erns the fatigue life for this defect population. It could be crystallo-

graphic grain size as suggested by [26,27]. Samples broke from

primary a Al, shrinkage or internal oxides.

The samples with small internal defects of grade 1 according to

the standard reference radiographs ASTM E155 are considered ‘‘de-

fect free’’ in this study. As we will see it in Fig. 13, small defects

have no influence on the fatigue strength. Therefore, in order to

study the evolution of the fatigue strength with defect size, bigger

surface defects were machined. Artificial defects were produced

using the spark erosion machining principle method, as shown in

Fig. 12. A copper wire carrying a current generates a high intensity

electric arc that melts the material locally and machines desired

default. To obtain a semi-spherical defect, the defect depth is equal

to the diameter of the wire, as shown in Fig. 12a. Fig. 12b shows the

fracture surface of a specimen with an artificial defect located at

the specimen surface. The shape of the defect can be seen.

Figs. 13 and 14 present the Kitagawa diagrams for the alloy

AS7G06-T6 with load ratios R = �1 and 0.1. The solid symbols cor-

respond to specimens that did not break in 5 � 106 cycles at each

loading step, and the hollow symbols correspond to specimens that

broke during 5 � 106 cycles at the last loading step. The experi-

mental points in Fig. 13 can be divided into 3 groups according

to defect types. The specimens in zone A had no defect (Fig. 10b).

The defect sizes for the zone A shown in Fig. 13 aim only at sepa-

rating the results from different specimens for clarity purpose. The

points in zone B correspond to specimens with artificial defects

(Fig. 12) having relatively large sizes between 388 and 865 lm.

These points are essential to the Kitagawa diagram, as the defect

influence can be seen only when the defect is big enough. The

points in zone C correspond to specimens with shrinkage cavities

(Fig. 10c) whose sizes vary from 127 to 651 lm. Most of them

are internal or subsurface defects. It is reminded that the ‘‘step

loadings’’ method has been applied. If a specimen was not broken

after 5 � 106 cycles, an increment of stress amplitude of 10 MPa

was applied on the same specimen. Only one of the specimens with

shrinkage cavities was broken at the second loading step. This re-

sult shows that the fatigue strength is not lowered by a subsurface

shrinkage cavity of 300 lm.

Fig. 14 shows the Kitagawa diagram for the load ratio R = 0.1.

The maximum defect size is 882 lm. The fatigue strength is low-

ered when the defect size is larger than 200 lm. Zone D (respec-

tively E) shows the points for specimens without defect

(Fig. 10b) (respectively artificial defects (Fig. 12)). Fracture surfaces

with a crack initiated from shrinkage cavity (Fig. 10c) are found for

specimens in zone F. The shrinkage size varies between 151 and

882 lm. It seems that this material is not sensitive to defect type

because a shrinkage of given size gives similar results compared

to an artificial defect of the same size.

From these results, it was found that the defect decreased the

fatigue strength only when its size exceeded a critical size of

400 lm and 200 lm for R = �1 and 0.1, respectively. This value

has the same order of magnitude as the grain size (259–573 lm)

b

a

Fig. 12. Artificial defect: (a) spark erosion machining principle; (b) artificial defect

on the specimen after fracture (SEM).

Fig. 13. Kitagawa diagram for the cast aluminum alloy AS7G06-T6. Tension loading,

R = �1.

Fig. 14. Kitagawa diagram for the cast aluminum alloy AS7G06-T6. Tension loading,

R = 0.1.
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but is really bigger than the SDAS (38 lm). Further analysis should

be done to fully understand the influence of microstructure on the

critical defect size. The shrinkage cavities (smaller than 300 lm)

have no influence on the fatigue strength. The evolution of the fati-

gue strength with the defect size is estimated and presented by solid

lines in Figs. 13 and 14. The dotted lines correspond to the fatigue

strength obtained on the defect free material presented before.

4. Procedure and results of numerical simulation

Several approaches can be used to simulate the Kitagawa dia-

gram. The LEFM (Linear Elastic Fracture Mechanics) criterion con-

siders a defect as an initial crack. Murakami uses an empirical

criterion based on the Vickers hardness, load ratio and defect size

[35]. The CDM (Critical Distance Method) criterion is based on

measurement of a criterion at a given distance from the surface

[7] (Fig. 15). The DSG (Defect Stress Gradient) criterion is based

on the stress gradient around the defect [13,16] (Fig. 15).

Simulation results obtained with the above mentioned criteria

were compared previously with experimental results in tension,

torsion and tension–torsion with a load ratio of �1 for A356-T6

aluminum [17]. It may be noted that the LEFM and Murakami cri-

teria give conservative and non-conservative results, with an aver-

age error of 19% and 20% respectively. The CDM and DSG criteria

give more accurate conservative results, with an average error of

11% and 9%. So the CDM and DSG criteria are more suitable for sim-

ulation, but they need more physical parameters [17].

The LEFM criterion and the Murakami criterion give direct rela-

tionship between stress and defect size. These two criteria do not

request the calculation of stresses around a defect. However, the

CDM and DSG criteria first analyze the stresses around the defect

through FE analysis or analytical method using the Eshelby theory

(which will be introduced in Section 4.2), then calculate the equiv-

alent stress. The equivalent stress for multiaxial stresses can be cal-

culated based on several criteria, for example, the simple criteria

proposed by Crossland [31], Dang Van et al. [36], or the principal

stress criterion. In this study, the DSG criterion using the Crossland

criterion for calculating the fatigue equivalent stress is adopted

and will be presented in the following paragraph. For more com-

plex loads (out of phase), it is preferable to use the criterion of

Vu et al. [37].

4.1. Defect Stress Gradient (DSG) criterion

The Defect Stress Gradient (DSG) criterion, proposed by Nadot

and Billaudeau [13] and improved by Gadouini et al. [16], can be

used for materials with surface defects. It is based on the formula-

tion of Crossland and employs a stress ‘gradient’ around a defect to

describe the defect influence on the fatigue strength.

The DSG criterion may be written as follows:

r�
eq ¼ req;max � b �

req;max � r1
eq

ffiffiffiffiffiffiffiffiffiffi

area
p ¼ b ð4Þ

where r�
eq is the DSG equivalent stress including ‘gradient’ effect,

req,max is the maximum equivalent stress at the defect surface, r1
eq

is the equivalent stress far from the defect,
ffiffiffiffiffiffiffiffiffiffi

area
p

is the defect size,

b is a material parameter and b is a material parameter for a given

number of cycles N.

The equivalent stresses req,max and r1
eq involved in Eq. (4) can be

calculated using the criterion that is appropriate to describe the

multiaxial fatigue behavior of the defect free material. The DSG

methodology is indeed independent on the criterion [38]. In this

study, Crossland criterion [31] is adopted. The Crossland equiva-

lent stress is a linear combination of the amplitude of the second

invariant of the deviatoric stress tensor J2,a and the maximum

hydrostatic stress J1,max over a loading cycle.

rCR ¼
ffiffiffiffiffiffiffi

J2;a

q

þ a � J1;max ð5Þ

Using the Crossland equivalent stress, r�
eq in Eq. (4) becomes:

r�
eq ¼ rCR;max � b � rCR;max � r1

CR
ffiffiffiffiffiffiffiffiffiffi

area
p ð6Þ

with rCR,max the maximum Crossland equivalent stress on the defect

surface and r1
CR the Crossland equivalent stress far from the defect.

The calculation of J2,a may be done as follows [39]:

J2;a ¼
1

2
ffiffiffi

2
p max

ti2T
max
tj2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðtiÞ � SðtjÞ
� �

: SðtiÞ � SðtjÞ
� �

r� �

ð7Þ

with S the deviatoric stress tensor.

The value of J2,a is obtained by a double maximization over the

loading period T. To avoid heavy computation and to be close to

experiments, only proportional and sinusoidal loadings have been

here considered, and the calculations limited within the elastic

range. In this case, the stress tensor at a point P of a model is (in

the geometric coordinate system):

rP
g:c: ¼

rP
11 rP

12 rP
13

rP
12 rP

22 rP
23

rP
13 rP

23 rP
33

0

B
@

1

C
A k

P
avg þ k

P
amp � sinxt

� �

ð8Þ

where rP
ij is the component of the stress tensor at point P corre-

sponding to a unit load. k
P
avg and k

P
amp are the amplifiers of the mean

stress and the stress amplitude, x is the angular frequency and t is

the time. The stress tensor is transferred from geometric coordinate

system to the principal coordinate system in order to facilitate its

further application at the scale of the defect. In the principal coor-

dinate system, there are only three nonzero components rP�
11, r

P�
22,

rP�
33.

For a load with an angular frequencyx = 2p s�1 and the loading

period T = 1 s, each component of the deviatoric stress in the prin-

cipal coordinate system reaches its maximum (or minimum) value

when t = 0.25 s (or xt = p/2), and minimum (or maximum) value

when t = 0.75 s (or xt = 3p/2). Thus, for a proportional sinusoidal

load and if the calculation is limited in elasticity, Eq. (7) can be sim-

plified as follows:

J2;a ¼
1

2
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SP�
T

4

� �

� SP�
3T

4

� �� �

: SP�
T

4

� �

� SP�
3T

4

� �� �
s

ð9Þ

The first stress invariant at point P, JP1, can be written:Fig. 15. Principle of CDM and DSG criteria.
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JP1 ¼ rP�
11 þ rP�

22 þ rP�
33

3
ðkPavg þ k

P
amp � sinxtÞ ð10Þ

JP1 also varies sinusoidally. It reaches its maximum value when t = T/

4 or 3T/4. So we can store the values for these two instants and

compare them to obtain J1,max:

J1;max ¼ max JP1
T

4

� �

; JP1
3T

4

� �� �

ð11Þ

The DSG criterion needs both the global stresses far from the

defect and on the defect surface. In order to calculate the local

stresses when a load is applied (uniformely) away from the defect,

the Eshelby’s approach is used. It is introduced in the next section.

4.2. Analytical computation of stresses using Eshelby’s method

This section is focused on the analytical Eshelby’s approach

[40,41], proposed here as an alternative to the FEM in order to

compute the stress field around a defect. First, the general theoret-

ical basis of the approach is briefly reminded. Then, closed-form

equations, useful for practical application in the DSG framework

in the particular case of a spherical defect, are given. They have

been programmed in Fortran 90 and finally incorporated into an

UVARM for ABAQUS�.

The size of the defect is supposed to be small compared to the

size of the material volume surrounding it. In other words, the de-

fect is considered as isolated in an infinitely extended medium

submitted to an applied stress tensor r0 at infinity.

4.2.1. Theoretical basis of the approach

For generality purpose, we consider an isolated ellipsoidal inho-

mogeneity I, with constant elasticity tensor CI , embedded in an

infinite medium X (the matrix) with a different elasticity tensor

C0, subjected to a uniform strain tensor e0 at infinity (correspond-

ing stress tensor r0). The aim is to investigate the disturbance

caused by the presence of the inhomogeneity. The governing equa-

tions of this problem are precisely the same as those presented in

Eshelby’s elastic inhomogeneity problem [41]:

div
	!

r ¼~0

r ¼ CI
: e in I

r ¼ C0
: e in X=I

~u ¼ e0 �~x when k~xk ! 1

8

>
>
>
>
>
<

>
>
>
>
>
:

ð12Þ

The inhomogeneity problem (Eq. (12)) is equivalent to the clas-

sical Eshelby’s homogeneous inclusion problem [40] with uniform

strain at infinity:

div
	!

r ¼ ~0

r ¼ C0
: ðe� e�Þ in I

r ¼ C0
: e in X=I

~u ¼ e0 �~x when k~xk ! 1

8

>
>
>
>
>
>
<

>
>
>
>
>
>
:

ð13Þ

if a fictitious eigenstrain e�defined by:

�C0
: e� ¼ CI � C0

� �

: e in I ð14Þ

is introduced. The above methodology to formally equate the Eshel-

by’s inhomogeneity and homogeneous inclusion problems, through

the introduction of a fictitious, equivalent, eigenstrain e�, is classi-

cally called Equivalent Inclusion Method (EIM). This equivalency al-

lows deriving the solution of Eq. (12) from the solution of Eq. (13).

Indeed, according to [40], if a uniform eigenstrain e� (also called

stress-free transformation strain) is prescribed in a finite subdo-

main (inclusion) of an infinitely extended homogeneous medium,

the strain in the inclusion, eI , is also uniform and is expressed as a

linear function of this eigenstrain:

eI ¼ S : e� þ e0 ð15Þ

where S is the Eshelby’s tensor. The components of S are dimension-

less and depend on C0 and on the geometry of the inclusion (not the

size). Therefore, e� which is here defined by Eq. (14) to ensure the

equivalence between problems (Eq. (12) and (13)), is also uniform.

Owing to uniqueness of the solution of an elasticity problem, Eshel-

by’s solution of the homogeneous inclusion problem (Eq. (13)),

associated to e� given by Eq. (14), is thus the solution of the inhomo-

geneity problem (Eq. (12)). This is true for points both inside and

outside the inclusion. By using Eq. (15), e� given by Eq. (14) may

be written as a function of the strain tensor at infinity:

e� ¼ � CI � C0

� �

: Sþ C0

� ��1

: CI � C0

� �

: e0 ð16Þ

In the same way, inserting Eq. (14) in Eq. (15) provides the di-

rect expression of eI as a function of e0:

eI ¼ I þ P : CI � C0

� �� ��1

: e0 ð17Þ

with P ¼ S : C0�1 the Hill’s tensor [42] and I the classical fourth-

order tensor defined by Iijkl ¼ 1
2
ðdik � djl þ dil � djkÞ.

When the infinite medium is isotropic, the Eshelby’s tensor S

may be found analytically using for instance the Green function

concept. Moreover, the strain field in the matrix is obtained as a

linear function of the eigenstrain e� whatever the geometry of

the ellipsoidal inclusion. Below are given the expressions of S

and of the strain field in the matrix for a spherical inclusion with

radius a, and centered at the origin of the Cartesian coordinate

system.

4.2.2. Detailed expressions for a sphere

The components of the Eshelby’s tensor are (e.g. see [43]):

S1111 ¼ S2222 ¼ S3333 ¼
7�5m0

15ð1�m0Þ ; S1212 ¼ S2323 ¼ S3131 ¼
4�5m0

15ð1�m0Þ ;

S1122 ¼ S2233 ¼ S3311 ¼ S1133 ¼ S2211 ¼ S3322 ¼
5m0�1

15ð1�m0Þ
ð18Þ

where m0 is the Poisson’s ratio of the matrix.

The strain field eð~xÞ in the matrix is given by [43]:

eð~xÞ ¼ Dð~xÞ : e� þ e0 ð19Þ

where Dð~xÞ is the fourth-order tensor represented as follows:

8pð1� m0ÞDijk‘ ¼ dij � dk‘½ð2m0 � 1ÞI1 þ a2 � I2� þ ðdik � dj‘ þ djk

� di‘Þ½ð1� 2m0ÞI1 þ a2 � I2� þ ½2m0 � dk‘ � xi
þ ð1� m0Þðdi‘ � xk þ dik � x‘Þ�I1; j þ ð1� m0Þ
� ½dj‘ � xk þ djk � x‘�I1;i � ½dij � xk þ dik � xj þ djk

� xi�ðI1;‘ � a2 � I2;‘Þ � ½di‘ � xj þ dj‘ � xi�ðI1;k � a2

� I2;kÞ � xi � xjðI1;‘k � a2 � I2;‘kÞ ð20Þ

In Eq. (20), the symbol dij designates the Kronecker symbol, and the

functions I1 and I2 are defined by:

I1ð~xÞ ¼
4pa3

3k~xk3
; I2ð~xÞ ¼

4pa3

5k~xk5
ð21Þ
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At last, partial derivatives of I1 and I2 are given by:

I1;i �
@I1
@xi

¼ �4pa3k~xk�5xi;

I1;ij �
@2I1
@xi@xj

¼ �4pa3k~xk�5ðdij � 5k~xk�2xi � xjÞ

I2;i �
@I2
@xi

¼ �4pa3k~xk�7xi;

I2;ij �
@2I2
@xi@xj

¼ �4pa3k~xk�7ðdij � 7k~xk�2xi � xjÞ

ð22Þ

It is to be noted that Eq. (19), with Dð~xÞ defined by Eqs. (20)–

(22), holds both for exterior points and interior points. Indeed, as

shown in e.g. Mura’s work [43], for interior points, I1 ¼ 4p
3

and

I2 ¼ 4p
5a2

and their partial derivatives vanish in Eq. (20). Therefore,

Dð~xÞ ¼ S and Eq. (19) becomes equivalent to Eq. (15).

In conclusion, for a spherical inhomogeneity I in an infinitely

extended isotropic elastic material subjected to e0 at infinity, the

strain tensor eI in I is calculated by Eq. (15) with e� given by

Eq. (16), (or equivalently by Eq. (17)), with S given by Eq. (18).

The strain tensor in the matrix eð~xÞ is calculated by Eq. (19) with

Dð~xÞ given by Eqs. (20)–(22). The stress tensors inside and outside

the inhomogeneity are derived from the elastic laws:

rI ¼ CI
: eI

rð~xÞ ¼ C0
: eð~xÞ

8

<

:
ð23Þ

The above mentioned expressions are valid in the general case

of a spherical defect regardless of its nature. In the special case

of a spherical cavity (pore) discussed in the following section,

elastic moduli are equal to zero (CI ¼ 0).

4.3. Identification of the parameters of DSG criterion

According to the Basquin’s law, we can obtain the fatigue

strengths in tension at the number of cycles N = 5 � 106 for both

load ratios: rte
D�1 ¼ 91 MPa, rte

D0:1 ¼ 66 MPa.

According to the DSG criterion, we obtain:

rte
D�1
ffiffiffi

3
p þ a � r

te
D�1

3
¼ b

rte
D0:1
ffiffiffi

3
p þ a � 2

1� 0:1
� r

te
D0:1

3
¼ b

8

>
>
>
<

>
>
>
:

ð24Þ

So a and b can be identified. As the fatigue strength for the load ratios

R =�1 and 0.1 are obtained for a number of cycles N = 5� 106, the

constants a and b are calculated as the values at this number of cycles.

The identification of the third parameter b needs to know the

fatigue strength for a given defect. The DSG criterion (Eq. (4)) can

be transformed into:

b ¼
ffiffiffiffiffiffiffiffiffiffi

area
p

ðreq;max � bÞ
req;max � r1

eq

ð25Þ

In order to evaluate req,max, for a tensile stress with the only

non-zero component applied far from the defect r1
11, the stress ten-

sor at the most loaded point on the spherical void surface is calcu-

lated analytically using the Eshelby’s theory:

rloc;max ¼ r1
11

2:05 0 0

0 0:136 0

0 0 0

0

B
@

1

C
A ð26Þ

In this study, a defect size
ffiffiffiffiffiffiffiffiffiffi

area
p

¼ 723 lm corresponding to a

fatigue strength ra = 45 MPa with a load ratio R = 0.1 is used to

identify b.

The identified values of the three parameters are: a = 0.801,

b = 76.8 MPa, b = 540 lm.

4.4. Simulation of Kitagawa diagram

Once the parameters a, b and b identified, we can simulate the

Kitagawa diagram for tension loading using DSG criterion and

Eq. (26). Considering that a small defect has no influence on the

fatigue strength, the criterion can be defined as below:

r�
eq ¼ rCR;max � b � rCR;max � r1

CR
ffiffiffiffiffiffiffiffiffiffi

area
p if r�

eq < b

r�
eq ¼ rD if r�

eq P b

8

<

:
ð27Þ

It can be seen in Figs. 16 and 17 that the DSG criterion can de-

scribe correctly the influence of defect on fatigue strength for both

load ratios. For most specimens with no defect or small defects, the

simulated curve goes through failure and non failure stress levels.

For big defects and a load ratio R = 0.1, the simulated curve tra-

verses failure and non failure stress levels or lies slightly above fail-

ure stress levels or near last non failure stress levels. However, the

DSG criterion overestimates the dropping rate of the fatigue

strength with the defect size and the critical defect size showing

influence on the fatigue strength. The simulation for R = 0.1 is not

as good as that for the load ratio R = �1 in the big-defect-size zone.

The DSG criterion underestimates the fatigue strength. The local

Fig. 16. Simulation of Kitagawa diagram using DSG criterion. Tension loading,

R = �1.

Fig. 17. Simulation of Kitagawa diagram using DSG criterion. Tension loading,

R = 0.1.
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plasticity around the defect that is not taken into account in the

simulation explains probably this result. Indeed, it can be shown

thanks to the Eshelby’s method (Eq. (26) notably) that the

maximum von Mises equivalent stress on a spherical defect surface

exceeds the material yield strength (275 MPa) when the tensile

stress applied far from the defect is larger than 134 MPa.

4.5. Finite element simulation on industrial component

The DSG approach with Eshelby submodel has been imple-

mented as an UVARM – subroutine for ABAQUS�. An UVARM al-

lows creating user-defined output variables at the integration

points of a finite element model. The calculation procedure with

UVARM is shown in Fig. 18. The FE simulation of the component

is here performed considering the material isotropic linear elastic

and may be done with any periodic proportional cyclic loading.

The methodology is the following. First, the modeling and the

meshing of the considered component are done and the boundary

conditions and loads prescribed in ABAQUS�. Then, the macro-

scopic FE simulation of the component is performed. Thanks to

the UVARM subroutine, the stress tensor at each point P of the

component, rP , is extracted and used as input for the DSG ap-

proach. rP is applied at infinity (i.e. far from the defect) in the

Eshelby submodel. The latter allows the computation of the stres-

ses at each point on the defect surface rpt (side matrix). By com-

paring rpt
CR of all points on the defect surface, the maximum

Crossland equivalent stress rCR,max is obtained. Together with the

infinite Crossland equivalent stress at point P, r1
CR, the allowable

defect size according to this loading condition is determined using

DSG criterion.

A crank model with a hole at each end (Fig. 19) has been consid-

ered as a first example in order to illustrate the feasibility of the

DSG approach application to a structure. The angle between the

straight line connecting the centers of two holes in the Y–Z plane

and the Z-axis (Fig. 19) is equal to 11.5�. The encastre boundary

condition has been applied to the inner surface of the big hole. A

surface traction load along the Z-axis has been prescribed on the

inner surface of the small hole. The stress is sinusoidal and the load

ratio is �1. A loading period of 1 s with 4 increments has been con-

sidered. The model has been meshed with quadratic tetrahedron

elements (C3D10) with size equal to 2 mm. The computation time

for the chosen element size and loading increments was 30 min.

Fig. 19 illustrates the distribution of the allowable defect size

using DSG criterion. The zones with a defect size between 300

and 1000 lm are separated by different colors. It has been ob-

served that the allowable defect size is generally small in regions

with high Crossland equivalent stress. This means that more atten-

tion should be paid in these regions during fabrication.

The UVARM based on the DSG criterion is a convenient visual

tool in the industrial fabrication quality control. The size of defect

found in an industrial component can be measured and then com-

pared to that at the same position in the model simulated under

the expected loading conditions and fatigue life. If the defect size

exceeds the allowable size, the component will not be safe to use.

5. Conclusion

Tension fatigue tests with load ratios R = �1 and 0.1 have been

performed on AS7G06-T6 alloy. The ‘‘step loading’’ procedure was

used to evaluate the fatigue strength. Both defect-free specimens

and those with natural or artificial defects (size between 100 and

900 lm) have been tested. The Basquin’s law has been used to

moderate the Wöhler curves.

– The mean stress effect is analyzed and results show that this

effect can be described by the Goodman approach.

– Several crack initiation sites have been found on fracture sur-

face: crystallographic initiation without defect, shrinkage cavity

and oxidized skin. The parameter
ffiffiffiffiffiffiffiffiffiffi

area
p

is adopted to measure

the defect size. In order to produce additional results for big

defect sizes, artificial defects have been fabricated using spark

erosion machining. Kitagawa diagrams show that a defect influ-

ences the fatigue strength when its size is larger than

300 ± 100 lm. This value is of the same order of magnitude than

the grain size (259–573 lm), and higher than the SDAS (38 lm).

– The DSG approach is adopted to simulate the defect influence

on the fatigue strength. The Eshelby’s method is used to calcu-

late the stress around the defect. The DSG approach gives rela-

tively good results to simulate Kitagawa diagrams in tension

loading for two load ratios R = �1 and 0.1.

– The DSG approach, including Eshelby submodel for a spherical

pore, has been implemented as an UVARM- subroutine in ABA-

QUS�. This tool allows the post-treatment of the FE simulation

of a real, industrial, component. It provides the distribution of

the allowable defect size on the structure, and is thus conve-

Fig. 18. Simulation procedure using DSG criterion.

> 1000 
900-1000
800-900
700-800
600-700
500-600
400-500
300-400

Allowable defect size (µm)

Fig. 19. Allowable defect size distribution on the crank model.
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nient in the industrial quality control as well as in the fatigue

design process of casting parts. A crank model has been chosen

for a first illustration of the methodology.

The DSG criterion needs to be improved for better description of

the Kitagawa diagram. The influence of acuity of the defect will be

considered to analyze the case of nonspherical defects. Further-

more, more realistic local stress fields will be obtained by comput-

ing the fatigue behavior of cast products in consideration of plastic

deformation near the defect.
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