

Quantitative Convergence and Stability of Seismic Inverse Problems.

Florian Faucher, Hélène Barucq, Henri Calandra, Guy Chavent

▶ To cite this version:

Florian Faucher, Hélène Barucq, Henri Calandra, Guy Chavent. Quantitative Convergence and Stability of Seismic Inverse Problems.. Reconstruction Methods for Inverse Problems, May 2018, Rome, Italy. hal-01807980

HAL Id: hal-01807980 https://hal.science/hal-01807980

Submitted on 12 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantitative Convergence and Stability of Seismic Inverse Problems.

Florian Faucher¹,

Hélène Barucq¹, Henri Calandra² and Guy Chavent¹.

Reconstruction Methods for Inverse Problems Indam Workshop, Roma, Italy, May 28th – June 1st, 2018.

Depth Imaging Partnership

Istituto Nazionale di Alta Matematica

Soismic invo	rca problem		
000	00000000	000000	00
Inverse Problem	Stability & Convergence	Experiments	Conclusion

Seismic inverse problem

Reconstruction of subsurface Earth properties from seismic campaign: collection of **wave** propagation data at the surface.

- Reflection (back-scattered) partial data,
- only from the surface of the (large) domain,

nonlinear, ill-posed inverse problem.

Quantinu			
000	00000000	000000	00
Inverse Problem	Stability & Convergence	Experiments	Conclusion

1 Time-Harmonic Inverse Problem, FWI

Quantitative stability and convergence of FWI

- Finite Curvature/Limited Deflection problem
- Numerical convergence estimates
- Numerical stability estimates
- 3 Numerical experiments

Inverse Problem	Stability & Convergence	Experiments	Conclusion

Inverse Problem	Stability & Convergence	Experiments	Conclusion
●00	000000000	000000	
Time-harmonic	wave equation		

The forward problem wave equation depends on the medium:

Time-harmonic	wave equation		
Inverse Problem	Stability & Convergence	Experiments	Conclusion
●00		000000	00

The forward problem wave equation depends on the medium:

acoustic isotropic (c)

$$(-\omega^2 c^{-2} - \Delta)p = 0,$$

T !			
•00	00000000	000000	00
Inverse Problem	Stability & Convergence	Experiments	Conclusion

Time-harmonic wave equation

The forward problem wave equation depends on the medium:

▶ acoustic isotropic (c)

$$(-\omega^2 c^{-2} - \Delta)p = 0,$$

► elastic isotropic (λ , μ , ρ) - $\rho\omega^2 \boldsymbol{u} - \nabla (\lambda \nabla \cdot \boldsymbol{u}) - \nabla \cdot (\mu [\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T]) = 0.$

Inverse Problem	Stability & Convergence	Experiments	Conclusion
•00	00000000	000000	00
T ¹ 1 1 1 1			

Time-harmonic wave equation

The forward problem wave equation depends on the medium:

acoustic isotropic (c)

$$(-\omega^2 c^{-2} - \Delta)p = 0,$$

- ► elastic isotropic (λ , μ , ρ) - $\rho\omega^2 \boldsymbol{u} - \nabla (\lambda \nabla \cdot \boldsymbol{u}) - \nabla \cdot (\mu [\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T]) = 0.$
- ► anisotropy (stiffness tensor, ρ) $-\omega^2 \rho \boldsymbol{u} - \nabla \cdot \left(\underline{C} \boldsymbol{\epsilon}(\boldsymbol{u})\right) = 0.$

Viscous behavior are considered with complex coefficients.

	<u> </u>					
000		00	00000000		000000	00
Inverse Problem		Stability & Convergence		onvergence	Experiments	Conclusion

Full Waveform Inversion (FWI)

FWI provides a quantitative reconstruction of the subsurface by solving a minimization problem,

$$\min_{m\in\mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|F(m) - d\|^2.$$

- d are the observed data,
- F(m) represents the simulation using an initial model m:

$$F : m \rightarrow \{p(\boldsymbol{x}_1), p(\boldsymbol{x}_2), \dots, p(\boldsymbol{x}_{n_{rcv}})\}.$$

P. Lailly

The seismic inverse problem as a sequence of before stack migrations Conference on Inverse Scattering: Theory and Application, SIAM, 1983

A. Tarantola

Inversion of seismic reflection data in the acoustic approximation ${\mbox{Geophysics}}, 1984$

A. Tarantola

Inversion of travel times and seismic waveforms

Seismic tomography, 1987

Florian Faucher

Convergence of time harmonic FWI

Numerical methods

- Forward problem resolution with Discontinuous Galerkin methods,
- parallel computation, HPC, large-scale optimization.

Multi-frequency algorithm, stability and convergence.

nverse Problem	Stability & Convergence	Experiments	Conclusion
000			

Plan

- Finite Curvature/Limited Deflection problem
- Numerical convergence estimates
- Numerical stability estimates

Helmholtz inverse problem from back-scattered **partial** data, **quantitative reconstruction with iterative optimization**.

$$\min_{n\in\mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|\mathcal{F}(m) - d\|^2.$$

Convergence radius

 initial model needs to be within the radius of convergence.

r

Stability

 ensures reconstruction accuracy.

Helmholtz inverse problem from back-scattered **partial** data, **quantitative reconstruction with iterative optimization**.

$$\min_{m \in \mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|\mathcal{F}(m) - d\|^2.$$

Convergence radius

 initial model needs to be within the radius of convergence.

r

Stability

 ensures reconstruction accuracy.

Numerical estimates to guide the procedure

frequency;

Elorian Eaucher

- parametrization;
- geometry;
- ▶ forward problem, ...

Convergence of time harmonic FWI
May 28– June 1st, 2018

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000000	00
Convergence (Finite Curvature/Li	imited Deflectior	ı)

1/ Convergence radius

initial model needs to be within the radius of convergence.

Least squares minimization problem

$$\min_{m \in \mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|\mathcal{F}(m) - d\|^2$$

M. V. de Hoop, L. Qiu, O. Scherzer

An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints Numerische Mathematik 2015

G. Chavent

Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications. Springer 2010

G. Chavent and K. Kunisch

On weakly nonlinear inverse problems.

Florian Faucher SIAM Journal on Applied Mathematics 1996

Problem

Convergence (Finite Curvature/Limited Deflection)

1/ Convergence radius

initial model needs to be within the radius of convergence.

Least squares minimization problem

$$\min_{m\in\mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|\mathcal{F}(m) - d\|^2$$

Finite Curvature/Limited Deflection guarantees **uniqueness** of the solution and **unimodality**: no local minimum.

M. V. de Hoop, L. Qiu, O. Scherzer

An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints Numerische Mathematik 2015

G. Chavent

Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications. Springer 2010

G. Chavent and K. Kunisch

On weakly nonlinear inverse problems.

Florian Faucher SIAM Journal on Applied Mathematics 1996

 $\forall m_0, \Delta_m \in \mathcal{M}, \qquad P : t \in [0,1] \rightarrow \mathcal{F}(m_0 + (2t-1)\Delta_m).$

G. Chavent Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications. Springer 2010

Elorian Eaucher

 $\forall m_0, \Delta_m \in \mathcal{M}, \qquad P : t \in [0, 1] \rightarrow \mathcal{F}(m_0 + (2t - 1)\Delta_m).$

G. Chavent Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications. Springer 2010 Elorian Eaucher May 28- June 1st, 2018

Convergence of time harmonic FWI

May 28– June 1st, 2018 Convergence of time harmonic FWI

For a given m_0 , we estimate the maximal distance Δ_m that still verifies the Limited Deflection property $\Theta(P) \leq \frac{\pi}{2}$.

Larger size are required when missing a priori info.

For a given m_0 , we estimate the maximal distance Δ_m that still verifies the Limited Deflection property $\Theta(P) \leq \frac{\pi}{2}$.

• Δ_m is estimated in the direction δ_k ,

$$\|\Delta_m^{\delta_k}\| \leq rac{\pi}{4} rac{\|\mathcal{F}'(m_0)(\delta_k)\|}{\|\mathcal{F}''(m_0)(\delta_k,\delta_k)\|}.$$

Larger size are required when missing a priori info.

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000000	00
E			

Estimation of the basin of attraction

Numerical estimate of the size $\Delta_m^{\delta_k}$

- with direction δ_k (the geometry of the unknown),
- **2** with the frequency ω ,
- **3** with the parametrization.

000	0000 00 00	000000	00
Estimation of	of the basin of attract	tion	

Numerical estimate of the size $\Delta_m^{\delta_k}$

- with direction δ_k (the geometry of the unknown),
- **2** with the frequency ω ,
- I with the parametrization.

context: Helmholtz equation with back-scattered data $(-\omega^2 m - \Delta)p = 0,$ $\frac{1}{2} \int_{0}^{0} \int_{0}^{1} \int_{0}^{1$

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000	○○○○○●○○○	000000	00
Estimation of the	e basin of attraction		

Numerical estimate of the size $\Delta_m^{\delta_k}$ with

- with direction δ_k (the geometry of the unknown),
- **2** with the frequency ω .

(c) direction δ_3

Inverse Problem	Stability & Convergence	Experiments 000000	Conclusion 00
Complex fre	quency		

$$(-\omega^2 c^{-2} - \Delta)p = 0$$

 $\bullet \quad | -\omega^2 = (s + 2i\pi f)^2$

•
$$s = 0$$
: Fourier domain $\omega^2 = (2\pi f)^2$,

•
$$f = 0$$
: Laplace domain $-\omega^2 = s^2$.

C. Shin and Y. H. Cha

Waveform inversion in the laplace domain ; Waveform inversion in the laplace fourier domain Geophysical Journal International 2008–2009

W. Ha, S. Pyun, J. Yoo and C. Shin

Acoustic full waveform inversion of synthetic land and marine data in the laplace domain ; Geophysical Prospecting 2010

P. V. Petrov and G. A. Newman

Three-dimensional inverse modelling of damped elastic wave propagation in the fourier domain. Geophysical Journal International 2014

Florian Faucher – Convergence of time harmonic FWI – May 28– June 1st, 2018

Problem

Stability & Convergence

Experiments 000000

Complex frequency

Inverse Problem 000	Stability & Convergence ○○○○○○●○	Experiments 000000	Conclusion 00
Stability wit	h frequency		
2/ Stability			

ensures reconstruction accuracy.

The stability indicates how minimizing the data recovers the model

$$\|m_1-m_2\| \leq \mathcal{C}\|\mathcal{F}(m_1)-\mathcal{F}(m_2)\|.$$

The stability constant \mathcal{C} depends on the frequency and the number of unknowns.

The stability indicates how minimizing the data recovers the model

× 11

$$||m_1 - m_2|| \leq C ||\mathcal{F}(m_1) - \mathcal{F}(m_2)||.$$

Inverse Problem		Stability & Convergence	Experiments 000000	Conclusion 00
• • • • • •	<u> </u>			

Stability & Convergence estimates

From our estimates, we see different conditions for stability and convergence.

Quantitative estimates provide an initial, comprehensive, relation to guide the iterative procedure.

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000000	00

0./ No initial information on the subsurface

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000	00000000	0●0000	00

Elastic Marmousi model

Multi-parameters inversion 17×3.5 km, true models.

$$-\rho\omega^{2}\boldsymbol{u}-\nabla\left(\lambda\nabla\cdot\boldsymbol{u}\right)-\nabla\cdot\left(\mu\left[\nabla\boldsymbol{u}+(\nabla\boldsymbol{u})^{T}\right]\right)=0.$$

(c) Density

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000	000000000	0●0000	00

Elastic Marmousi model

Multi-parameters inversion 17×3.5 km, starting models.

(a) P-wave speed

(b) S-wave speed

(c) Density

000	00000000	000000	00
Inverse Problem	Stability & Convergence	Experiments	Conclusion

Elastic Marmousi reconstruction 17×3.5 km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

(c) Initial P-wave speed

(d) Initial S-wave speed

		17 0 5	
		000000	
Inverse Problem	Stability & Convergence	Experiments	Conclusion

Elastic Marmousi reconstruction 17×3.5 km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000●00	00
Elastic Pluto mo	dels		

Multi-parameters inversion 31×7 km, true models.

(a) P-wave speed

(b) S-wave speed

(c) Density

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000€00	00
Elastic Pluto mo	dels		

Multi-parameters inversion 31×7 km, starting models.

(a) P-wave speed

(b) S-wave speed

(c) Density

Inverse P 000	roblem		Stability & Con 000000000	lity & Convergence		Experiments 0000●0		Conclusion 00
		. .			~ 1			

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

Inverse P 000	roblen	n	Stability & Cor 000000000	Convergence		Experiments 0000●0		Conclusion
		D 1						

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

Florian Faucher

Convergence of time harmonic FWI

May 28– June 1st, 2018

Inverse Problem Stability & Convergence Experiments Conclusion oo

Elastic Pluto reconstruction 31×7 km

Reminder from the convergence analysis.

Salt domes reduce the size of the radius of convergence.

Solution

Start with low or complex frequency.

Inverse Problem 000	Stability & Convergence	Experiments 000000	Conclusion

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

(c) Initial P-wave speed

(d) Initial S-wave speed

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000	000000000	00000●	
	01 71		

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

(c) (0Hz,10) P-wave speed

(d) (0Hz,10) S-wave speed

Inverse Problem 000	Stability & Convergence	Experiments 00000●	Conclusion
	' 01 71		

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

_

(c) 10Hz P-wave speed

(d) 10Hz S-wave speed

-			
000	00000000	000000	00
Inverse Problem	Stability & Convergence	Experiments	Conclusion

Plan

Inverse Problem	Stability & Convergence	Experiments	Conclusion
000		000000	●0

Comprehensive FWI

onclusion

- Quantitative stability and convergence analysis:
 - depending on the frequency and geometry,
 - depending on the methods.
- We can also quantify the noise robustness.

Perspectives

- Analytical relation to develop between the two components,
- obtain conditional progression in frequency from stability and convergence estimates

000	00000000	00000	0●
Quantitative	reconstruction m	nethod for inverse j	problem

- Discontinuous Galerkin discretization in HPC framework,
- ▶ acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:

Quantitative reconstruction method for inverse problem

- Discontinuous Galerkin discretization in HPC framework,
- ▶ acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:

(b) Q_{λ}

- Inverse scattering using obstacles positions,
- visco-elastic reconstruction: five unknowns,
 - $\blacktriangleright (\lambda, \mu, \rho, Q_{\lambda}, Q_{\mu}),$
 - unknown Q does not prevent λ recovery,
 - procedure to recover attenuation parameter?

helioseismology; anisotropy; model parametrization.

Quantitative reconstruction method for inverse problem

- Discontinuous Galerkin discretization in HPC framework,
- ▶ acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:

(b) Q_{λ}

- Inverse scattering using obstacles positions,
- visco-elastic reconstruction: five unknowns,
 - $\blacktriangleright (\lambda, \mu, \rho, Q_{\lambda}, Q_{\mu}),$
 - unknown Q does not prevent λ recovery,
 - procedure to recover attenuation parameter?

helioseismology; anisotropy; model parametrization.

THANK YOU

Florian Faucher

Convergence of time harmonic FWI

Appendix

Quantitative convergence for MBTT

Numerical estimate of the size $\Delta_m^{\delta_k}$ the problem components

- **1** the frequency ω ,
- 2 with direction δ_k (the geometry of the unknown),
- With the parametrization.

The estimates allow a comparison of methods, in particular we want to compare the dependency of the optimization on the low frequencies.

Quantitative convergence for MBTT

Numerical estimate of the size $\Delta_m^{\delta_k}$ the problem components

- **1** the frequency ω ,
- 2 with direction δ_k (the geometry of the unknown),
- With the parametrization.

the MBTT method decomposes the model with a smooth part (propagator) and the reflectors:

$$c^{-2} = p + r = p + D\mathcal{F}^*(p)s.$$

F. Clément and G. Chavent

Waveform inversion through MBTT formulation - 1992

F. Clément, G. Chavent and S. Gómez

Migration-based traveltime waveform inversion of 2-d simple structures: A synthetic example Geophysics 2001

G. Chavent, K. Gadylshin and V. Tcheverda

Reflection fwi in mbtt formulation EAGE 2015

Quantitative convergence for MBTT

Numerical estimate of the size $\Delta_m^{\delta_k}$ the problem components

- **1** the frequency ω ,
- 2 with direction δ_k (the geometry of the unknown),
- I with the parametrization.

Comparison of convergence with parametrization,

$$c^{-2} = p + D\mathcal{F}^*(p)\mathbf{s}.$$

Frequency progression for iterative algorithm, $-\omega^2 = (s + 2i\pi f)^2$.

can be apply for other minimization problem,

Finite curvature indicates robustness to noise

Low and complex frequencies more affected.

Stability

► ...

Indicates the accuracy of the reconstruction.

Acoustic Marmousi reconstruction $9.2 \times 3 \text{km}$

Starting available frequency is 4Hz.

Acoustic Marmousi reconstruction $9.2 \times 3 \text{km}$

Starting available frequency is 4Hz.

Using Fourier frequencies only: from 4 to 10Hz

Acoustic Marmousi reconstruction $9.2 \times 3 \text{km}$

Starting available frequency is 4Hz.

(a) Using Fourier frequencies only

(b) Using Complex frequencies from (4Hz,7)