Time-harmonic wave equation

The forward problem wave equation depends on the medium: acoustic isotropic (c) (-ω 2 c -2 -∆)p = 0, elastic isotropic (λ, µ, ρ) -ρω 2 u -∇ (λ∇ • u) -∇ • µ ∇u + (∇u) T = 0. Time-harmonic wave equation

The forward problem wave equation depends on the medium: acoustic isotropic (c) (-ω 2 c -2 -∆)p = 0, elastic isotropic (λ, µ, ρ)

-ρω 2 u -∇ (λ∇ • u) -∇ • µ ∇u + (∇u) T = 0.

anisotropy (stiffness tensor, ρ)

-ω 2 ρu -∇ • C (u) = 0.

Viscous behavior are considered with complex coefficients. 

m k+1 = m k + α k s k Update ω k = 0 k = k + 1

Numerical methods

Forward problem resolution with Discontinuous Galerkin methods, parallel computation, HPC, large-scale optimization.

Multi-frequency algorithm, stability and convergence. Convergence (Finite Curvature/Limited Deflection)

1/ Convergence radius initial model needs to be within the radius of convergence.

Least squares minimization problem

min m∈M J (m) = 1 2 F(m) -d 2 .
Finite Curvature/Limited Deflection guarantees uniqueness of the solution and unimodality: no local minimum. Model space size estimation via Limited Deflection
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F(m 0 ) F(m 0 -∆ m ) F(m 0 + ∆ m ) d dist(d, F) ∀m 0 , ∆ m ∈ M, P : t ∈ [0, 1] → F m 0 + (2t -1)∆ m . G.
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F(m 0 ) F(m 0 -∆ m ) F(m 0 + ∆ m )
For a given m 0 , we estimate the maximal distance ∆ m that still verifies the Limited Deflection property Θ(P) ≤ π 2 .

Larger size are required when missing a priori info. Model space size estimation via Limited Deflection

F(m 0 ) F(m 0 -∆ m ) F(m 0 + ∆ m )
For a given m 0 , we estimate the maximal distance ∆ m that still verifies the Limited Deflection property Θ(P)

≤ π 2 . ∆ m is estimated in the direction δ k , ∆ δ k m ≤ π 4 F (m 0 )(δ k ) F (m 0 )(δ k , δ k )
.

Larger size are required when missing a priori info. The stability indicates how minimizing the data recovers the model

m 1 -m 2 ≤ C F(m 1 ) -F(m 2 ) .
The stability constant C depends on the frequency and the number of unknowns. The stability indicates how minimizing the data recovers the model Quantitative estimates provide an initial, comprehensive, relation to guide the iterative procedure. 

m 1 -m 2 ≤ C F(m 1 ) -F(m 2 ) .

Elastic Marmousi model

Multi-parameters inversion 17 × 3.5km, true models.

-ρω 2 u -∇ (λ∇ • u) -∇ • µ ∇u + (∇u) T = 0. Elastic Marmousi reconstruction 17 × 3.5km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm. Elastic Marmousi reconstruction 17 × 3.5km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm. Elastic Pluto reconstruction 31 × 7km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm. Elastic Pluto reconstruction 31 × 7km

Reminder from the convergence analysis.

Salt domes reduce the size of the radius of convergence.

Solution

Start with low or complex frequency.

Elastic Pluto reconstruction 31 × 7km

Using complex frequencies, unknown density, multi-level algorithm. helioseismology; anisotropy; model parametrization.

Thank you
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FWI

  direction s k 3. Line search α k update model m k+1 = m k + α k s k Update ω direction s k 3. Line search α k update model

  Estimation of the basin of attractionNumerical estimate of the size ∆ δ k m 1 with direction δ k (the geometry of the unknown), 2 with the frequency ω, 3 with the parametrization. basin of attraction Numerical estimate of the size ∆ δ k m 1 with direction δ k (the geometry of the unknown), 2 with the frequency ω, 3 with the parametrization. context: Helmholtz equation with back-scattered data (-ω 2 m -∆)p = 0, Estimation of the basin of attraction Numerical estimate of the size ∆ δ k m with 1 with direction δ k (the geometry of the unknown), 2 with the frequency ω. basin of attraction Numerical estimate of the size ∆ δ k m with 1 with direction δ k (the geometry of the unknown), 2 with the frequency ω. basin of attraction Numerical estimate of the size ∆ δ k m with 1 with direction δ k (the geometry of the unknown), 2 with the frequency ω. direction δ (c) direction δ Low frequencies increase the size.Reflecting objects complicate the procedure. 2 c -2 -∆)p = 0-ω 2 = (s + 2iπf ) 2 s = 0: Fourier domain ω 2 = (2πf ) 2 , f = 0: Laplace domain -ω 2 = s 2 .C. Shin and Y. H. Cha Waveform inversion in the laplace domain ; Waveform inversion in the laplace fourier domain Geophysical Journal International 2008-2009 W. Ha, S. Pyun, J. Yoo and C. Shin Acoustic full waveform inversion of synthetic land and marine data in the laplace domain ; Geophysical Prospecting 2010 P. V. Petrov and G. A. Newman Three-dimensional inverse modelling of damped elastic wave propagation in the fourier domain.

  inversion 17 × 3.5km, starting models.

  (a) True P-wave speed (b) True S-wave speed (c) Initial P-wave speed (d) Initial S-wave speed

  (a) True P-wave speed (b) True S-wave speed (c) 10Hz P-wave speed (d) 10Hz S-wave speedElastic Pluto modelsMulti-parameters inversion 31 × 7km, true models.

  inversion 31 × 7km, starting models.

  (a) True P-wave speed (b) True S-wave speed (c) Initial P-wave speed (d) Initial S-wave speedElastic Pluto reconstruction 31 × 7kmUsing complex frequencies, unknown density, multi-level algorithm.

  (a) True P-wave speed (b) True S-wave speed (c) (0Hz,10) P-wave speed (d) (0Hz,10) S-wave speedElastic Pluto reconstruction 31 × 7kmUsing complex frequencies, unknown density, multi-level algorithm.

  (a) True P-wave speed (b) True S-wave speed (c) 10Hz P-wave speed (d) 10Hz S-wave speed

  Applications and ongoing investigations: Inverse scattering using obstacles positions, visco-elastic reconstruction: five unknowns, µ, ρ, Q λ , Qµ), unknown Q does not prevent λ recovery, procedure to recover attenuation parameter? helioseismology; anisotropy; model parametrization. for inverse problem Discontinuous Galerkin discretization in HPC framework, acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data. Applications and ongoing investigations: Inverse scattering using obstacles positions, visco-elastic reconstruction: five unknowns, µ, ρ, Q λ , Qµ), unknown Q does not prevent λ recovery, procedure to recover attenuation parameter?

  Discontinuous Galerkin discretization in HPC framework, acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.
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Elastic Pluto reconstruction 31 × 7km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm. 

Quantitative convergence for MBTT

Numerical estimate of the size ∆ δ k m the problem components 1 the frequency ω, 2 with direction δ k (the geometry of the unknown), 3 with the parametrization.

The estimates allow a comparison of methods, in particular we want to compare the dependency of the optimization on the low frequencies. Quantitative convergence for MBTT Numerical estimate of the size ∆ δ k m the problem components 1 the frequency ω, 2 with direction δ k (the geometry of the unknown), 3 with the parametrization.

the MBTT method decomposes the model with a smooth part (propagator) and the reflectors: Quantitative convergence estimates with frequency

Frequency progression for iterative algorithm, -ω 2 = (s + 2iπf ) 2 .

Other application

Single frequency gives high radius than range of frequencies, can be apply for other minimization problem, . . .

Finite curvature indicates robustness to noise

Low and complex frequencies more affected.

Stability

Indicates the accuracy of the reconstruction.