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Abstract 11 

Accurate modeling of water distribution systems is fundamental for the planning and operating 12 

decisions in any water network. One important component that directly affects model accuracy is 13 

the knowledge of nodal demands. Conventional models simulate flows and pressures of a water 14 

distribution network either assuming constant demands at nodes or using a short-term sample of 15 

demand data. Due to the stochastic behavior of the water demands, this assumption usually leads 16 

to an inadequate understanding of the full range of operational states in the water system. 17 

Installation of sensor devices in a network can provide information about some components in the 18 

system. However, the requirement for a reliable water distribution model that can assist with 19 

understanding of real-time events in the entire water distribution system is still an objective for 20 

hydraulic engineers. 21 

This paper proposes a methodology for the estimation of online (near real-time) demand 22 

multipliers. A predictor-corrector approach is developed which predicts the hydraulic behaviors of 23 

the water network based on a nonlinear demand prediction model, and corrects the prediction by 24 
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integrating online observation data. The standard particle filter and an improved particle filter 25 

method, which incorporates the evolutionary scheme from genetic algorithms into the resampling 26 

process to prevent particle degeneracy, impoverishment and convergence problems, are 27 

investigated to implement the predictor-corrector approach. Uncertainties of model outputs are 28 

also quantified and evaluated in terms of confidence intervals. Two case studies are presented to 29 

demonstrate the effectiveness of the proposed particle filter model. Results show that the model 30 

can provide a reliable estimate of demand multipliers in near real-time contexts. 31 

 32 

Keywords: Particle filters, sequential Monte Carlo method, real-time demand estimation, water 33 

distribution systems, uncertainty. 34 

Introduction 35 

Water distribution systems (WDS) are constructed to supply water for domestic, industrial and 36 

commercial consumers. The design, operation and management of these distribution systems is 37 

usually supported by the application of hydraulic models, which are built to replicate the behavior 38 

of real systems. These conventional models simulate flows and pressures of a WDS either under 39 

steady state conditions (constant demands and operational conditions) or under a short term 40 

extended period simulation (time-varying demands and operational conditions), for example a day 41 

or a week (USEPA 2005). The outputs from hydraulic models, therefore, usually represent the 42 

distribution system behavior during the sampling period (Preis et al. 2009). This leads to an 43 

inadequate understanding of the full range of operational states in the water system.  44 

The installation of sensor devices as well as the Supervisory Control and Data Acquisition 45 

(SCADA) systems within the WDS can provide information on the status of some components in 46 

the system. However, the use of this additional data is currently limited to computing gross 47 
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differences between the model outputs and reality (Kang & Lansey 2009). Modification of the 48 

hydraulic models to maintain the consistency between observed data and simulated data is still a 49 

challenge that needs to be dealt with. Estimation of the model states/parameters, hence, is required 50 

so that the model is able to represent the real system.  51 

Estimation is the process of fitting the outputs from the computer model, usually the pressures and 52 

flow rates at particular locations in the water network, with the field measurements, in order to 53 

calculate unknown variables of interest. Initial estimation studies in WDSs were pioneered by 54 

Rahal et al. (1980), Walski (1983) and Bhave (1988) with the proposal of the ad hoc (trial-and-55 

error) calibration schemes, in which an iterative process to update unknown model parameters was 56 

implemented. Due to the slow convergence rate, this method is only applicable to small water 57 

networks. Later, explicit calibration methods were introduced (Ormsbee & Wood 1986; Boulos & 58 

Wood 1990; Boulos & Ormsbee 1991). These methods solved an even-determined set of water 59 

network equations where the number of unknown parameters is grouped to be equal to the number 60 

of measurements. As the measurement errors were also neglected, these methods usually did not 61 

represent real-world practical outputs. Therefore, explicit calibration models were often used to 62 

analyse historic events in water systems (Savic et al. 2009). Subsequently, implicit methods were 63 

developed using either mathematical techniques or evolutionary optimization techniques, for 64 

example: Complex Method (Ormsbee 1989), Weighted Least Squares approaches (Lansey & 65 

Basnet 1991; Datta & Sridharan 1994), Singular value decomposition (SVD) method (Sanz & 66 

Pérez 2015) or Genetic Algorithms (GA) (Preis et al. 2009; Abe & Peter 2010; Do et al. 2016). 67 

These methods have drawn a high degree of attention from researchers. However, these models 68 

are mostly impractical due to either a requirement for a large quantity of ‘good’ observation data 69 

(Savic et al. 2009) or ignoring model uncertainties. Furthermore, few approaches have attempted 70 
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to estimate model parameters and model states in conjunction with model uncertainties. Bargiela 71 

and Hainsworth (1989) found that a good approximation of pressure uncertainty bounds can be 72 

obtained by a linearization of the mathematical network model. Piller (1995) and Bush and Uber 73 

(1998) used a sampling design method to estimate the model parameters and approximate the 74 

uncertainties. Lansey et al. (2001) applied a first-order approximation method to identify pipe 75 

roughness uncertainty. Nagar and Powell (2002) applied a linear fractional transformation and 76 

semi-definite programming method to estimate the pressure heads and their confidence bounds. In 77 

addition, some probabilistic methods (Xu & Goulter 1998; Kapelan et al. 2007; Hutton et al. 2013) 78 

have also been investigated for the estimation of model parameters. Due to the complexity of the 79 

uncertainties, estimation methods associated with uncertainty quantification are still a continuing 80 

research area, especially for real-time estimation purposes.  81 

The complexity of uncertainties in WDS modeling has been addressed in Hutton et al. (2012b), in 82 

which the uncertainty is divided into three categories: (1) structural uncertainty, (2) parameter 83 

uncertainty and (3) measurement/data uncertainty. Structural uncertainty derives from the 84 

mathematical representation of the real system, such as network skeletonization and model 85 

aggregation. Skeletonized and/or aggregated models are predominantly used instead of all-pipes 86 

models to reduce the complexity of the network being analysed as well as to increase 87 

computational speed. It has been shown that skeletonized/aggregated network models can closely 88 

resemble the behaviour of full sized systems under steady state conditions (e.g. Perelman et al. 89 

(2008) and Preis et al. (2011)). The second category, parameter uncertainty, refers to the errors of 90 

the parameters used to represent system components (e.g. pipe roughnesses, pipe diameters). 91 

According to Kang and Lansey (2009), these parameters are time invariant or vary slowly over 92 

time. Hence, this source of uncertainty can be neglected for real-time estimation problems. Finally, 93 
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measurement/data uncertainty is the uncertainty from measurement devices and, more importantly, 94 

uncertainty from the inability to capture the temporal and spatial variation of consumer demands. 95 

Because of their high impact on model uncertainty during short periods of time (or in real-time), 96 

nodal demands are therefore usually selected as the time varying parameters to be estimated.  97 

The issue of short term demand forecasting and real-time demand estimation under uncertainties 98 

can be found in some recent studies. Note that the short-term demand forecasting and demand 99 

estimation are two different problems. The former focuses on predicting future demands (e.g. 100 

Cutore et al. (2008), Hutton and Kapelan (2015) and Alvisi and Franchini (2017)). The latter 101 

focuses on estimation of the current demands, which is also the main interest of this paper. This is 102 

useful, as demand estimation can be used at regular time steps to verify the accuracy of the 103 

predicted value and update the system operations. The problem of near real-time demand 104 

estimation has been studied using different approaches. Shang et al. (2006) applied an extended 105 

Kalman filter, an iterative linear algorithm for nonlinear state estimation, to approximate water 106 

demand patterns. In that paper, water demand patterns were predicted by an ARIMA time series 107 

model and were refined using real-time observations. Similarly, Hutton et al. (2012a) introduced 108 

a particle filter method and an ensemble Kalman filter for the estimation of a single district meter 109 

area, which was assumed to follow a linear time series model. The particle filter model was 110 

implemented with and without measurement error to show its effect on the demand prediction 111 

uncertainty. An alternative for the demand estimates can be found in Kang and Lansey (2009). In 112 

their paper, two comprehensive methods for the demand estimation problem were introduced, the 113 

Kalman filter and the tracking state estimator (TSE). For the Kalman filter model, the water 114 

demand patterns were also assumed to follow a linear time series model, while the TSE model 115 

involved recursively computing the sensitivity matrix (i.e. the Jacobian matrix of the measurement 116 

Author-produced version of the article published  in : Journal of Water Resources Planning and Management, vol 143, n°11, 2017



vector with regards to the change in the state vector). The uncertainties of the demand estimates 117 

were suggested to be quantified by applying the first-order second moment formula. The two 118 

models were then tested on a case study (116 pipes, 90 nodes, 1 source and 1 tank) with an 119 

assumption that 19 flow measurement sites and 5 pressure measurement sites were available. It 120 

should be noted that the demand estimation problem is sensitive to the locations and types of the 121 

measurements (Do et al. 2016). Demand estimation models usually perform better with flow 122 

measurements rather than pressure/head measurements. However, due to the cost and difficulty of 123 

installing flow measurement devices compared to pressure measurement devices, flow 124 

measurement devices are usually not as commonly used as pressure measurement devices in real 125 

WDS networks. 126 

In summary, water demands in WDS studies are usually assumed to be known and varied based 127 

on a diurnal curve. However, this assumption might lead to large approximations of WDS states 128 

in real-time due to the unpredictable variation of the water demands. Some efforts have been 129 

focused on the real-time demand estimation. By assuming that the water demand follows a linear 130 

time series prediction model, these models approximated the water demand patterns with some 131 

linear algorithms such as the Kalman filter or extended Kalman filter. Given the nonlinear 132 

stochastic nature of the water demands as well as the need for practical applicability, real-time 133 

estimation modeling of WDS still requires much research effort. 134 

This paper presents a model framework for the online (near real-time) demand estimation of a 135 

WDS, which is named the DMFLive model. A predictor-corrector methodology is adopted in the 136 

DMFLive model to predict the hydraulic behaviors of the water network based on a nonlinear 137 

demand prediction sub-model, and to correct the prediction by using online pressure observation 138 

data. A particle filter method is applied to implement the predictor-corrector approach. The typical 139 
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problems of the particle filter approach (particle degeneracy, impoverishment and particle 140 

convergence) are investigated by two different resampling schemes: systematic resampling (SR) 141 

algorithm and systematic resampling integrated with a genetic algorithm process (SRGA). 142 

Uncertainties of model outputs are quantified and evaluated in terms of confidence intervals. 143 

The paper is structured as follows. First, an explanation of the state estimation problem and its 144 

conceptual solution is introduced. Second, the basic concepts of particle filter methods to solve the 145 

estimation problem are explained. This is followed by a detailed description of the particle filter 146 

methodology applied for water demand state estimation in WDS. Two case studies are then used 147 

to evaluate the model. Finally, conclusions and suggestions for future work are given. 148 

State estimation problem and its conceptual solution 149 

The problem of state estimation involves finding a target state vector xk that evolves according to 150 

a discrete time stochastic model (Ristic et al. 2004): 151 

𝑥" = 	𝑓"&' 𝑥"&', 𝜐"&'  (1) 

where k is the index of discrete time steps; fk-1 is a known, possibly nonlinear function of the 152 

previous state and u is the process noise sequence. The value of xk can be found from 153 

measurements zk, which are related to xk via the measurement equation: 154 

 𝑧" = ℎ" 𝑥", 𝑤"  (2) 

where h is a known implicit or explicit, possibly nonlinear function and w is the measurement 155 

noise sequence. The noise terms uk and wk are usually assumed to be white noise and independent. 156 

From a statistical and probabilistic perspectives, the state model can be represented by a probability 157 

density function (pdf). The state estimation problem, therefore, becomes a process of recursively 158 

quantifying some degree of belief in the state xk given the measurement series Zk (zi, i=1,…,k) up 159 
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to time k. This process can be obtained by two stages: prediction and correction/update. The 160 

prediction stage involves applying the system model to predict the prior pdf of the state: 161 

𝑝 𝑥" 𝑍"&' = 	 𝑝 𝑥" 𝑥"&' 𝑝 𝑥"&' 𝑍"&' 𝑑𝑥"&' (3) 

where 𝑝 𝑥" 𝑥"&'  is the probabilistic model of the state model, or the transitional probability 162 

density function, which is defined by the system equation Eq. (1) with the known statistics of 𝜐"&'; 163 

and 𝑝 𝑥"&' 𝑍"&'  is the pdf of the model at time k-1, which is supposed to be known. 164 

The correction/update stage implements Bayes’ rule to compute the posterior probability density 165 

of the state model when the measurement zk becomes available:  166 

𝑝 𝑥" 𝑍" =
𝑝(𝑧"|𝑥")𝑝(𝑥"|𝑍"&')
𝑝 𝑧" 𝑥" 𝑝 𝑥" 𝑍"&' 𝑑𝑥"

 
(4) 

where 𝑝(𝑧"|𝑥") is the likelihood function, defined by the measurement equation (Eq. (2)) with the 167 

known statistics of wk.  168 

According to Ristic et al. (2004), the recursive propagation of the posterior pdf shown in Eq. (3) 169 

and Eq. (4) is only a conceptual solution that cannot be analytically solved. The solution requires 170 

the storage of a fully non-Gaussian pdf, corresponding to an infinitive dimensional vector. Since 171 

the true solution is too complex and almost impossible to compute, an implementation of 172 

approximation techniques or suboptimal Bayesian algorithms is developed. The following section 173 

introduces an approximation technique, namely the particle filter, to solve the aforementioned state 174 

estimation problem. 175 

Particle filters 176 

Over the last decade, particle filters have been successfully applied to the state and parameter 177 

estimation of complex system models in various environmental engineering fields, such as 178 

hydrology (Moradkhani et al. (2005), Weerts and El Serafy (2006)), hydraulic (Hutton et al. 2012a) 179 

and geoscience (van Leeuwen (2010)). Unlike the Kalman filter (for linear problems), extended 180 
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Kalman filter (which requires a linearization of the nonlinear problems) or the unscented Kalman 181 

filter (which uses a small number of deterministically chosen samples), the particle filter can use 182 

a large number of Monte Carlo samples to estimate fully nonlinear, possibly non-Gaussian target 183 

states. The key concept of a particle filter is to approximate the posterior pdf of states, defined in 184 

Eq. (4), by an ensemble of samples (Np), each of which contains an associated weight	(𝑤"3 ), and 185 

to compute estimates based on these samples and weights: 186 

𝑝 𝑥" 𝑍" ≈ 𝑤"3
56

37'

𝛿(𝑥" − 𝑥"3 ) 
(5) 

𝑤"3 = 𝑤"&'3 𝑝(𝑧"|𝑥"3 )𝑝(𝑥"3 |𝑥"&'3 )
𝑝(𝑥"3 |𝑥"&'3 , 𝑧")

 (6) 

where d is the Dirac delta function; i is the particle index; and 𝑝(𝑥"3 |𝑥"&'3 , 𝑧") is the importance 187 

density function. In order to simplify the weight update of the particle, the importance density 188 

function is usually chosen as the transitional density function, 𝑝 𝑥"3 𝑥"&'3 , 𝑧" =189 

	𝑝 𝑥"3 𝑥"&'3 ,	which yields with scaling: 190 

𝑤"3 =
𝑝(𝑧"|𝑥"3 )
𝑝(𝑧"|𝑥"3 )

56
37'

 (7) 

These equations form the basis of most particle filters. However, it has been shown by Doucet et 191 

al. (2000) that the variance of the weights will increase over time if the particle filtering process is 192 

limited at executing only these equations. Since the particles drift away from the “truth” as well as 193 

obtain negligible weights (Moradkhani et al. 2005), the model will fail to estimate the real states 194 

of the system. To avoid this problem, a resampling process, which replaces samples with low 195 

importance weights by the samples with high importance weights, is added to the procedure of 196 

particle filter models. In this paper, the systematic resampling method, also called the stochastic 197 

universal resampling, introduced by Kitagawa (1996), is selected for the resampling procedure of 198 

the particle filter model. A comprehensive explanation of the systematic resampling and the full 199 
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review of particle filtering methods are described in (van Leeuwen 2009). In addition, an improved 200 

resampling method which integrates the evolutionary scheme from genetic algorithms into the 201 

resampling process, is also proposed to improve the efficiency of the particle filter model. 202 

Particle filters applied for water demand state estimation in WDS 203 

In this study, the predictor-corrector approach implemented by a particle filter model for the 204 

estimation of water demands in real-time is proposed, namely the DMFLive model.  The demand 205 

prediction sub-model presented by van Zyl et al. (2008) has been applied to predict the water 206 

demand multipliers (DMF) in a WDS. The hydraulic EPANET toolkit (Rossman 2000) which 207 

solves the hydraulic equations was used to compute the model equivalent of the measurement data 208 

(i.e. the nodal pressures, flow rates at measurement locations or the final tank levels at the end of 209 

each time step). These computed values then were integrated with the corresponding field 210 

measurements in order to correct/update the particle weights. Particles were, thereafter, resampled 211 

(with either SR or SRGA) and subsequently used as input for the prediction model.  212 

Simultaneously, the estimated demand multipliers were computed and selected for uncertainty 213 

quantification. The uncertainties of the demand multipliers caused by the errors from measurement 214 

devices were computed using the first-order approximation formula. The flowchart of the 215 

DMFLive model is shown in Figure 1. 216 

Initialization of particles 217 

The DMFLive model starts with a creation of an ensemble of the particles (Np). The particles are 218 

the demand residuals, driven by the demand prediction model to predict the demand multipliers. 219 

In addition, each particle is assigned an initial weight equal to 1/Np. 220 

Demand prediction sub-model 221 

Author-produced version of the article published  in : Journal of Water Resources Planning and Management, vol 143, n°11, 2017



The initial particles (for the first iteration) or the particles after resampling (from the second 222 

iteration onwards) are transferred to the demand prediction sub-model. Demand residual 223 

information carried by the particles is used to track the states and predict the demand multipliers 224 

via the following equations (van Zyl et al. 2008): 225 

ln	𝑥"
< = 𝜙3

<
>

37'

ln 𝑥"&3
< + ln 𝜐"

< (8) 

where 𝑥"
<  is the demand residual state at time step k of the jth DMF; i is the lag counter; m is the 226 

number of autocorrelation lags (for the state estimation problem m=1 as referred to Eq. (1)); fi is 227 

the auto-regression coefficient for lag i and uk (0,sh) is the white noise with mean zero and standard 228 

deviation sh.  229 

The jth DMF is calculated as: 230 

𝐷𝑀𝐹"
< = 𝐶"

<𝑥"
<  (9) 

where 𝐶"
< is the value at time k of a typical diurnal demand pattern of the jth DMF. The C value 231 

can be identified based on meter information of different water users (e.g. in Beal and Stewart 232 

(2014)).  233 

Real-time hydraulic data 234 

In practice, hydraulic data can be captured in real-time via the SCADA system or sensor devices. 235 

For the DMFLive model, two types of real-time hydraulic data are required. First are the tank 236 

levels, pump and valve statuses, and second are the nodal heads and pipe flow rates at measurement 237 

locations.  Tank levels, pump and valve statuses are used as boundary conditions for the hydraulic 238 

simulation of the water network model while the observations at measurement locations are used 239 

to correct/update the weight of the particles. 240 

In order to validate the performance of the proposed model as well as its practical applicability to 241 

real WDS networks, all case studies in this research are assumed to have pressure measurements 242 
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only. The input data sets to evaluate the DMFLive model are synthetically generated based on 243 

deterministic models, where the water network parameters are fully known, as follows: (1) known 244 

demand patterns are assigned to nodal demands; (2) EPANET is run to record tank levels, pump 245 

statuses, and pressures at selected measurement locations; (3) to introduce the measurement errors, 246 

a normal distributed random error in an allowable range (±Dmeas) is added to each nodal pressure. 247 

Simulator 248 

The hydraulic behavior of the water distribution network at each time step is simulated using an 249 

EPANET steady state simulation. The inputs are the predicted DMFs, tank levels, and pump and 250 

valve statuses. The water network characteristics such as pipe lengths, diameters, roughness 251 

coefficients, node elevations, pump curves, etc. are assumed to be known and constant. The outputs 252 

from the EPANET hydraulic solver is the model equivalent of the observations, i.e. the simulated 253 

nodal heads and pipe flow rates at measurement locations.  254 

Corrector 255 

The weights of the particles are corrected/updated by associating the simulated heads and flows 256 

with the actual observations via Eq. (7) where the likelihood function is assumed to be Gaussian: 257 

𝑝 𝑧" 𝑥"3 =
1
2𝜋 𝑅

𝑒 &'I JK&L MK
N O

PQR JK&L MK
N

 
(10) 

where ℎ(𝑥"3 ) is the model equivalent of the observations zk (simulated nodal heads and flow rates), 258 

and R is the covariance matrix of the observation errors, which in general is caused by errors from 259 

two main sources: forward model error and measurement device error. The forward model error, 260 

∆TUVW= 𝑍TUVW − ℎ(𝑥TUVW) 
(11) 

is the difference between the true observation vector, Ztrue, and the corresponding vector output 261 

from the hydraulic simulation model EPANET using the true state xtrue. The true observation vector 262 
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is a theoretical vector that represents observations measured by perfect measurement devices.  It 263 

is linked to the actual measured values via the expression: 264 

𝑍 = 𝑍TUVW + ∆>WXY 
(12) 

The observation error covariance matrix, therefore, can be estimated as R = Rtrue +Rmeas, where 265 

Rtrue and Rmeas denote the covariance of the forward model error and the covariance of measurement 266 

error, respectively (see Waller (2013) for a detailed explanation and calculation of the observation 267 

error covariance matrix). To produce good estimates of the model state in real case studies, the 268 

error covariance matrix must be well understood and properly calibrated. As previously mentioned 269 

in this paper, the measured data in all case studies were synthetically generated from the EPANET 270 

model based on “true” demand patterns. The forward model error, therefore, equals to zero. The 271 

covariance matrix R, as a result, is the diagonal matrix where the diagonal elements are the 272 

variances of the measurement errors, since observations are independently measured at different 273 

locations of the network by different measurement devices. The measurement errors with specified 274 

ranges are assumed to be known so that the covariance matrix R can be identified. Resampling 275 

Resampling is applied to create new ensembles of particles from the posterior pdf of the previous 276 

step. In this paper, two alternatives of resampling are tested: systematic resampling algorithm (SR) 277 

and systematic resampling integrated with the GA operators (SRGA).  278 

The SR algorithm generates a random number us from the uniform density U[0, 1/Np], and 279 

consequently creates Np ordered numbers (Hol et al. 2006): 280 

𝑢3 =
𝑖 − 1
𝑁]

+ 𝑢Y					(𝑖 = 1,… ,𝑁]) 
(13) 

New particles are then selected that satisfy Eq. (14): 281 

𝑥_W`3 = 𝑥(𝐹&' 𝑢3 ) 
(14) 
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where F-1 denotes the generalized inverse of the cumulative probability distribution of the 282 

normalized particle weights. 283 

To reduce the convergence problem of the particles (i.e. all the particle weights are equal to zero) 284 

when applying the model for large networks with multiple demand patterns, the SRGA method is 285 

also applied. Three GA operators of selection, crossover and mutation are responsible for 286 

modifying the predicted demands before computing the weight of a particle by Eq. (10). In the 287 

selection step, particles are compared to each other through tournament selection and the best 288 

particles are selected as parents. Parent particles are then paired and go through crossover and 289 

mutation to generate offspring solutions. While the details of GA can be found in Nicklow et al. 290 

(2010), it is important to know that new parameters need to be introduced: the probability of 291 

crossover Pc, the probability of mutation Pm and the number of generations Ngen. 292 

Demand multiplier outputs and uncertainty quantification 293 

The estimate of the state xk is obtained by taking the mean of the particle filter sample set (Salmond 294 

& Gordon 2005): 295 

𝑥" ≈
1
𝑁a

𝑥"3	∗
5c

37'

 
(15) 

where 𝑥"3	∗ is the state updated based on the posterior analysis of the model weights. 296 

For particle filter models, the uncertainty of the model output can be computed by taking the 297 

variance of the samples: 298 

𝑣𝑎𝑟 𝑥" ≈
1
𝑁a

𝑥"3	∗ − 𝑥" 𝑥"3	∗ − 𝑥"
g

5c

37'

 
(16) 

For the demand multiplier estimation problem, it should be noted that a small change in the demand 299 

multiplier can cause a large change in nodal demands (for nodes with large base demands) and 300 

consequently result in large variations of nodal pressures, especially at nodes that are sensitive to 301 
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nodal demands. Most of the demand forecasting models are required to capture both peak-demand 302 

hours and off-peak demand hours, with a demand multiplier factor that can vary from 0 to 4 (Chin 303 

et al 2000). The weight of the particles via Eq. (10) can, therefore, easily approach zero which 304 

leads to either particle degeneracy or particle non-convergence. Using a larger number of particles 305 

can prevent this problem, however, if the dimension of the state vector increases, the required 306 

number of particles increases exponentially. One way to solve these issues is to incorporate the 307 

covariance of the forecasting nodal heads/ pipe flow rates into the likelihood function:  308 

𝑝 𝑧" 𝑥"3 =
1

2𝜋 𝑅∗
𝑒 &'I JK&L MK

N O
(P∗)QR JK&L MK

N
 

(17) 

where R* = R+S, S is the covariance matrix of the forecast nodal heads or pipe flow rates, 309 

computed based on the forecast demands. This covariance matrix can be estimated by running the 310 

demand forecasting model multiple times to obtain the range of forecast demand multipliers, then 311 

applying these values into the hydraulic model to compute the variance of simulated nodal heads 312 

and pipe flow rates at measurement locations.  313 

Although the method can ensure some of the particles always contain weights to avoid particle 314 

non-convergence and degeneracy, this would increase the noise of the output model. The variance 315 

of the model output (i.e. the uncertainty of the model output) is required to be computed by a 316 

different method instead of using Eq. (16). 317 

Another way to overcome the convergence and degeneracy issues is to integrate the GA operators 318 

into the resampling process as mentioned in the previous sections. The integrated GA approach 319 

can prevent the model from experiencing these problems by exploring the state-space region and 320 

selecting the best particles (including the replication of good solutions). However, it might lead to 321 

another problem for the particle filter, referred to as particle impoverishment. The distribution of 322 
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the state model, because of the particle impoverishment, is poorly represented by only one or a 323 

few particles which significantly reduces the variance of the model state.  324 

To ensure reliable outputs from the particle filter model, it is proposed to approximate the 325 

uncertainty of the model state by an independent method, such as the first-order approximation 326 

(FOA) method adopted from Piller (1995). This also has the advantage of significantly decreasing 327 

the computational time, as it will be shown in the case studies. The model outputs, therefore, are 328 

the estimate of the demand multipliers computed by Eq. (15) and the confidence intervals 329 

computed by FOA method. For example, the 95% confidence interval of the estimated demand 330 

multiplier (i.e. the range in which the true demand multipliers are expected to be 95% of the time) 331 

can be obtained by the following expression: 332 

∆𝐷𝑀𝐹" ≤ 1.96(𝑊
'
I𝐽)n 

∆𝐷𝑀𝐹"
< ≤ 1.96 𝑆3<>

<7' , with 𝑆 = (𝑊
R
p𝐽)n 

(18) 

where J is the Jacobian matrix of flows and heads with respect to the water nodal demand at time 333 

k; W is the weight matrix where the diagonal elements are the reciprocals of the variances of 334 

measurement errors (W=R-1); superscript † represents the pseudo-inverse operator. The derivation 335 

of Eq. (18) is explained in detail in Appendix A. 336 

By considering the Jacobian (sensitivity) matrix, the uncertainty of the output model from FOA 337 

method can provide meaningful information about the sensitivity of the pressure with respect to 338 

the change in the nodal demand. This information can be used to guide where to place 339 

measurement stations. However, the method requires calculation of the sensitivity matrix, which 340 

may be time consuming when applied to large and complex networks.  341 

Summary of assumptions and input requirements for the DMFLive model 342 

Several assumptions are made for this study: (1) the model of the water distribution network 343 

perfectly represents the real system with known network characteristics (e.g. pipe roughness 344 
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coefficients, length and diameters, etc.), and only demand multipliers are required to be estimated; 345 

(2) typical demand patterns for different homogeneous demand groups in WDS are assumed to be 346 

known. The homogeneous demand groups can be identified based on a multi-criteria demand 347 

zones clustering algorithm presented in Preis et al. (2010). There is uncertainty of the model 348 

outputs associated with demand groupings, but this is not considered here. Therefore, (3) the 349 

source of uncertainty is only from the errors from measurement devices; (4) the errors of the 350 

measurement devices are assumed to be known and to follow a Gaussian distribution; (5) the 351 

observation data for the online (near real-time) estimation model is available every 10, 15 minutes, 352 

1 hour or larger time steps. The influence of slow transients (mass oscillations) are, therefore, 353 

ignored in this context. 354 

The inputs required for the DMFLive model consist of the number of particles, the inputs for the 355 

demand prediction sub-model, inputs for the hydraulic simulation model (EPANET), input for the 356 

correction step and the parameters for the integrated GA operators (Pc, Pm and Ngen). The prediction 357 

sub-model requires the data of typical demand patterns, the auto-regression coefficient (fi) and the 358 

variance of noise of demand residuals (sh
2). These parameters are calibrated independently based 359 

on historical demand data for specific networks, for example fI = 0.7 and sh
2 = 0.132 as in van 360 

Zyl et al. (2008). The EPANET model requires the known data of tank levels, pump and valve 361 

statuses. The correction step requires the observation data at measurement sites. Note that the 362 

particle filter model associated with the GA process can only be applied to networks with multiple 363 

demand patterns (e.g. the second case study in this paper). Two-point crossover operator with the 364 

probability of crossover Pc=0.7, bitwise mutation with the probability of Pm = 1/NDM (NDM is the 365 

number of demand patterns in the network, NDM = 5, corresponding with Pm=0.2 for the second 366 

case study) and the number of generations NGen = 50 were selected for the GA process. 367 
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Case study 1 368 

The first case study used to evaluate the model is shown in Figure 2. The network has 9 nodes (8 369 

nodes with demands), 12 pipes, one tank and one reservoir. The network characteristics can be 370 

found from the EPANET example, namely the Net1 network. Three pressure measurements (with 371 

a precision of Dmeas=±0.2 m, consistent with a standard deviation of  smeas = 0.1 for the 372 

measurement error at 95% confidence interval) are assumed to be placed at three random locations 373 

(nodes 13, 22 and 31). All nodal demands are assumed to follow a single demand pattern that 374 

varies every 15 minutes, (represented by the continuous line in Figure 2.b). The demand pattern is 375 

a random daily demand pattern (from a yearly demand pattern) for 100 households obtained from 376 

the BESS model (Thyer et al. 2011). The DMFLive model is required to track this demand pattern 377 

using the three pressure measurements, which are also obtained every 15 minutes.  378 

In this case study, the default demand pattern given in the Net1 example (represented by the dashed 379 

line in Figure 2.b) was selected as the typical demand pattern. Different values of the auto-380 

regression coefficient (f) as well as variance of noise (sh
2) were applied for the demand prediction 381 

sub-model. 382 

The accuracy of the demand estimates from the DMFLive model were evaluated in terms of the 383 

coefficient of determination (R2) and the root mean squared error (RMSE). For a number of 384 

particles Np = 100, the results of the demand estimates from the DMFLive model are presented in 385 

Table 1. 386 

The DMFLive model performed very well when the auto-regression coefficient was selected in the 387 

range of 0.3 £ f £ 0.9 and the noise variance was selected in the range of 0.25 £ sh
2 < 0.64. Due 388 

to the large difference between the typical demand value and the actual demand value at each time 389 

step (Figure 2.b), the selection of small values of the auto-regression coefficient and noise variance 390 
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resulted in relatively poorer performance of the model (e.g. R2 = 0.465 and RMSE =0.198 for 391 

f=0.3 and sh
2=0.04). The best output of the DMFLive model was obtained at f=0.7 and sh

2=0.25, 392 

with R2 = 0.988 and RMSE =0.028, respectively.  393 

For this best estimated demand pattern, the confidence intervals and the scattergram between 394 

actual demand multipliers and estimated demand multipliers are plotted in Figure 3.a.  395 

In Figure 3.a, the estimated demand pattern yields a very good match with the actual demand 396 

pattern during the time period (24 hours, corresponding to 96 time steps). The actual demand 397 

pattern is entirely covered by the range of the 95% confidence intervals calculated from FOA 398 

method. This confidence interval range, which is expected to bracket the “true” demand multipliers 399 

in 95% of the cases, represents the uncertainty magnitude of the estimated demand due to the error 400 

from measurement devices. 401 

The model has also been run with the number of particles Np=100 and Np=20 to provide a 402 

comparison between the FOA method (i.e. Eq. (18)) and the posterior analysis (i.e. Eq. (16)) for 403 

uncertainty quantification, as shown in Figures 3.b, 3.c and 3.d. Figures 3.a and 3.c show the 404 

uncertainty quantified by the FOA method while Figures 3.b and 3.d shown the uncertainty 405 

quantified by the variance of particles. For Np= 100 particles, the 95% confidence intervals from 406 

both methods are comparable to each other, which demonstrates that the FOA method can provide 407 

reliable results compared to the variance of the particle filter samples.  408 

A good estimate of the demand multipliers (RMSE=0.047) is obtained by the DMFLive model 409 

even when the number of particles is reduced by a factor of five (Np=20), as seen in Figures 3.c, 410 

and 3.d. The uncertainty boundary calculated by the FOA method in Figure 3.c has a similar range 411 

to the case with NP=100 particles and covers most of the actual values. On the other hand, the 412 

uncertainty bounds calculated by Eq. (16) in Figure 3.d are collapsed into single value at some 413 
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time steps due to an insufficient number of the particles. Application of Eq. (16) for uncertainty 414 

quantification, therefore, requires an in-depth evaluation of the number of particles in the model if 415 

it is selected for the uncertainty quantification.  416 

The range of demand multipliers predicted in time according to the evolution of the particles is 417 

presented in Figure 4.a. The predicted values range from DMFmin = 0.1 to DMFmax = 7.0, 418 

indicating that the demand prediction sub-model can predict a large range of demand multipliers, 419 

and cover the range 0 £ DMF £ 4 suggested by Chin et al. (2000). Figure 4.b plots the scattergrams 420 

of the actual demand multipliers versus the predicted demand multipliers (i.e. the mean of the 421 

prediction) and actual demand multipliers versus estimated demand multipliers. The scattergram 422 

shows a constant and strong correlation between actual demand multipliers and estimated demand 423 

multipliers over time with R2 being close to unity. Due to large difference between the typical 424 

demand pattern and the actual demand pattern, the forecasting model does not provide good 425 

prediction, resulting in weak and skewed correlation between the actual values and the predicted 426 

values. Despite this, the DMFLive model is still capable to provide very good estimates of the 427 

demand multipliers. 428 

Effects of tank level update on the estimation 429 

In extended period simulations of most hydraulic solvers (including EPANET), the nodal demands 430 

are considered to be constant during the time step. The levels of the tanks in the network at the end 431 

of the time step are consequently computed based on this assumption and are used as the initial 432 

tank level for the next step. Due to continuously unpredictable change of the water demand in 433 

practice, the actual tank level at the end of the time step is usually different to the tank level 434 

computed by the model. As a result, the estimated total volume of water used during the time step 435 

is also different from the actual volume of water used in practice. This issue can be overcome by 436 
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minimizing the difference between actual tank levels at the beginning of the time step and the final 437 

estimated tank level at the end of the previous step. The demand estimation model, however, will 438 

be delayed until the information of the tank level at the beginning of the next time step becomes 439 

available. In other words, the model outputs will be the estimates of the demand multiplier at the 440 

previous time step. 441 

In order to evaluate the effect of including tank level information at the end of every time step, an 442 

additional test is conducted. Instead of assuming that the observations are available at every 15 443 

minutes, in this test it is assumed that the data can be obtained every hour and the model is required 444 

to estimate the demand pattern at each hour time step (while the actual demand pattern is varied 445 

every 15 minutes).  446 

Figure 5 plots the two estimated demand patterns with and without tank level information (herein 447 

referred to as DMF-WTLive and DMFLive). Note that the DMF-WTLive model is the modified 448 

version of DMFLive model at which the final tank level information is taken into account. 449 

It can be seen that the estimates for both cases are matched with the actual demand pattern at every 450 

hour time step. The inclusion of tank information only causes a slight difference between two 451 

estimated demand patterns at some of the time steps. The root mean squared errors between 452 

estimated demand multipliers and actual demand multipliers at every hour step indicates that the 453 

DMFLive model obtained slight better results than the DMF-WTLive model (RMSE =0.046 454 

compared to RMSE =0.080, respectively). However, the total estimated water usages tabulated in 455 

Table 2 shows that the DMF-WTLive model is more accurate in predicting the volume of water 456 

delivered to the users.  457 

The total estimated water usage during the 24-hour simulation period from DMFLive model was 458 

5942.43 m3/day, 46.81 m3/day (or 0.78%) less than the actual water usage. On the other hand, total 459 
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estimated water usage from DMF-WTLive model was 6007.31 m3/day, only 18.07 m3/day (or 460 

0.30%) more than the actual value. Therefore, if the estimation can be delayed one time step, the 461 

final tank level information should be included into the model to improve the accuracy of the 462 

estimated total volume of water used. 463 

Case study 2 464 

In order to evaluate the performance of the proposed model in large networks that contain more 465 

than one demand pattern, the C-Town network from Ostfeld et al. (2011) is selected as the second 466 

case study. The network consists of 429 pipes, 1 reservoir, 7 tanks, 5 pump stations (with a total 467 

of 11 pumps), 4 PRV valves and 388 nodes (334 nodes with demands), which are divided into five 468 

district demand areas. Each district demand area follows a different hourly demand pattern. As the 469 

data of the demand patterns is available for seven days, the first 24 hours of these demand patterns 470 

are assumed to be the typical demand patterns for the demand prediction sub-model. The 471 

performance of the particle filter model is then evaluated by estimating the remaining 6-day hourly 472 

demand patterns.  473 

It is assumed that there are 14 pressure measurement sites (from P1 to P14) that are randomly 474 

located at 14 places. These pressure measurements, again, are assumed to have a measurement 475 

error of Dmeas=±0.2 m. The inputs for the real-time demand estimation model are, therefore, the 476 

pressures at these locations, the tank levels of seven tanks and the pump statuses of 11 pumps at 477 

each hour time step. The topology and measurement locations of the C-Town network are shown 478 

in Figure 6. Five different demand prediction sub-models were used to predict the five demand 479 

patterns. The parameters of the five demand prediction sub-models were assumed to have the same 480 

values of 𝜙 = 0.7 for the auto-regression coefficients and 𝜎LI = 0.16 for the variances of noise.  481 
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The standard particle filter model (i.e. using systematic resampling), herein referred as the 482 

DMFLive-I model, provides good results only if NP ≥ 25,000 particles. The estimates of five 483 

different demand patterns for 6 days (from 25h to 168h) are shown in Figure 7. It is seen that the 484 

estimated demand patterns closely match the actual demand patterns, especially for DMF 2 (RMSE 485 

= 0.021), DMF 3 (RMSE = 0.024), DMF 1 (RMSE = 0.029) and DMF 4 (RMSE= 0.036). The 486 

estimated demand pattern DMF 5 is less accurate, with the root mean squared error of RMSE = 487 

0.061.  488 

Figure 7 also plots the 95% confidence intervals for calculated by the FOA formula. The intervals 489 

for the estimated DMF 1, DMF 2 and DMF 3 (in Figure 7.a, 7.b and 7.c, respectively) are narrow 490 

and they cover almost the entire set of the actual demand multiplier values. The actual values of 491 

DMF 4 are also within the confidence interval of estimated DMF 4 (Figure 7.d) for most of the 492 

time. However, due to the locations of the measurements (P7 and P9 - Figure 6), the confidence 493 

interval of estimated DMF 4 pattern is relatively large compared to the others. The effect of 494 

measurement locations on the confidence intervals of the estimates is discussed later in the paper. 495 

In Figure 7.e, approximately 37% of the actual demand values of the demand pattern DMF 5 are 496 

outside the 95% confidence intervals, which is caused by the relatively poor estimates for DMF 5. 497 

Figure 8 displays the scattergrams and coefficients of determination of the five predicted demand 498 

patterns, as well as the estimated demand patterns versus their actual values.  499 

The predicted DMFs in this case show an average correlation to the actual DMFs with the R2 500 

ranging from 0.69 to 0.74, while the estimated DMFs are strongly correlated to the actual ones 501 

with all R2 values being close to unity. The estimation for these five DMFs are also reliable during 502 

the simulation period (six days), as the spreads of the scattered dots are close to bisector lines.  503 

Improving DMFLive model performance by SRGA and modified likelihood function 504 
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The DMFLive-I model can only perform well with a large number of particles (NP ≥ 25,000). 505 

Smaller numbers of particles result in weak estimates of the DMFs due to particle collapse at some 506 

steps. Since increasing the number of demand patterns requires an exponentially increasing 507 

number of particles, it is necessary to improve the efficiency of particle filter model so that it can 508 

be applied to complex systems.  509 

Two methods have been investigated as mentioned previously in the paper: (1) incorporating the 510 

variance of the forecasting nodal heads into the likelihood function. The weights of particles in the 511 

model, referred as DMFLive-II model, are then calculated by the modified likelihood function (Eq. 512 

(17)); and (2) by the integration of a GA process into the systematic resampling of the model, 513 

herein referred as DMFLive-III model. 514 

Table 3 presents results (in terms of the RMSE of each demand pattern) of running these models 515 

with NP=1000 and NP=5000 for DMFLive-I, II and with 𝑁]tu = 20 and 𝑁]tu = 100 for DMFLive-516 

III. It may be seen that for both NP values, the DMFLive-I gives very poor estimates of the DMFs. 517 

On the other hand, the DMFLive-II model only requires NP=1000 (corresponding to 1.43*105 518 

evaluations for 143 hours) to provide fairly good results, while the DMFLive-III performs well 519 

when	𝑁]tu = 100. The results of DMFLive-II (NP=5000) and DMFLive-III (𝑁]tu = 100) give 520 

similar to the results of DMFLive-I running at NP=25,000 (corresponding to total evaluations of 521 

3.575*106). This means the computation can be reduced by approximately a factor of five times. 522 

Figure 9 shows the DMF 1 uncertainty ranges from 25 to 49 hours of the three models DMFLive 523 

I, II and III computed by FOA method and by variance of the particles Eq. (16). As can be seen 524 

from Figures 9.a and c, due to particle impoverishment, the uncertainty computed by particle 525 

variance, represented by the dashed lines, is merged into a single line at almost all of the time 526 
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steps. The uncertainty in Figure 9.b computed by this method is wide due to the incorporation of 527 

the forecasting nodal heads into the likelihood function. 528 

 529 
On the other hand, the uncertainties by FOA method, which are directly computed from the 530 

sensitivity matrix and the measurement errors, show consistent ranges in both cases. Given good 531 

estimates of the demand multipliers (as in Figures 9.b and c) these ranges can cover the actual 532 

values most of the time. 533 

Effect of the locations of measurements on the quantification of demand uncertainty 534 

As discussed in a number of studies such as in Piller (1995) and Do et al. (2016), the locations of 535 

the measurements have a strong impact on the results of the demand estimation models. 536 

Furthermore, the selection of measurement locations also affects the confidence intervals of the 537 

estimation outputs. 538 

From the mathematical point of view, the uncertainty of estimated demands depends on the 539 

sensitivity of the flows/heads at measurement locations in relation to the change in the water nodal 540 

demands. This sensitivity is represented by the sensitivity matrix J (Eq. (18)), which is, in this case 541 

study, the Jacobian matrix of the heads with respect to the demand multipliers. The sensitivity of 542 

the heads with respect to the change of the demand multipliers depends on two factors: (1) the 543 

position of the nodes in the network and (2) the base demands at the nodes. In fact, the nodes close 544 

to fixed-head nodes (tanks or reservoirs) are less sensitive than the ones far from the fixed-head 545 

nodes. This is because of a change in nodal demands will result in a smaller change in the pressures 546 

of the closer nodes than the farther nodes. In a similar way, small base demands in the same pattern 547 

will result in small friction losses and consequently small changes in pressures. Therefore, nodes 548 

selected in these regions may cause large uncertainty in demand multiplier estimation. The 549 

sensitivity matrix takes into account these two factors. Small values in the sensitivity matrix values 550 
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mean that the nodes are less sensitive to the demands and the estimation might have large 551 

uncertainty. Therefore, the uncertainty of the estimated DMFs can be reduced by selecting the 552 

more sensitive locations in the network.  553 

Let us conduct an additional test to evaluate the effect of the measurement locations on the 554 

uncertainty of the estimated demand multipliers, for example the uncertainty of the estimated DMF 555 

4. For this test, the locations of measurements P7 (with the base demand of 𝐷vw = 0.50 L/s) and P9 556 

(𝐷xw = 0.59 L/s) are relocated to P7A (𝐷vuw  = 1.33 L/s) and P9A (𝐷xuw  = 1.13 L/s). The DMFLive 557 

model was implemented with the same conditions and the other measurement locations are fixed 558 

at the same places as the original test. 559 

Figure 10 shows the sensitivity matrixes J0 (for the original test) and JA
0 (for the modified test) 560 

corresponding to a set of estimated values DMFs = [0.46; 0.54; 0.65; 0.47; 0.62]  561 

It is seen that, for this network, the heads at measurement locations are only sensitive to the change 562 

of the DMF that they belong to. For example, the variation in the DMF 4 pattern only affects the 563 

sensitivity of the heads at measurement locations P7 and P9 (for original test) and at measurement 564 

locations P7A and P9A (for the modified test). The non-zero values in the sensitivity matrices, 565 

therefore, correspond to the measurement locations. For the sensitivity of the heads, the new 566 

locations P7A ( yz
y{|}~

= 5.31) and P9A ( yz
y{|}~

= 11.76) are considerably more sensitive than the 567 

locations P7 ( yz
y{|}~

= 2.59) and P9 ( yz
y{|}~

= 2.55). As a result, the confidence intervals of the 568 

estimated DMF 4 for the modified test, as shown in Figure 11, are much narrower than the 569 

confidence intervals of the estimated DMF 4 for the original test presented in Figure 7.d. Note that 570 

in this network case study, the demand patterns are well geographically distributed. The heads at 571 

measurement locations are, therefore, affected by independent demand patterns, which results in a 572 

narrow uncertainty range for the estimate. For non-geographically distributed DMF networks, the 573 
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sensitivity of the heads at measurement locations are required to be accounted and accumulated 574 

for all the related DMFs. This might cause much larger uncertainty and likewise bring difficulty 575 

for the estimation of the demand multipliers, as has been addressed in Sanz and Pérez (2014).  576 

The relocation of the pressure measurements also improves the estimation of DMF 4, with a RMSE 577 

= 0.028 for the modified test, compared to a RMSE =0.036 of the original test. The placement of 578 

the two new measurement sites also causes a slight difference in the results of other estimated 579 

DMFs due to the change in the particle weights. However, the results of the four remaining DMFs 580 

are still very good and similar to the estimated values of the original test. 581 

To sum up, the uncertainty of estimated demand multipliers caused by the errors of measurement 582 

devices is influenced by the measurement locations. It is suggested to choose the locations that are 583 

more sensitive to the demand multipliers (see Do et al. (2016) for an example of optimal 584 

measurement location). However, it has also been shown that the DMFLive model can be used to 585 

estimate the demand multipliers even when the measurement devices are located at some less 586 

sensitive places. The uncertainty of the estimated demand multipliers can be used to identify which 587 

measurement locations need to be improved. This is another advantage of the DMFLive model. 588 

Conclusions and recommendations 589 

Real-time demand estimation under uncertainties is exceptionally difficult due to the unpredictable 590 

stochastic behavior of the water demand as well as the nonlinearities of hydraulic systems. In this 591 

paper, the DMFLive model framework has been introduced, which can be used to estimate the 592 

demand multipliers of a WDS in near real-time. A predictor-corrector approach has been adopted 593 

and solved by a particle filter method. A nonlinear demand prediction model is applied to predict 594 

water demand multipliers at each time step, while the online pressure observations are used to 595 

correct the prediction. Output uncertainty caused by the measurement errors has also been 596 
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quantified by the first-order approximation formula. The performance of the DMFLive model is 597 

evaluated by two WDS case studies. The results showed that the nonlinear demand prediction 598 

model combined with the particle filter method used in the paper are well suited for the near real-599 

time demand estimation problem.  600 

Within the first case study, the benefits of having additional information about the tank level of 601 

the next time step have been explored. If the estimation of the demand multipliers can be delayed 602 

one time step, the tank level at the beginning of the next time step can be used by the model to 603 

improve the estimation of the total volume of water used.  604 

Within the second case study, three versions of the DMFLive model were developed to be used in 605 

large networks with multiple demand patterns. All versions provided good results, showing that 606 

the models are capable to be used in large networks. Finally, the effect of the measurement 607 

locations on the uncertainty of the estimated demand multipliers has been explored. Results 608 

showed that the uncertainty can be used to identify which measurement locations need to be 609 

improved. Future work involves considering adding additional uncertainties into the DMFLive 610 

model. Moreover, testing the model for non-geographically distributed demand networks is also 611 

necessary to show its capability when applied in practice. 612 

 613 

Appendix 614 

The problem of demand calibration involves finding the demands of the network hydraulic model 615 

to best fit the data set. Consider the nonlinear regression equation: 616 

𝑦3|WXY = 𝑦3 𝑥 + 𝜀3,				𝜀3~𝑁(0, 𝜎3) (A1) 
where x is the nd by 1 vector of parameters to calibrate (the demand multiplier factors that depend 617 

on time); yi(x) is the scalar multivariate function of predictions from the network hydraulic model, 618 

given the parameter x; 𝜀3 is the residual between model prediction and observation, which is 619 
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assumed to be Gaussian with mean of zero and standard deviation of	𝜎3; 𝑦3|WXY	is the ith 620 

measurement site in the data set. 621 

The demand calibration can be formulated as a box-constrained Least Squares problem that 622 

minimizes the differentiable criterion at each time step: 623 

𝑓 𝑥 =
1
2

𝑦3 𝑥 − 𝑦3|WXY

𝜎3

I

=
1
2 𝜀PI

>

37'

>

37'

 

𝑠. 𝑡	𝑥>3_ ≤ 𝑥 ≤ 𝑥>XM 

(A2) 

where m is the number of measurement sites, 𝜀P	is the reduced residual, which is the residual 624 

divided by the corresponding standard deviation, 𝜀P~𝑁 0,1 . 625 

The gradient of f at x0 is: 626 

∇𝑓w = 𝐽 𝑥w g𝑊(𝑦 𝑥w − 𝑦|WXY) (A3) 
where W is the weight matrix where the diagonal elements are the reciprocals of the variances of 627 

measurement errors; 𝐽 𝑥w g = 𝜕M𝑦 𝑥w g is the transposed Jacobian matrix of the prediction 628 

function at x = x0. 629 

The Hessian approximation takes the simple form of the symmetrical, positive semi-definite 630 

matrix:  631 

𝐻w = 𝐽(𝑥w)g𝑊𝐽(𝑥w) (A4) 
It is essential for the Jacobian to be full rank of the size of x, so that H0 is invertible and a definite 632 

matrix.  633 

An approximation of function f to minimize Eq. (A2) by a quadratic function at x0 leads to the 634 

approximation of x: 635 

𝑥 = 𝑥w − (𝐻w)&'∇𝑓w (A5) 
By replacing Eq. (A2) and Eq. (A3) into Eq. (A5), the approximation of x can be expressed as:  636 

𝑥 = 𝑥w − 𝐽(𝑥w)g𝑊𝐽(𝑥w) &'𝐽 𝑥w g𝑊(𝑦 𝑥w − 𝑦|WXY)  
Using Eq. (A1): 637 
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𝑥(𝜀) = 𝑥w + 𝐽(𝑥w)g𝑊𝐽(𝑥w) &'𝐽 𝑥w g𝑊𝜀 (A6) 
The influence of the measurement errors with regards to the parameter estimates, therefore, can be 638 

obtained at the first-order of Eq. (A6): 639 

∆𝑥 = (𝐽(𝑥w)g𝑊𝐽(𝑥w))&'𝐽(𝑥w)g𝑊𝜀 = (𝑊
'
I𝐽(𝑥w))n𝑊

'
I𝜀 = (𝑊

'
I𝐽(𝑥w))n𝜀P (A7) 

The uncertainty in term of confidence limits can be expressed as: 640 

- For 99% confidence intervals ( 𝜀3 ≤ 2.58𝜎3): 641 

∆𝑥 ≤ 2.58 𝐽 𝑥w g𝑊𝐽 𝑥w &'𝐽 𝑥w g𝑊
'
I = 2.58 (𝑊

'
I𝐽(𝑥w))n  

∆𝑥3 ≤ 2.58 𝑆3<>
<7' , with 𝑆 = (𝑊

R
p𝐽)n 

(A8) 

- For 95% confidence intervals ( 𝜀3 ≤ 1.96𝜎3): 642 

∆𝑥 ≤ 1.96 (𝑊
'
I𝐽(𝑥w))n  

∆𝑥3 ≤ 1.96 𝑆3<>
<7' , with 𝑆 = (𝑊

R
p𝐽)n 

(A9) 

 643 
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Table 1: Coefficient of determination (R2) and root mean squared error (RMSE) of demand estimates corresponding to different 776 
parameter values of the demand prediction model for case study 1 777 

No Auto-regression coefficient 
(f) 

Variance of demand residual 
 (sh

2) R2 RMSE 

1  0.04 0.465 0.198 
2 0.3 0.25 0.986 0.030 
3  0.64 0.983 0.033 
4  0.04 0.528 0.189 
5 0.5 0.25 0.986 0.030 
6  0.64 0.987 0.029 
7  0.04 0.982 0.033 
8 0.7 0.25 0.988 0.028 
9  0.64 0.986 0.031 
10  0.04 0.987 0.029 
11 0.9 0.25 0.986 0.031 
12  0.64 0.985 0.031 

*Bold – Best estimated result 778 

Table 2: Actual and estimated total volume of water usage during calculated period  779 

Cases 
Total Difference % Difference 

(m3/day) (m3/day) (%) 
Actual daily water usage 5989.25   
Estimated water usage with DMFLive 5942.43 46.81 0.78 
Estimated water usage with DMF-WTLive 6007.31 18.07 0.30 

 780 
Table 3: Performance of DMFLive model with SR (I), modified likelihood function (II) and SRGA (III) 781 

Model type DMFLive-I DMFLive-II DMFLive-III (NGen=50) 

No. Particles NP=1000 NP=5000 NP=1000 NP=5000 NP
GA=20 NP

GA=100 

No. Eval. 1.43* 105 7.15*105 1.43* 105 7.15* 105 1.08*105 5.43*105 

RMSEDMF1 0.386 0.405 0.050 0.027 0.107 0.030 

RMSEDMF2 0.365 0.422 0.026 0.021 0.067 0.025 

RMSEDMF3 0.416 0.237 0.029 0.027 0.068 0.023 

RMSEDMF4 0.385 0.229 0.043 0.038 0.086 0.032 

RMSEDMF5 0.366 0.246 0.074 0.049 0.190 0.050 
 782 
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