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Let K be a real abelian extension of Q. Let p be a prime number, S the set of p-places of K and GK,S the Galois group of the maximal S ∪{∞}-ramified pro-p-extension of K (i.e., unramified outside p and ∞). We revisit the problem of annihilation of the p-torsion group TK := tor Zp G ab K,S initiated by us and Oriat then systematized in our paper on the construction of p-adic L-functions in which we obtained a canonical ideal annihilator of TK in full generality (1978)(1979)(1980)(1981). Afterwards (1992Afterwards ( -2014) some annihilators, using cyclotomic units, were proposed by Solomon, Belliard-Nguyen Quang Do, Nguyen Quang Do-Nicolas, All, Belliard-Martin. In this text, we improve our original papers and show that, in general, the Solomon elements are not optimal and/or partly degenerated. We obtain, whatever K and p, an universal non-degenerated annihilator in terms of p-adic logarithms of cyclotomic numbers related to Lp-functions at s = 1 of primitive characters of K (Theorem 9.4). Some computations are given with PARI programs; the case p = 2 is analyzed and illustrated in degrees 2, 3, 4 to test a conjecture.

Let K/Q be a real abelian extension of Galois group G K . Let p be a prime number, S the set of p-places of K, and G K,S the Galois group of the maximal S-ramified in the ordinary sense (i.e., unramified outside p and ∞, whence totally real if p = 2) pro-p-extension of K.

We revisit the classical problem of annihilation of the so-called Z p [G K ]module T K := tor Zp G ab K,S , as dual of H 2 (G K,S , Z p (0)). This was initiated by us [12] (1979) and improved by Oriat [22] (1981). Then in our paper [13] (1978/79) on the construction of p-adic L-functions (via an "arithmetic Mellin transform" from the "Spiegel involution" of suitable Stickelberger elements) we obtained incidentally a canonical ideal annihilator A K of T K in full generality, but our purpose, contrary to the present work, was the semi-simple case with p-adic characters and the annihilation of the isotopic components; this aspect has then been outdated by the "principal theorems" of Ribet-Mazur-Wiles-Kolyvagin-Greither (refer for instance to the bibliography of [START_REF] Greither | Class groups of abelian fields, and the Main Conjecture[END_REF]), and many other contributions.

Afterwards some annihilators, using cyclotomic units, were proposed by Solomon [START_REF] Solomon | On a construction of p-units in abelian fields[END_REF] (1992), Belliard-Nguyen Quang Do [5] (2005), Nguyen Quang Do-Nicolas [START_REF] Nguyen | Nombres de Weil, sommes de Gauss et annulateurs galoisiens[END_REF] (2011), All [1] (2013), (2014), using techniques of Sinnott, Rubin, Thaine, Coleman, from Iwasawa's theory.

In this text, we translate into english some parts of the above 1978-1981's papers, written in french with tedious classical techniques, then we show that, in general, the Solomon elements Ψ K are often degenerated regarding the annihilator A K , even for cyclic fields, and explain the origin of this gap due to trivialization of some Euler factors.

We obtain, whatever K and p (Theorem 9.4), an universal non-degenerated annihilator A K , in terms of p-adic logarithms of cyclotomic numbers, perhaps the best possible regarding these classical methods, but probably too general to cover all the possible Galois structures of T K , which raises the question of the existence of a better theorem than Stickelberger's one. Indeed, if the semi-simple case is now completely solved, the non-semi-simple case is far to be known. Numerical experiments show in this case that the results are far to give the precise Galois structure of T K (e.g., in direction of its Fitting ideal), moreover, it seems to us that many (all ?) papers are based on the classical reasoning with Kummer's theory and Leopoldt's Spiegel involution applied to Stickelberger's elements, even translated into Iwasawa's theory, without practical analysis of the results (e.g., with extensive numerical illustrations). So, there is some difficulties to compare these various contributions.

Thus, we perform some computations given with PARI programs [START_REF]PARI/GP, version 2.9.0[END_REF] to analyse the quality of such annihilators, which is in general not addressed by papers dealing with Iwasawa's theory. We consider in a large part the case p = 2, illustrated in degrees 2, 3, 4 to test the Conjecture 5.7.

Notations and reminders on p-ramification theory

Let K be a real abelian number field of degree d, of Galois group G K , and let p ≥ 2 be a prime number; we denote by S the set of prime ideals of K dividing p. Let G K,S be the Galois group of the maximal S ∪ {∞}-ramified pro-p-extension of K and let H pr K be the maximal abelian S ∪ {∞}-ramified pro-p-extension of K. To simplify, we put G ab K,S =: G K and (e.g., [8, Chapter III, § (c)]):

T K := tor Zp (G K ) = Gal(H pr K /K ∞ ) where K ∞ = KQ ∞ is the cyclotomic Z p -extension of K; so:

G K Z p T K
since, in the abelian case, Leopoldt's conjecture is true.

We denote by F an extension of K such that H pr K is the direct compositum of K ∞ and F over K, then by C ∞ K the subgroup of the p-class group C K corresponding, by class field theory, to Gal(H K /K ∞ ∩ H K ), where H K is the p-Hilbert class field. We have (where ∼ means "equality up to a p-adic unit"):

(2.1) # C ∞ K ∼ # C K [K∞ ∩ HK : K] ∼ # C K • [K ∩ Q∞ : Q] ep • 2 # ( -1 ∩ N K/Q (UK ))
, where e p is the ramification index of p in K/Q [8,Theorem III.2.6.4], and U K is defined as follows:

For each p | p, let K p be the p-completion of K and p the corresponding prime ideal of the ring of integers of K p ; then let:

U K := u ∈ p|p K × p , u = 1 + x, x ∈ p|p p & W K := tor Zp (U K ),
the Z p -module (of Z p -rank d = [K : Q]) of principal local units at p and its torsion subgroup, respectively; by class field theory this gives in the diagram:

Gal(H pr K /H K ) U K /E K & Gal(H pr K /K ∞ H K ) tor Zp U K E K ,
where E K is the closure of the group E K of p-principal global units of K (i.e., units ε ≡ 1 (mod p|p p)):

F TK = tor Zp (GK ) C K # C ∞ K UK /EK GK H pr K K ∞ H K # RK • # WK K ∞ H K K ∞ ∩H K K Q GK
For any field k, let µ k be the group of roots of unity of k of p-power order. Then W K = p|p µ Kp . We have the following exact sequence defining W K and R K via the p-adic logarithm log ([8,Lemma III.4.2.4] or [START_REF] Gras | The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator[END_REF]Lemma 3.1 & § 5]):

(2.2) 1 → W K := W K /µ K ---→ tor Zp U K E K log ---→ tor Zp log U K log(E K ) =: R K → 0.
The group R K is called the normalized p-adic regulator of K and makes sense for any number field (see the above references in [START_REF] Gras | The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator[END_REF] for more details and the main properties of these invariants).

It is clear that the annihilation of T K mainely concerns the group R K since the p-class group is in general trivial (and so for p large enough) and because the regulator may be non-trivial with large valuations and unpredictible p (see [START_REF] Gras | Heuristics and conjectures in direction of a p-adic Brauer-Siegel theorem[END_REF] for some conjectures and [START_REF] Gras | On p-rationality of number fields[END_REF] giving programs of fast computation of the group structure of T K for any number field given by means of polynomials).

Definition 2.1. A field K is said to be p-rational if the Leopoldt conjecture is satisfied for p in K and if the torsion group T K is trivial ([14, Section III, § 2], then [8,Theorem IV.3.5], [START_REF] Gras | On p-rationality of number fields[END_REF], and bibliographies for the history and properties of p-rationality).

This has deep consequences in Galois theory over K since T K is the dual of H 2 (G K,S , Z p (0)) [START_REF] Nguyen | Sur la Zp-torsion de certains modules galoisiens[END_REF].

Kummer theory and Spiegel involution

3.1. Kummer theory. We denote by

Q n , n ≥ 0, the nth stage in Q ∞ so that [Q n : Q] = p n . Let n 0 ≥ 0 be defined by K ∩ Q ∞ =: Q n 0 .
Let n ≥ n 0 . We denote by K n the compositum KQ n and by

F n the com- positum F K n = F Q n (in other words, K = K n 0 , F = F n 0 ). Then we have the group isomorphism Gal(F n /K n ) T K for all n ≥ n 0 . Put q = p (resp. 4) if p = 2 (resp. p = 2). Let L = K(µ q ) and M = F (µ q ); then put L n := LK n for all n ≥ n 0 . Let M n := F n (µ q ) (whence L = L n 0 , M = M n 0 ). For p = 2, the degrees [L n : K n ] = [M n : F n ] are equal to a divisor δ of p -1 independent of n ≥ n 0 (δ is even since K is real). For p = 2, δ = 2.
In any case, one has, for n ≥ n 0 :

L n = K(µ qp n ).
All this is summarized by the following diagram:

Qn 0 (µq) K H pr K K ∞ Q ∞ Q n K n F n L n M n Q n 0 K F L M Q G K K = K n 0 , F = F n 0 K := K ∩ Q n 0 (µ q ) & Q n 0 (µ q ) = Q(µ qp n 0 ) (for p = 2, K = Q n 0 & δ = 2) δ|ϕ(q) T K G n G K Lemma 3.1. Let f K be the conductor of K. Then the conductor f Ln of L n (n ≥ n 0 ) is equal to l.c.m. (f K , qp n ). Thus for n large enough (explicit), f Ln = qp n f , with p f . If p f K , then f Ln = qp n f K for all n ≥ n 0 + e.
Proof. A classical formula (see, e.g., [8,Proposition II.4.1.1]).

Lemma 3.2. Let p e , e ≥ 0, be the exponent of T K . Then, for all n ≥ n 0 + e, the restriction

T K -→ Gal(F n /K n ) is an isomorphism of G K -modules and T K Gal(M n /L n ).
Proof. The abelian group

G K := Gal(H pr K /K) is normal in Gal(H pr K /Q), then (G K ) p n-n 0 is normal; but (G K ) p n-n 0 fixes F n which is Galois over Q. In other words, G K , as well as Gal(K n /Q) or Gal(K ∞ /Q), operate by conjugation in the same way since G K is abelian; if F is clearly non-unique, then F n 0 +e is canonical, being the fixed fiel of G K p e . Then Gal(M n /L n ) Gal(F n /K n ) is trivialy an somorphism of G K -modules.
The use of the extension F is not strictly necessary but clarifies the reasoning which needs to work at any level n ≥ n 0 + e to preserve Galois structures. The extension M n /L n (of exponent p e ) is a Kummer extension for the "exponent" qp n since L n contains the group µ qp n and since n ≥ n 0 + e.

Let G n := Gal(L n /Q) and let, for n ≥ n 0 + e,

Rad n := {w ∈ L × n , qp n √ w ∈ M n }
be the radical of M n /L n . Then we have the group isomorphism:

Rad n /L ×qp n n Gal(M n /L n ).
In some sense, the group Rad n /L ×qp n n does not depend on n ≥ n 0 + e since the canonical isomorphism Gal(M n+h /L n+h ) Gal(M n /L n ) gives

L n+h ( qp n √ Rad n ) = M n+h ; the map Rad n /L ×qp n n p h -→ Rad n+h /L ×qp n+h n+h
is an isomorphism for any h ≥ 0. In other words, as soon as n ≥ n 0 + e, we have:

Rad n ⊆ L ×qp n-e n & Rad n+h = Rad p h n • L ×qp n+h n+h .
3.2. Spiegel involution. The structures of (Z/qp n Z)[G n ]-modules of the Galois group Gal(M n /L n ) and Rad n /L ×qp n n are related via the "Spiegel involution" defined as follows: let ω n : G n -→ Z/qp n Z be the character of Teichmüller of level n defined by:

ζ s = ζ ωn(s) , for all s ∈ G n and all ζ ∈ µ qp n .
The Spiegel involution is the involution of (Z/qp n Z)[G n ] defined by:

x := s∈Gn a s • s → x * := s∈Gn a s • ω n (s) • s -1 . Thus, if s is the Artin symbol Ln a , then Ln a * ≡ a • Ln a -1 (mod qp n ).
For the convenience of the reader we prove once again the very classical:

Lemma 3.3. Let n ≥ n 0 +e where p n 0 = [K ∩Q ∞ : Q] and p e is the exponent of T K . The annihilators A n of Gal(M n /L n ) (thus of T K ) in (Z/qp n Z)[G n ]
are the images of the annihilators S n of Rad n /L ×qp n n by the Spiegel involution and inversely. An annihilator A n of T K only depends on its projection

A K,n in (Z/qp n Z)[G K ]. Proof. To simplify, put Rad := Rad n /L ×qp n n , T := Gal(M n /L n ) T K . Let: λ : Rad × T ---→ µ qp n (w, τ ) -→ qp n √ w τ -1 ;
then λ is a non-degenerated Z/qp n Z-bilinear form such that:

λ(w s , τ ) = λ(w, τ s * ), for all s ∈ G n ,
where s * = ω n (s) • s -1 (see e.g., [8,Corollary I.6.2.1]).

Let S n = s∈Gn a s • s ∈ (Z/qp n Z)[G n ];
then, for all (w, τ ) ∈ Rad × T we have:

λ(w Sn , τ ) = s∈Gn λ(w s , τ ) as = s∈Gn λ(w, τ s * ) as = λ(w, τ S * n ).
So, if S n annihilates Rad, then λ(w, τ S * n ) = 1 for all w & τ ; since λ is non-degenerated, τ S * n = 1 for all τ ∈ T . Whence the annihilation of T by A n = S * n (without any assumption on K nor on p), then by the projection A K,n since Gal(L n /K) acts trivially on Gal(M n /L n ).

Remarks 3.4. (i) As we have mention, the radical Rad n does not depend realy on the field L n for n ≥ n 0 + e; so, if we consider the radical of the maximal p-ramified abelian p-extension of L n , of exponent qp n :

Rad n := {w ∈ L × n , L n ( qp n √ w )/L n is p-ramified},
we obtain a group whose p-rank tends to infinity with n; this is due mainely to the Z p -rank of the compositum of the Z p -extensions of L n (totally imaginary) and from the less known T Ln which contains T Kn . But since T K is annihilated by 1 -s ∞ , Rad n /L ×qp n n is annihilated by (1 -s ∞ ) * = 1 + s ∞ which means that only the "minus part" of Rad n /L ×qp n n is needed, which eliminates the huge "plus" part containing in particular all the units. Thus Rad n is essentially given by the "relative" S n -units of L n (S n being the set of p-places of L n ) and generators of some "relative" p-classes of L n . (ii) In the case p = 2, let T res

K := tor Z 2 G res ab K,S
, where G res K,S is the Galois group of the maximal abelian S-ramified (i.e., unramified outside 2 but possibly complexified) pro-2-extension of K and let Rad res n the corresponding radical {w ∈ L × n ,

4•2 n √ w ∈ M res n },
where M res n is analogous to M n for the restricted sense. We observe that in the restricted sense, we have the exact sequence [8,Theorem III.4.1.5] 

0 → (Z/2Z) d -→ T res K -→ T K → 1
, then a dual exact sequence with radicals. As in [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF], one may consider more general ray class fields and find results of annihilation with suitable Stickelberger or Solomon elements.

Stickelberger elements and cyclotomic numbers

4.1. General definitions. Let f ≥ 1 be any modulus and let Q f be the corresponding cyclotomic field Q(µ f ). 1 Let L be a subfield of Q f . (i) We define (where all Artin symbols are taken over Q):

S Q f := - f a=1 a f - 1 2 • Q f a -1
, and the restriction:

S L := N Q f /L (S Q f ) := - f a=1 a f - 1 2 • L a -1
to L of S Q f , where a runs trough the integers a ∈ [1, f ] prime to f . In this case, one must precise the relation between f and the conductor f L of L. We know that the properties of annihilation of ideal classes need to multiply S L by an element of the ideal annihilator of the group µ f (or µ 2f ), which is generated by f (or 2 f ) and the multiplicators:

δ c := 1 -c • Q f c -1
, for c odd, prime to f . This shall give integral elements in the group algebra. (ii) Then we define in the same way:

η Q f := 1 -ζ f & η L := N Q f /L (1 -ζ f ), f = 1,
where ζ f is a primitive f th root of unity for which we assume the coherent definitions

ζ m f = ζ m if f = m • m. It is well known that if f is not a prime power, then η f is a unit, otherwise, N Q f /Q (1 -ζ f ) = if f = r , ≥ 2 prime, r ≥ 1.
1 Such modulus are conductors of the corresponding cyclotomic fields, except for an even integer not divisible by 4; but this point of view is essential to establish the functional properties of Stickelberger elements and cyclotomic numbers. So, if f is odd, we distinguish, by abuse, the notations Q f and Q 2f despite their equality. 

f -a f - 1 2 = - a f - 1 2 , S Q f = S Q f • (1 -s ∞ ) and S L = S L •(1-s ∞ ), where s ∞ := Q f -1
is the complex conjugation, and where:

S Q f := - f /2 a=1 a f - 1 2 • Q f a -1 & S L := - f /2 a=1 a f - 1 2 • L a -1 . 4.2.
Norms of Stickelberger elements and cyclotomic numbers. Let f ≥ 1 and m | f be any modulus and let Q f and Q m ⊆ Q f be the corresponding cyclotomic fields. Let N Q f /Q m be the restriction map:

Q[Gal(Q f /Q)] -→ Q[Gal(Q m /Q)],
or the usual arithmetic norm in Q f /Q m . Consider as above:

S Q f := - f a=1 a f - 1 2 • Q f a -1 & η Q f := 1 -ζ f (f = 1).
We have, respectively:

N Q f /Q m (S Q f ) = |f, m 1 - Q m -1 • S Q m , (4.1) N Q f /Q m (η Q f ) = η Q m |f, m 1-Q m -1 if m = 1. (4.2)
As we have explained in the previous footnote, if m is odd, then we have:

N Q 2m /Q m (S Q 2m ) = 1 -Q m 2 -1 • S Q m , N Q 2m /Q m (η Q 2m ) = η 1-Q m 2 -1 Q m ,
where the "norms" N Q 2m /Q m are of course the identity. For instance one verifies immediately that

S Q 6 = 1 3 (1 -s ∞ ) and S Q 3 = 1 6 (1 -s ∞ ), but since 2 is inert in Q 3 /Q, 1-Q 3 2 -1 = 1-s ∞ and one must compute (1-s ∞ )S Q 3 = 1 6 (1 -s ∞ ) 2 = 1 3 (1 -s ∞ ) as expected. We have S Q 2 = 0 and S Q 1 = -1 2 . If L (imaginary or real), of conductor f , is an extension of k, of conductor m | f , let S L := N Q f /L (S Q f ) and η L := N Q f /L (η Q f ), then: N L/k (S L ) = |f, m 1 - k -1 • S k , N L/k (S L ) ≡ |f, m 1 - k -1 • S k (mod (1 + s ∞ ) • Q[G k ]), N L/k (η L ) = (η k ) |f, m 1-k -1 if m = 1 (i.e., k = Q). If f = r , prime, r ≥ 1, then N Q f /Q (η Q f ) = , otherwise N Q f /Q (η Q f ) = 1.
This implies that N L/k (S L ) = 0 (resp. N L/k (η L ) = 1) as soon as there exists a prime | f , m, totally split in k. In particular, if k is real, the formula is valid for the infinite place and N L/k (S L ) = 0 (of course, if L = Q is real, S L = 0). For the classical proofs, we consider by induction the case f = • m, with prime and examine the two cases | m and m; the case of Stickelberger elements been crucial for our purpose, we give again a proof (a similar reasoning will be detailed for the Theorem 7.2).

To simplify, put S Q f =: S f , S Q m =: S m , and consider:

S f = - f a=1 a f - 1 2 • Q f a -1 , for f = • m, m, where a runs trough the integers a ∈ [1, f ] prime to f . Put a = b + λ • m, b ∈ [1, m], λ ∈ [0, -1]; since a must be prime to f , b is automatically prime to m but we must exclude λ * b ∈ [0, -1] such that: b + λ * b • m = b • , b ∈ [1, m]
(b is necessarily prime to m). We then have:

N Q f /Q m (S f ) = - f a=1 a f - 1 2 • Q m a -1 = - b, λ =λ * b b + λ m m - 1 2 • Q m b -1 = - b Q m b -1 λ =λ * b b m + λ - 1 2 = - b Q m b -1 -1 b m - -1 2 - b Q m b -1 1 ( -1) 2 -λ * b = -1 - 1 b Q m b -1 b m + 1 b Q m b -1 λ * b .
Since the correspondence b → b is bijective on the set of elements prime to m in [1, m], one has, with

λ * b = b • -b m and Q m b = Q m b Q m : 1 b Q m b -1 λ * b = b Q m b -1 b m - 1 b Q m b -1 b m = Q m -1 b Q m b -1 b m - 1 b Q m b -1 b m = Q m -1 - 1 • b Q m b -1 b m .
Thus we obtain:

N Q f /Q m (S f ) = -1 - 1 b Q m b -1 b m + Q m -1 - 1 • b Q m b -1 b m = -1 - Q m -1 b Q m b -1 b m . But 1 2 b Q m b -1 1 - Q m -1 = 0; so replacing b m by b m - 1 2
we get:

N Q f /Q m (S f ) = 1 - Q m -1 • S m .
Then it is easy to compute that if | m, any λ ∈ [0, -1] is suitable, giving:

N Q f /Q m (S f ) = S m .
The case of cyclotomic elements η f is exactly the same, replacing the additive setting by the multiplicative one.

4.3. Multiplicators of Stickelberger elements. The conductor of L n , n ≥ n 0 , is f Ln = l.c.m. (f K , qp n ) (Lemma 3.1). So in general f Ln = qp n • f with p f , except if f K is divisible
by a large power of p in which case one must take n large enough in the practical computations (write f K = qp n 0 +r f , r ≥ 0, and take n ≥ n 0 + r). In some formulas we shall abbreviate f Ln by f n . Let c be an (odd) integer, prime to f n , and let:

(4.3) S Ln (c) := 1 -c Ln c -1
• S Ln .

Then S Ln (c) ∈ Z[G n ] as we have explain; indeed, we have:

S Ln (c) = -1 fn a a Ln a -1 -ac Ln a -1 Ln c -1 + 1 -c 2 a Ln a -1
.

Let a c ∈ [1, f n ] be the unique integer such that a c • c ≡ a (mod f n ) and put a c • c = a + λ n a (c)f n , λ n a (c) ∈ Z;
then, using the bijection a → a c in the second summation and the fact that , this yields: 

S Ln (c) = -1 fn a a Ln a -1 - a a c • c Ln a c -1 Ln c -1 + 1 -c 2 a Ln a -1 = -1 fn a a -a c • c Ln a -1 + 1 -c 2 a Ln a -1 = a λ n a (c) + 1 -c 2 Ln a -1 ∈ Z[G n ]. Lemma 4.2. We have the relations λ n fn-a (c) + 1-c 2 = -λ n a (c) + 1-c 2 for all a ∈ [1, f n ] prime to f n . Then: (4.4) S Ln (c) := fn/2 a=1 λ n a (c) + 1 -c 2 Ln a -1 ∈ Z[G n ] is such that S Ln (c) = S Ln (c) • (1 -s ∞ ), whence S Ln (c) * = S Ln (c) * • (1 + s ∞ ). Proof. By definition, the integer (f n -a) c is in [1, f n ] and congruent modulo f n to (f n -a) c -1 ≡ -ac -1 ≡ -a c (mod f n ); thus (f n -a) c = f n -a c and λ n fn-a (c) = (fn -a) c c -(fn -a) fn = (fn -a c ) c -(fn -a) fn = c -1 -λ n a (c), whence λ n fn-a (c) + 1-c 2 = -λ n a (c) + 1-c
(mod (1 + s ∞ )Z[G n ]) form coherent families in lim ← - n≥n 0 +e Q[G n ] for
the "norm" since f Ln and f L n+h are divisible by the same prime numbers for all h ≥ 0.

Lemma 5.1. Let ζ ∈ µ qp n , n ≥ n 0 + e. If ζ ∈ Rad n (or Rad res n when p = 2) then ζ = 1. Proof. If ζ = 1 with L n ( qp n √ ζ) ⊆ M n (or M res n ), we would have L n ( qp n √ ζ) = L n+h , where h ≥ 1 since qp n √ ζ is of order ≥ qp n+1 and since µ p ∞ ∩ L × n = µ qp n , which is absurd because of the linear disjonction L n+h ∩ M n = L n (or L n+h ∩ M res n = L n ). Lemma 5.2. Let w 0 ∈ Rad n be real. Then w 2 0 ∈ L ×qp n n . Proof. Since K is real, we know that 1 -s ∞ annihilates the (Z/qp n Z)[G n ]- module Gal(M n /L n ), thus 1 + s ∞ annihilates Rad n /L ×qp n n and w 1+s∞ 0 = w 2 0 ∈ L ×qp n n
(this does not work for the restricted sense since the minus part of T res K is of order 2 d ). Theorem 5.3. Let p e be the exponent of T K := tor Zp G ab K,S (p-ramification in the ordinary sense). For p = 2, let 2 e res be the exponent of T res

K := tor Z 2 G res ab K,S
, where G res K,S is the Galois group of the maximal S-ramified in the restricted sense (i.e., unramified outside 2 but complexified) pro-2extension of K and let Rad res n be the corresponding radical. since k, of conductor prime to p, is strictely contained in L n of conductor qp n f for n ≥ n 0 + e; so this factor is 0 and b S Ln (c) = 1. From the principality of the ideal a S Ln (c) (Stickelberger's theorem) there exists α n ∈ L × n and a unit ε n of L n such that: (5.1) (i) Case p = 2. We deduce from the above that ε n ∈ L ×p n+1 n . We have w S Ln (c) (1-s∞) = β p n+1 n ; but β 1+s∞ n = 1 (the property is also true for p = 2 since the result is a totally positive root of unity in L + n , but the proof only works taking the square of the relation (5.1) using ε 2 n ), and there exists

(i) p > 2. For all n ≥ n 0 + e, the (Z/qp n Z)[G n ]-module Rad n /L ×qp n n is annihilated by S Ln (c). Thus, S Ln (c) * annihilates T K . (ii) p = 2,
w S Ln (c) = α qp n n • ε n . We see that ε 1+s∞ n is the qp n th power of a unit of L n : consider ε 1+s∞ n in (5.1) with the fact that S Ln (c) = S Ln (c)(1 -s ∞ ). Since the Z-rank of the groups of units of L n and L + n (the maximal real subfield of L n ) are equal, a power ε N n of ε n is a real unit; so ε 1-s∞ n is a torsion element and ε 2 n = ε 1+s∞ n ε 1-s∞ n is equal,
γ n ∈ L × n such that β n = γ 1-s∞ n
, and w S Ln (c) • γ -p n+1 n = w 0 , a real number in the radical, thus a p n+1 th power (Lemma 5.2) (as above, the proof for p = 2 only works taking once again the square of this relation to get w 2 0 ). Other proof for any p ≥ 2: since

T K is annihilated by 1 -s ∞ , Rad n /L ×qp n n is annihilated by 1 + s ∞ , thus w 1-s∞ ∈ w 2 • L ×qp n n for all w ∈ Rad n , and w S Ln (c) = w 2 S Ln (c) up to L ×qp n n .
(ii) Case p = 2 in the ordinary sense (so

L + n = K n ).
The result is obvious taking the square in the previous computations giving ε 2 n instead of ε n for the annihilation with 2 S Ln (c), then w 2 0 for the annihilation with 4 S Ln (c). (iii) Case p = 2 in the restricted sense. The proof is in fact contained in the same relation (w) = a 4•2 n • b, for all w ∈ Rad res n , where a is an ideal of L n , prime to 2, and b is a product of prime ideals p n of L n dividing 2, then the relation (5.1), n ≥ n 0 + e. 

S Ln (c) * ≡ fn a=1 λ n a (c) + 1 -c 2 a -1 Ln a (mod qp n ), which defines a coherent familly (S Ln (c) * ) n ∈ lim ← - n≥n 0 +e Z/qp n Z[G n ] of annihi- lators of the Galois groups Gal(M n /L n ) T K .
In the case p = 2, one may use equivalently S Ln (c) * with the half summation.

Since the operation of Gal(L n /K) on Gal(M n /L n ) is trivial, by restriction of S Ln (c) * to K (see Lemma 3.3), one obtains a coherent familly of annihilators of

T K denoted (A K,n (c)) n ∈ lim ← - n≥n 0 +e Z/qp n Z[G K ],
whose p-adic limit:

A K (c) := lim n→∞ A K,n (c) = lim n→∞ fn a=1 λ n a (c) + 1 -c 2 a -1 K a ∈ Z p [G K ]
is a canonical annihilator of T K that we shall link to p-adic L-functions; of course, it is sufficient to know its coefficients modulo the exponent p e of T K and in a programming point of view, the element A K,n 0 +e (c) annihilates T K , knowing that [START_REF] Gras | On p-rationality of number fields[END_REF]Program I,§ 3.2] gives the group structure of T K . ; we have:

α Ln := fn/2 a=1 a -1 Ln a + (f n -a) -1 Ln fn -a ≡ fn/2 a=1 a -1 Ln a (1 -s ∞ )(mod f n )
which annihilates T K and is such that N Ln/K (α Ln ) ≡ 0 (mod qp n ) since K is real. We shall neglect such expressions and use the symbol ≡ , where

A ≡ B (mod p n+1 ) will mean A = B + µ • p n+1 + ν • fn a=1 a -1 K a , in the group algebra Z p [G K ],
µ, ν in Z p (we put the modulus p n+1 instead of qp n to cover, subsequently, the case p = 2; moreover, p n+1 annihilates T K since n ≥ n 0 + e). By abuse, we still denote

A K (c) = lim n→∞ fn a=1 λ n a (c) a -1 K a .
Thus, we have obtained:

Theorem 5.5. Let c be any integer prime to 2p and to the conductor of K.

Assume n ≥ n 0 +e and let f n be the conductor of

L n ; for all a ∈ [1, f n ], prime to f n , let a c be the unique integer in [1, f n ] such that a c • c ≡ a (mod f n ) and put a c • c -a = λ n a (c) f n , λ n a (c) ∈ Z. Let A K,n (c) := fn a=1 λ n a (c) a -1 K a and put A K,n (c) = A K,n (c)•(1+s ∞ ) where A K,n (c) = fn/2 a=1 λ n a (c) a -1 K a . Let A K (c) := lim n→∞ fn a=1 λ n a (c) a -1 K a and put A K (c) =: A K (c) • (1 + s ∞ ). (i) For p = 2, A K (c) annihilates the Z p [G K ]-module T K .
(ii) For p = 2, the annihilation is true for

2 • A K (c) and 4 • A K (c).
In practice, when the exponent p e is known, one can use n = n 0 + e and the annihilators A K,n (c) or A K,n (c), the annihilator limit A K (c) being related to p-adic L-functions of primitive characters, thus giving the other approach than Solomon one, that we shall obtain in Theorem 9.4.

Remark 5.6. We have proved in a seminar report (1977) that for p = 2, S Ln (c) annihilates C Ln /C 0 Ln , where C Ln is the 2-class group of L n and where C 0

Ln is generated by the classes of the the invariant ideals in L n /K n . This shows that some 2-classes may give an obstruction; but Rad n is particular as we have explained in Remark 3.4. In [START_REF] Greither | Class groups of abelian fields, and the Main Conjecture[END_REF], Greither gives suitable statements about Stickelberger's theorem for p = 2, using the main theorems of Iwasawa's theory about the orders 1 2 L 2 (1, χ) of the isotypic components. From this, as well as some numerical experiments, and the roles of ε n and w 0 in the above reasonings, we may propose the following conjecture: Conjecture 5.7. Let p = 2 and let K be a real abelian number field linearly disjoint from the cyclotomic Z 2 -extension.

Put A K (c) = A K (c) • (1 + s ∞ ) (see formula of Theorem 5.5). Then A K (c) annihilates T K . If there exists, in the class of A K (c) modulo σ∈G K σ, an element of the form 2 • A K (c), A K (c) ∈ Z p [G K ], one may ask if A K (c) does annihilate T K .
We shall give a counterexample for the annihilation of T K by A K (c) (see § 6.5.5), but we ignore if this may be true under some assumptions.

5.3.

Experiments for cyclic cubic fields with p ≡ 1 (mod 3). To simplify we suppose f K prime. The first part of the program gives a defining polynomial. A second part computes the p-adic valuation of # T K using [10, Program I, § 3.2] and gives print(f," ",P," vptor=",vptor," T_K=",L," A= ",L0," ",L1," ",L2," ",nj)))))}

A K (c) = Λ 0 + Λ 1 σ -1 + Λ 2 σ -2 modulo
Let's give a partial table for p = 7 and 13, in which vptor For f = 33199, P = x 3 + x 2 -11066 x + 238541, T K Z/7Z × Z/7Z, h = 14, and the annihilator is equivalent, modulo 1

:= v p ( # T K ) (examples limited to vptor ≥ 2), and nj = v p N Q(j)/Q (Λ 0 + Λ 1 • j + Λ 2 •
+ σ + σ 2 , to A = σ -2. For f = 20857, P = x 3 + x 2 -6952 x + 210115, T K Z/7 2 Z × Z/7 2 Z, h = 1,
and the annihilator is equivalent to A = 7 2 (σ -3) where σ -3 is invertible modulo 7.

For f = 1381, T K Z/7 3 Z × Z/7Z, h = 1, A = 1738 + 2186 σ + 2361 σ 2 is equivalent to 7 • (448 + 623 σ) and 448 + 623 σ operates on T 7 K Z/7 2 Z as σ -18 modulo 7 2 where 18 is of order 3 modulo 7 2 as expected. For f = 39679, T K Z/7 3 Z × Z/7Z × Z/7Z, h = 7, and one finds the annihilator A = 7 2 (σ -4) where σ -4 is not invertible (N Q(j)/Q (j -4) = 21).

For p = 13, the same program gives the following similar results: 

6.

Experiments and heuristics about the case p = 2 Conjecture 5.7 gives various possibilities of annihilation, depending on the choice of A K,n (c), A K,n (c) or else, and of the degree of K/Q, odd, even, or a 2th power. We shall give some illustrations with quadratic, quartic and cubic fields.

6.1. Quadratic fields. Although the order of T K is known and given by

1 2 L 2 (1, χ) (for K = Q( √ 2 
)), we give the computations for the quadratic fields

K of conductor f ≥ 5 with A K,n (c) (a ∈ [1, f n /2]) instead of A K,n (c)
to test the conjecture; the computation of the Artin symbols is easily given by PARI with kronecker(f, a) = ±1. The modulus f n = l.c.m. (f K , 4 • 2 n ) is computed exactely and we take n = e + 2. From the annihilator A = a 0 + a 1 • σ (in (L 0 , L 1 )), we deduce, modulo the norm, an equivalent annihilator denoted by abuse A = a 1 -a 0 ∈ Z. One finds A ≡ 2• # T K (mod 2 2+e ) for all f = 8 (only case with K ∩Q ∞ = Q) in this interval; then the class group is given (be careful to take nt large enought for the computation of the structure of T K ): {p=2;nt=18;bf=5;Bf=10^4;for(f=bf,Bf,v=valuation(f,2);M=f/2^v; if(core(M)!=M,next);if((v==1||v>3)||(v==0 & Mod(M,4)!=1)|| (v==2 & Mod(M,4)==1),next);P=x^2-f;K=bnfinit(P,1);Kpn=bnrinit(K,p^nt); C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); h=component (component(component(K,8),1),2);L=List;ex=0; i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1); if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val); listinsert(L,p^val,1)));Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);tor=p^vptor;S0=0;S1=0;w=valuation(f,p); pN=p^2*p^ex;fn=pN*f/2^w;if(ex==0 & w==3,fn=p*fn); for(cc=2,10^2,if(gcd(cc,p*f)!=1 || kronecker(f,cc)!=-1,next);c=cc;break); for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)^-1); lambda=(asurc*c-a)/fn;u=Mod(lambda*a^-1,pN); s=kronecker(f,a);if(s==1,S0=S0+u);if(s==-1,S1=S1+u)); L0=lift(S0);L1=lift(S1);A=L1-L0;if(A!=0,A=p^valuation(A,p)); print(f," P=",P," ",L0," ",L1," A=",A," tor=",tor," T_K=",L," Cl_K=",h))} f_K=8

P=x^2-8 P=x^2-1164 (12,4) A'=8 tor=4 T_K= [START_REF] Belliard | Annihilation of real classes[END_REF] Cl_K=[4] (...) f_K=1185 P=x^2-1185 (1640,1640) A'=0 tor=1024 T_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF]512] Cl_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f_K=1189 P=x^2-1189 [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF]6) A'=4 tor=2 T_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] Cl_K=[2] (...) f_K=1196 P=x^2-1196 [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] Nickel | Annihilating wild kernels[END_REF] A'=16 tor=8 T_K= [8] Cl_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f_K=1201 P=x^2-1201 (7752,3656) A'=4096 tor=2048 T_K= [2048] Cl_K=[] (...) f_K=1209 P=x^2-1209 [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF] A'=0 tor=4 T_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] Cl_K=[2] (...) f_K=1217 P=x^2-1217 [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF]48) A'=32 tor=16 T_K= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] Cl_K=[] f_K=1221 P=x^2-1221 (8,8) A'=0 tor=8 T_K= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF] Cl_K= [START_REF] Belliard | Annihilation of real classes[END_REF] (...) f_K=1596 P=x^2-1596 [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF][START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] A'=0 tor=16 T_K= [8,[START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] Cl_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] Remarks 6.1. (i) For f = 1160, one sees that

(1,0) A'=1 tor=1 T_K=[] Cl_K=[] (...) f_K=508 P=x^2-508 (223,479) A'=256 tor=128 T_K=[128] Cl_K=[] (...) f_K=1160 P=x^2-1160 (2,6) A'=4 tor=2 T_K=[2] Cl_K=[2,2] f_K=1164
# C ∞ K = 1 2 # C K (indeed, -1 is norm in K/Q, cf. (2.1)).
(ii) It seems that for all the conductors, A is of the form 2 h (1 + σ) up to a 2-adic unit, where h ≥ 0 takes any value and can exceed the exponent. (iii) For f prime, the annihilator of T K , given by the Theorem 9.4, or by any Solomon's type element, is related to its order:

1 2 L 2 (1, χ) ∼ 1 2 f a=1 χ(a) • log(1 -ζ a f ) = 1 2 • log(η K ) -log(η σ K ) , where η K = N Q f /K (1 -ζ f ) (here the character χ is primitive modulo f since K = k χ ).
The following program verifies (at least for these kind of prime conductors with trivial class group) that we have

η K • ε = ± √ f
, where ε is the fundamental unit of K or its inverse (the program gives in N 0 and N 1 the conjugates of η K and gives ε in E): We find N 0 ε = N 1 ε -1 ≈ 34.65544690 = √ 1201, which implies that:

1 2 L 2 (1, χ) ∼ 1 2
(2 log(ε)) = log(ε).

A direct computation gives log(ε) ∼ 2 12 as expected since # T K = 2 11 with # R K ∼ 2 10 [9, Proposition 5.2] and # W K = 2 since 2 splits in K. Same kind of result with f = 1217.

6.2.

A familly of cyclic quartic fields of composite conductor. We consider a conductor f product of two prime numbers q 1 and q 2 such that q 1 -1 ≡ 2 (mod 4) and q 2 -1 ≡ 0 (mod 8). So there exists only one real cyclic quartic field K of conductor f which is found eliminating the imaginary and non-cyclic fields; the quadratic subfield of

K is k = Q( √ q 2 ).
The program is written with A K,n (c) and gives all information for k and K.

The following result may help to precise the annihilations (see [START_REF] Gras | Remarks on K2 of number fields[END_REF]Theorem 2] or [8,Theorem IV.3.3,Exercise IV.3.3.1]): Lemma 6.2. Let k be a totally real number field and let K/k be a Galois p-extension with Galois group g of order p r . Then we have the fixed point formula: # T g K = # T k • p h , where (l p being the ramified primes in K/k): h := min (n 0 + r ; . . . , ν l + ϕ l + γ l , . . .) -(n 0 + r) + l p e l , with:

p ν l := p-part of q -1 log( ), where l ∩ Z =: Z, p ϕ l := p-part of the residue degree of in K/Q, p γ l := p-part of the number of prime ideals L | l in K/k, p e l := p-part of the ramification index of l in K/k.

In such famillies of cyclic quartic fields, h = l p e l .

f= [37,41] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] [41,53] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-548*x^2-1084*x+27712 tor=512 Nni=64 A= [4*23, 8*15, 4*5, 8*7] q=53 qq=41 T_k= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] T_K= [32,[START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF]] f= [41,61] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-630*x^2-1248*x+36896 tor=8192 Nni=1024 A=[32*3, 16*7, 1*0, 16 *7] q=61 qq=41 T_k= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] T_K= [32,[START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF][START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF]] f= [5,73] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-100*x^2+187*x+1389 tor=8 Nni=8 A= [1*5,1*9,1*15,1*3] q=5 qq=73 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f= [13,73] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] 1*13,1*13,1*15] q=13 qq=73 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f= [START_REF] Tsuji | The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions[END_REF]73] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-538*x^2+1063*x+58767 tor=8 Nni=8 A= [1*5,1*7,1*15,1*5] q=29 qq=73 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f= [37,73] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] 6.2.2. The case f = 5•73. One may try to find a contradiction to Conjecture 5.7 with the A K,n (c) given by the above data. One sees that 1 2 A K,n (c) is not always in Z[G K ], but modulo the norm we have an annihilator of the form 2 • A K,n (c), and similarly we may ask under what condition A K,n (c) annihilates T K .

For f = 5 • 73, P = x 4 -x 3 -100 x 2 + 187 x + 1389, for which we have

T K Z/4Z × Z/2Z, T k Z/2Z, Cl = 2, A K,n (c) = 5 + 9 σ + 15 σ 2 + 3 σ 3 , giving: A K,n (c) = 1 2 5+9 σ+15 σ 2 +3 σ 3 -3 (1+σ+σ 2 +σ 3 ) ≡ 1-σ+2 σ 2 (mod 4)
without obvious contradiction since # T g K = 8 (i.e., T g K = T K ) and # T G K K = 4 (Lemma 6.2). Moreover, we deduce from this that N K/k (T K ) = T k . 6.3. Cyclic cubic fields of prime conductors. The following program gives, for p = 2 and for cyclic cubic fields of prime conductor f, the group structure of T K in L (from [10, § 3.2]; recall that in all such programs, the parameter nt must be large enough regarding the exponent of T K ), then the (conjectural) annihilator A K,n (c), reduced modulo 1 + σ + σ 2 ; it is equal, up to an invertible element, to a power of 2 (2 is inert in Q(j)): {p=2;nt=12;forprime(f=10^4,2*10^4,if(Mod(f,3)!=1,next);P=polsubcyclo(f,3); K=bnfinit(P,1);Kpn=bnrinit(K,p^nt);C5=component(Kpn,5); Hpn0=component(C5,1);Hpn=component(C5,2);L=List;ex=0; i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1); if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val); listinsert(L,p^val,1)));Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);if(vptor>2,S0=0;S1=0;S2=0;pN=p^2*p^ex; D=(f-1)/3;fn=pN*f;z=znprimroot(f);zz=lift(z);t=lift(Mod((1-zz)/f,p)); c=zz+t*f;for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)^-1); lambda=(asurc*c-a)/fn;u=Mod(lambda*a^-1,pN); a0=lift((a*z^0)^D);a1=lift((a*z^2)^D);a2=lift((a*z)^D); if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u)); L0=lift(S0);L1=lift(S1);L2=lift(S2);L1=L1-L0;L2=L2-L0; A=gcd(L1,L2);A=2^valuation(A,2);print(f," ",P," ", A," ",L)))} [76,[START_REF] Gras | On p-rationality of number fields[END_REF][START_REF] Thaine | On the ideal class groups of real abelian number fields[END_REF][START_REF] Washington | Introduction to cyclotomic fields[END_REF] [32] 16

L 0 -L 2 + (L 1 -L 3 ) √ -1 with A K,n (c) = L 0 + L 1 σ + L 2 σ 2 + L 3 σ 3 , given in A = [L0, L1,
6.5. Detailed example of annihilation. The case of the cyclic quartic field K of conductor f = 3433 is particularly interesting: The class group of K is trivial and its three fundamental units are: 6.5.2. Annihilation from A K,n (c). We have computed A K,n (c) and obtained:

A K,n (c) =: A K ≡ 8 • 13 + 2 • 21 σ + 16 • 7 σ 2 + 2 • 23 σ 3 (mod 2 7 ).
Let h be a group generator of T K (order 2 7) and let h 0 be a generator of T k (order 2 6 ); it is easy to prove that one may suppose

h 2 = j K/k (h 0 )
(injectivity of the transfer map j K/k ) and h σ 2 0 = h 0 . We put j K/k (h 0 ) =: h 0 for simplicity. Then it follows that

h A K = h 4•13+21 σ+8•7 σ 2 +23 σ 3 0 = 1. Since h σ 2 0 = h 0 , we obtain h A K = h (4•13+8•7)+(21+23) σ 0 = h 4•27+4•11 σ 0 = 1; giving, modulo the norm 1 + σ, h 4•(27-11) 0 = h 2 6
0 = 1, as expected. 6.5.3. Annihilation from A K,n (c). There is (by accident ?) no numerical obstruction for an annihilation by A K := A K,n (c), with the same program replacing "for(a = 1, fn, ...)" by "for(a = 1, fn/2, ...)". Then it follows that the program gives

h A K = h 4•13+21 σ+8•15 σ 2 +23 σ 3 = 1. Since the restriction of A K to k is A k (no Euler factors), we get: h A k 0 = h 4•13+8•15+(21+23)•σ 0 = h 4•43+4•11 σ 0 = 1
which is equivalent, modulo the norm, to the annihilation by 4•43-4•11 = 2 7 for a cyclic group of order 2 6 . Now we may return to the annihilation of h; since h 1+σ 2 ∈ j K/k (T k ) we put h 1+σ 2 = h t 0 . Then, with u = 13, v = 21, w = 15, z = 23, we have:

h 4u+vσ+8wσ 2 +zσ 3 = h 2u+4wσ 2 0 h (v+zσ 2 )σ = h 2u+4w+23 t σ 0 h (v-z)σ = h 2•43+23 t σ 0 h -2 σ = h 2•43+(23 t-1) σ 0 = h 2•43-23 t+1 0 = h 87-23 t 0 = 1
so necessarily 87 -23 t ≡ 0 (mod 2 6), giving t ≡ 1 (mod 2 6). So we can write: 6.5.4. Direct study of the G K -module structure of T K . We consider T K only given with the following information: h is a group generator such that h 2 = h 0 , a generator of j K/k (T K );

h 1+σ 2 = j K/k (h 0 ).
h σ = h x , x ∈ Z/2 7 Z, whence h σ 0 = h x 0 = h -1 0 giving x ≡ -1 (mod 2 6 ). The relation h σ 2 +1 = h x 2 +1 = h 2 = h 0 gives again t = 1 in the previous notation h σ 2 +1 = h t 0 . Moreover, h σ 2 -1 = h x 2 -1 = 1
, which is in accordance with Lemma 6.2 and gives T g K = T K . If we take into account these theoretical informations for the "annihilators" A K and A K we find no contradiction, but we do not know if x = -1 or x = -1+2 6 (modulo 2 7 ). The prime 2 splits in k, is inert in K/k and the class number of K is 1; so we have

W K W k Z/2Z and T K = tor Z 2 U K E K ;
then the result about x depends on the exact sequence (2.2):

1 → Z/2Z -→ T K Z/2 7 Z log ---→ tor Z 2 log U K log(E K ) =: R K → 0,
knowing the units and then the structure of the regulator R K . 6.5.5. About the case f K = 233. The field K is defined by the polynomial P = x 4 + x 3 -87 x 2 + 335 x -314 for which T K (Z/2Z) 3 and T k Z/2Z. In this case an annihilator is

A K = 4 • (1 + σ 3 ), which shows that A K = 2 • (1 + σ 3 ) is also suitable. Then A K = 1
2 A K should be equivalent to 1 -σ. Since 2 splits completely in K, we have T K = W K (Z/2Z) 3 and in the same way, T k = W k Z/2Z, for which the Galois structures are well-known: in particular, 1 -σ does not annihilate T K (the class of (1, -1, 1, -1) is invariant). Another proof: use Lemma 6.2 giving here # T G K K = 2.

p-adic measures and annihilations

To establish (in Section 9) a link with the values of p-adic L-functions, L p (s, χ), at s = 1, we shall refer to [13,Section II] using the point of view of explicit p-adic measures (from pseudo-measures in the sense of [START_REF] Serre | Sur le résidu de la fonction zêta p-adique d'un corps de nombres[END_REF]) with a Mellin transform for the construction of L p (s, χ) and the application to some properties of the λ invariants of Iwasawa's theory.

But since we only need the value L p (1, χ), instead of L p (s, χ), for s ∈ Z p , we can simplify the general setting, using a similar computation of S Ln (c) * , directly in Z[G n ], given by Oriat in [START_REF] Oriat | Annulation de groupes de classes réelles[END_REF]Proposition 3.5].

7.1. Definition of A Ln and A Ln (c). Let n ≥ n 0 + e, where T p e K = 1, and put

ϕ n := ϕ(qp n ) = (p -1) • p n if p = 2, ϕ n = 2 n+1 otherwise.
We consider (where c is odd and prime to f n and where a runs trough the integers in [1, 

f n ], prime to f n ): (7.1) A Ln := -1 fnϕn a a ϕn Ln a & A Ln (c) := 1 -c ϕn Ln c A Ln .
For now, these elements, or more precisely their restrictions to K, are not to be confused with the restrictions A K,n (c) of S Ln (c) * defined in § 5.2, even we shall prove that they are indeed equal; but such an expression is more directly associated to L p -functions. Then: (in the same way, use a c such that

A Ln (c) = 1 -c ϕn
a c • c ≡ a (mod f n ), 1 ≤ a c ≤ f n ) ≡ -1 fnϕn a a ϕn Ln a - a a c ϕn c ϕn Ln a c Ln c ≡ 1 fnϕn a (a c • c) ϕn -a ϕn Ln a . Lemma 7.1. We have (a c • c) ϕn -a ϕn ≡ 0 (mod f n ϕ n ). Proof. By definition, a c • c = a + λ n a (c)f n with λ n a (c) ∈ Z. Consider: A := (a c • c) ϕn -a ϕn f n ϕ n = [a ϕn + λ n a (c)f n ϕ n a ϕn-1 + λ n a (c) 2 f 2 n ϕn(ϕn-1) 2 a ϕn-2 + • • • ] -a ϕn f n ϕ n ≡ λ n a (c)a ϕn-1 + λ n a (c) 2 f n (ϕn -1) 2 a ϕn-2 ≡ λ n a (c)a ϕn-1 ≡ λ n a (c)a -1 (mod p n+1 ), since a ϕn ≡ 1 (mod qp n ). When p = 2, one must take into account the term λ n a (c)f n ϕn -1 2 a ϕn-2 ∼ 1 2
λ n a (c)f n , in which case the congruence is with the modulus p n+1 (which is sufficient since for n ≥ n 0 + e, this modulus annihilates T K for any p).

We have obtained for all n ≥ n 0 + e:

(7.2) A Ln (c) ≡ fn a=1 λ n a (c) • a -1 Ln a ≡ S Ln (c) * ,
thus giving again, by restriction to K, the annihilator

A K,n (c) ∈ Z p [G K ] of T K such that (for all n ≥ n 0 + e) A K,n (c) ≡ fn a=1 λ n a (c) a -1 K a .
7.2. Normic properties of the A Ln -Euler factors.

Theorem 7.2. [13,Proposition II.2 (iv)]. Let K be of conductor f = m where m is the conductor of a subfield k of K and where = p is a prime number. For n ≥ n 0 , let L n := K(µ qp n ) and the analogous field l n for k, of conductors f n and m n , repectively; recall that ϕ n = ϕ(qp n ).

Let A Ln := 

N Ln/ln (A Ln ) ≡ 1 -ϕn 1 ln A ln , resp., N Ln/ln (A Ln ) ≡ A ln , if m, resp., | m (congruences modulo p n+1 Z p [G n ] + (1 -s ∞ )Z p [G n ]).
Proof. Suppose first that m, so

f n = lm n . 2 Put a = b+λ m n , λ ∈ [0, -1], b ∈ [1, m n ] prime to m n ; since a ∈ [1, f n ] is prime to f n , b is prime to m n and λ = λ * b such that b + λ * b m n =: b • , b ∈ Z. Thus a ϕn = (b + λ m n ) ϕn ≡ b ϕn + b ϕn-1 λ m n ϕ n (mod m n ϕ n p n+1 ). Then: N Ln/ln (A Ln ) ≡ -1 mnϕn • b, λ =λ * b b ϕn + b ϕn-1 λ m n ϕ n ln b ≡ -( -1) mnϕn b b ϕn ln b - 1 b, λ =λ * b b ϕn-1 λ ln b ≡ 1 - 1 A ln - 1 b, λ =λ * b b ϕn-1 λ ln b ≡ 1 - 1 A ln - 1 b b ϕn-1 ln b λ =λ * b λ ≡ 1 - 1 A ln - 1 b b ϕn-1 ln b ( -1) 2 -λ * b . We remark that λ * b = λ n b ( ) is relative to the writing b • = b + λ n b ( ) m n and that b ϕn-1 ≡ b -1 (mod p n+1 ), whence using b b -1 ln b ≡ 0: N Ln/ln (A Ln ) ≡ 1 - 1 A ln + 1 b λ * b • b -1 ln b .
2 For = 2 and m odd, f = 2m is not a conductor stricto sensu, but the following computations are exact and necessary with the modulus mn and fn = 2 mn; then if

f = 2 k • m (m odd, k ≥ 2)
, the second case of the theorem applies and shall give the Euler factor 1 -2 ϕn 1 2

ln 2 ≡ 1 -1 2 ln 2
. If p | f and p m, there is no Euler factor for p since mn and fn are divisible by p; in other words, these computations and the forthcoming ones are, by nature, not "primitive" at p.

But as we know (see relations 7.1 and ( 7

.2)), b λ * b b -1 ln b ≡ A ln ( ); so N Ln/ln (A Ln ) ≡ 1 - 1 A ln + 1 A ln ( ): since A ln ( ) ≡ 1 -ϕn ln A ln , we get N Ln/ln (A Ln ) ≡ 1 -ϕn 1 ln A ln .
The case | m is obtained more easily from the same computations.

Of course, for all h ≥ 0 we get:

N L n+h /Ln (A L n+h ) ≡ A Ln ,
which expresses the coherence of the family A Ln n in the cyclotomic tower. 

(Z/p n+1 Z)[Gal(L n /Q)] and (Z/p n+1 Z)[Gal(l n /Q)], one obtains N Ln/ln (A Ln (c)) ≡ |f K , pf k 1 - 1 ln
A ln (c).

(ii) Let A K,n (c) and A k,n (c) be the restrictions of A Ln (c) and A ln (c) to K and k, respectively; then

N K/k (A K,n (c)) ≡ |f K , pf k 1 - 1 k • A k,n (c). 
(iii) The family (A K,n ) n = (N Ln/K (A Ln )) n defines a pseudo-measure denoted A K by abuse, such that the measure (A K,n (c)) n defines the element

A K (c) = 1 - K c • A K ∈ Z p [G K ]
and gives the main formula:

N K/k (A K (c)) ≡ |f K , pf k 1 - 1 k • A k (c).
Remarks 7.4. (i) In a numerical point of view, we only need a minimal value of n, and we shall write (e.g., for n = e when K ∩ Q ∞ = Q):

A K,e (c) ≡ σ∈G K a, ( K a )=σ λ e a (c) a -1 • σ =: σ∈G K Λ e σ (c) • σ.
Then the next step shall be to interprete the limit, Λ σ (c), of the coefficients Λ n σ (c) = a, ( K a )=σ λ n a (c) a -1 , for n → ∞, giving an equivalent annihilator, but with a more canonical interpretation. (ii) In [12,13,[START_REF] Oriat | Annulation de groupes de classes réelles[END_REF][START_REF] Solomon | On a construction of p-units in abelian fields[END_REF][START_REF] Thaine | On the ideal class groups of real abelian number fields[END_REF][START_REF] Tsuji | The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions[END_REF]5,[START_REF] Nguyen | Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie dIwasawa[END_REF][START_REF] Solomon | Some New Maps and Ideals in Classical Iwasawa Theory with Applications[END_REF][START_REF] Nguyen | Nombres de Weil, sommes de Gauss et annulateurs galoisiens[END_REF]1,[START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF], some limits are expressed by means of p-adic logarithms of cyclotomic numbers/units of Q f as expressions of the values at s = 1 of the p-adic L-functions of K (for instance, in [START_REF] Tsuji | The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions[END_REF]Theorem 2.1] a link between Stickelberger elements and cyclotomic units is given following Iwasawa and Coleman). But these results are obtained with various non-comparable techniques; this will be discussed later.

(iii) In the relation

A K (c) := 1 - K c
A K , the choice of c must be such that the integers 1 -χ(c) be of minimal p-adic valuation for the characters χ of K. But 1 -χ(c) is invertible if and only if χ(c) is not a root of unity of p-power order.

Remarks about Solomon's annihilators

We shall give two examples: one giving the same annihilator as our's, and another giving a Solomon annihilator in part degenerated, contrary to A K (c).

From ε = 245 13 x 2 -4606 13 x -21522 13 and σ : x → - which is ε σ and the units are, on the Q-base {1, x, x 2 }:

ε = ε 1 = 245 13 x 2 -4606 13 x -21522 13 , ε σ = ε 2 = 147 13
x 2 + 3479 13 x + 11259 13 , ε σ 2 = ε 3 = -392 13 x 2 + 1127 13 x + 175948 13 . The second unit given by PARI is 147 13 x 2 + 3479 13 x + 11272 13 = -ε -σ 2 . The order of ε modulo p = 7 is 114. We compute A i := ε 114 i modulo 7 6 , i = 1, 2, 3), then L i := A i -1:

{P=x^3+x^2-460*x-1739; E1=Mod(245/13*x^2-4606/13*x-21522/13,P+Mod(0,7^6)); E2=Mod(147/13*x^2+3479/13*x+11259/13,P+Mod(0,7^6)); E3=Mod(-392/13*x^2+1127/13*x+175948/13,P+Mod(0,7^6)); L1=E1^114-1;L2=E2^114-1;L3=E3^114-1; print(lift(L1)," ",lift(L2)," ",lift(L3))}

L 1 = 17542x 2 + 48608x + 81879 = 7 2 (358x 2 + 992x + 1671) = 7 2 α 1 , L 2 = 62867x 2 + 833x + 33761 = 7 2 (1283x 2 + 17x + 689) = 7 2 α 2 , L 3 = 37240x 2 + 68208x + 2009 = 7 2 (760x 2 + 1392x + 41) = 7 2 α 3 , giving 1 7 log(ε i ) ≡ 7α i - 1 2
7 3 α 2 i (mod 7 4 ):

1 7
log(ε) ≡ 791x 2 + 2142x + 378 = 7(113x 2 + 306x + 54) (mod 7 4 ),

1 7
log(ε σ ) ≡ 2121x 2 + 119x + 364 = 7(303x 2 + 17x + 52) (mod 7 4 ),

1 7
log(ε σ 2 ) ≡ 1890x 2 + 140x + 1659 = 7(270x 2 + 20x + 237) (mod 7 4 ).

So, the Solomon annihilator

1 p σ∈G K log(ε σ ) • σ -1 of T K is (modulo 7 3 and
up to a 7-adic unit):

Ψ K ≡ 7 • 15 x 2 + 12 x + 5 + (9 x 2 + 17x + 3)σ -1 + (25 x 2 + 20 x + 41)σ -2 .
Since the norm is a trivial annihilator, we can replace Ψ K by

Ψ K = Ψ K -7 • (15 x 2 + 12 x + 5)(1 + σ -1 + σ -2 )
≡ 7 • (43 x 2 + 5 x + 47) σ -1 + (10 x 2 + 8 x + 36) σ -2 (mod 7 3 ).

Then, 43 x 2 + 5 x + 47 is invertible p-adically (its norm is prime to 7) which gives the equivalent annihilator:

7 • σ + (10 x 2 + 8 x + 36) • (43 x 2 + 5 x + 47) -1 ≡ σ + 31 (mod 7 2 )
equivalent to the annihilator defined by 7 • (σ -18) modulo 7 3 .

Our annihilator, given by the previous table, is 1738 + 2186 σ -1 + 2361 σ -2 equivalent to 448 + 623 σ ≡ 7 • (σ -18) (mod 73 ). So σ -18 is an annihilator for the submodule T 7 K Z/7 2 Z, which is coherent since 18 is of order 3 modulo 7 3 . The perfect identity of the two results shows that no information has been lost for this particular case, whatever the method (but in the case of cyclic fields of prime degree, there is not any Euler factor). 8.2. Cyclic quartic field of conductor 37 • 45161 and Solomon's Ψ K . Let K be a real cyclic quartic field of conductor f such that the quadratic subfield k has conductor m | f , with for instance f = m, prime split in k/Q. We take p ≡ 1 (mod 4), p f . Put

η f := 1 -ζ f , η m := 1 -ζ m , η K := N Q f /K (η f ), η k := N Q m /k (η m ).
Then we have the Solomon annihilator:

Ψ K = 1 p σ∈G K log(η σ K ) • σ -1 .
Since, from the formula (4.2) (which applies since m = 1), one has

N Q f /Q m (η f ) = η (1-( Q m ) -1 ) m , i.e., N K/k (η K ) = η (1-( k ) -1 ) k
= 1, we get (with G K = {1, σ, σ 2 , σ 3 }):

Ψ K = 1 p log(η K ) + log(η σ K ) • σ -1 + log(η σ 2 K ) • σ -2 + log(η σ 3 K ) • σ -3 = 1 p log(η K ) + log(η σ K ) • σ -1 -log(η K ) • σ -2 -log(η σ K ) • σ -3
So, in this particular situation, one has:

(8.1) Ψ K = 1 p log(η K ) + log(η σ K ) • σ -1 • (1 -σ 2 ).
Suppose that T K is equal to the transfer of T k (many examples are available), then T K is annihilated by (1 -σ 2 ), whatever the structure of T k T K ; but one expects annihilators A K such that N K/k (A K ) = A k be a non-trivial annihilator of T k .

For instance, define

K by x = √ m √ m + a 2 where m = a 2 + b 2 , b = 2b .
This gives the polynomial P = x 4 -m x giving the annihilator A k ≡ 10185 + 3935 σ (mod 5 6) where σ generates Gal(k/Q); then, A k is equivalent, modulo the norm, to the integer 10185 -3935 ≡ 2 • 5 5 (mod 5 6 ), which is perfect since T k Z/5 5 Z.

The class group of k being trivial, the fundamental unit ε is the cyclotomic one and is such that ε 4 = 1 + 5 6 • α, α prime to 5, which confirms that:

(8.2) Ψ k ∼ 1 5 (log(ε) + log(ε σ ) • σ) = 1 5 log(ε)(1 -σ)
equivalent (modulo the norm) to 2 5 log(ε) and Ψ k = A k as expected. Meanwhile, the Solomon annihilator Ψ K does not give Ψ k by restriction, but 0. 9. About the annihilator A K (c) and the primitive L p (1, χ) 9.1. Galois characters v.s. Dirichlet characters. Let f K be the conductor of K. In most formulas, the characters χ of K must be primitive of conductor f χ | f K , whence Dirichlet characters on (Z/f χ Z) × such that χ Q fχ a makes sense for a ∈ Z, prime to f χ , but not necessarily for χ Q f K a if a prime divides both a and f K but not f χ . This is an obstruction to consider them as Galois characters over Z p [G K ] for instance, whence defined on (Z/f K Z) × ; so we shall introduce the corresponding Galois character of G K , denoted

ψ χ =: ψ. A Galois character ψ of G K is also a character of G n = Gal(L n /Q) whose kernel fixes K, so ψ(a) (a ∈ [1, f n ] prime to f n ) is the image by ψ of the Artin symbol Ln a whence of K a .
Any non-primitive writing ψ(A K ), for A K ∈ Z p [G K ], may introduce a product of Euler factors. Indeed, let k χ be the subfield fixed by the kernel of ψ = ψ χ (then χ is a primitive character of k χ but not necessarily of K); then, ψ(A K ) = ψ(N K/kχ (A K )) = χ(E kχ ) • χ(A kχ ) in which χ(E kχ ) may be non-invertible (or 0). 9.2. Expression of ψ(A K (c)). Let ψ be any Galois character of K considered as Galois character of Gal(L n /Q), for n ≥ n 0 + e. We then have the following result about the computation of the annihilator A K (c) =: 

ψ(A K (c)) = (1 -ψ(c)) • L p (1, ψ) = (1 -ψ(c)) • |f K , pfχ 1 -χ( ) -1 L p (1, χ).
Proof. This comes from the classical construction of p-adic L-functions [13,Propositions II.2,II.3,Définition II.3,II.4,and Remarques II.3,II.4], then [7, page 292]. Thus we obtain, using the computations of the § 7.1, the link between the limit (for n → ∞):

ψ(A K (c)) = σ∈G K Λ σ (c) • ψ(σ) (cf. Remark 7.4 (i)), of ψ(A Ln (c)) = ψ(A K,n (c)) = σ∈G K Λ n σ (c) ψ(σ)
, and the value at s = 1 of the L p -function of the primitive character χ associated to ψ.

Remark 9.2. Note that in the various calculations in § 7.1, ϕ n = ϕ(qp n ) when n → ∞ plays the role of 1 -s when s → 1 in the construction of p-adic L p -functions by reference to Bernoulli numbers. For all primitive Dirichlet character χ = 1 of K, of modulus f χ (or pf χ if p f χ ), and for all p ≥ 2, we have the classical formulas of the value at s = 1 of the p-adic L-functions (see for instance [START_REF] Washington | Introduction to cyclotomic fields[END_REF]Theorem 5.18]), where τ (χ) = (a,fχ)=1 χ(a)ζ a fχ is the primitive Gauss sum of χ:

L p (1, χ) = -1 - χ(p) p • τ (χ) fχ a∈[1,fχ], (a,fχ)=1 χ -1 (a)log(1 -ζ a fχ ),
where the Euler factor 1 -χ(p)p -1 illustrates the fact that for L p -functions, any character χ is considered modulo pf χ when p f χ .

From the Coates formula [6] and classical computations (see also some details in [11, § 2.2]) we recall that

# T K ∼ [K ∩ Q ∞ : Q] • χ =1 1 2 L p (1, χ) (up to a p-adic unit), thus # T K ∼ χ =1 1 2 L p (1, χ) if K ∩ Q ∞ = Q (i.e.
, n 0 = 0). Moreover, we know that in the semi-simple case, one obtains the orders of the isotypic components of T K by means of the 1 2 L p (1, χ); but the whole Galois structure of T K is more precise that the set of those given by the components T e θ K , where the e θ are the corresponding p-adic idempotents. Remark 9.3. Let χ be a primitive Dirichlet character of conductor f χ = 1. We define the "modified Solomon element" of Z p [G kχ ]:

Ψ kχ := -1 - χ(p) p • τ (χ) fχ τ ∈G kχ log(η τ kχ ) • τ -1 .
Whence L p (1, χ) = χ Ψ kχ ) (χ = 1 primitive). Put: having the suitable p-valuations. For instance, if d is prime and p unramified,

C χ := -1 - χ(p) p • τ (χ) fχ . When p f χ , τ ( 
1 p σ∈G K log(η σ K ) • σ -1 annihilates T K .
9.3. The annihilator A K (c) and the Ψ kχ . The following statement does not assume any hypothesis on K and p and gives again the known results of annihilation (e.g., semi-simple case, but also the point of view of [START_REF] Oriat | Annulation de groupes de classes réelles[END_REF]):

Theorem 9.4. Let K be a real abelian number field, of degree d, of Galois group G K and of conductor f

K . Let A K (c) = lim n→∞ A K,n (c) ∈ Z p [G K ] anni-
hilating T K (cf. Theorem 5.5). Then we have (where each χ is the primitive Dirichlet character associated to the Galois character ψ of G K ):

A K (c) = 1 d σ∈G K ψ =1 ψ -1 (σ)(1 -ψ(c)) • |f K , pfχ 1 - χ( ) • χ(Ψ kχ ) • σ, with Ψ kχ = -1 - χ(p) p τ (χ) fχ τ ∈G kχ log N Q fχ /kχ (1 -ζ fχ ) τ • τ -1 .
Thus, T K is annihilated by the ideal

A K of Z p [G K ] generated by the A K (c), c ∈ Z, prime to 2 pf K .
Proof. For all Galois character ψ of G K , Lemma 9.1 leads to the identity:

ψ(A K (c)) = σ∈G K Λ σ (c) • ψ(σ) = (1 -ψ(c)) • |f K , pfχ 1 -χ( ) -1 • L p (1, χ) = (1 -ψ(c)) • |f K , pfχ 1 -χ( ) -1 • χ(Ψ kχ )
with ψ 1 (A K (c)) = 0 for the unit character ψ 1 .

Since the matrix ψ(σ) ψ,σ is invertible with inverse

1 d ψ -1 (σ) σ,ψ , this yields Λ σ (c) = 1 d ψ ψ -1 (σ)ψ(A K (c)) = 1 d ψ ψ -1 (σ)(1 -ψ(c)) • L p (1, ψ).
Whence the result using the expression of L p (1, ψ) in Lemma 9.1. 9.4. A cyclic quartic field K of conductor 37 • 45161. We recall from § 8.2 that m = 45161 is totally ramified in K, that = 37 splits in the quadratic subfield k = Q( √ m) and is ramified in K/k; then p = 5 totally splits in K. We have T k Z/5 5 Z. Denote the four characters by ψ 1 , ψ 2 , ψ 4 & ψ -1 4 (orders 1,2, 4, respectively) and let G K = {1, σ 2 , σ, σ -1 } with σ of order 4. We shall put ψ 4 (σ) = i, and so on by conjugation and the relation ψ 2 = ψ 2 4 . Then, using the modified Solomon elements Ψ k , Ψ K (expressions (8.1), (8.2)):

Ψ k = 5 5 •u & Ψ K = v 5 log(A) + log(B) σ (1 -σ 2 ),
where u and v are p-adic units, A & B = A σ are the two independent units of K of relative norm 1.

We have to compute the coefficients ψ -1 (σ)(1-ψ(c)), which gives the array:

ψ1 ψ2 ψ4 ψ -1 4 1 0 1 • 2 1 • (1 -i) 1 • (1 + i) σ 2 0 1 • 2 -1 • (1 -i) -1 • (1 + i) σ 0 -1 • 2 -i • (1 -i) i • (1 + i) σ -1 0 -1 • 2 i • (1 -i) -i • (1 + i)
Then the terms

|f K , pfχ 1 -χ( ) -1 • χ(Ψ kχ ) have the following values,
depending on the character ψ in the summation of the theorem:

• 5 5 •u for ψ 2 , since 1 -χ 2 ( ) -1 = 1 -37 -1 ∼ 1, • 2v 5 log(A) + i log(B) & 2v 5 log(A) -i log(B) , for ψ 4 & ψ -1 4 
. We obtain, up to a p-adic unit, using the coefficients of the above array:

A K (c) = v 5 log(A) + log(B) + 5 5 •u + v 5 -log(A) -log(B) + 5 5 •u • σ 2 + v 5 -log(A) + log(B) -5 5 •u •σ + v 5 log(A) -log(B) -5 5 •u • σ -1 = 5 5 u•(1 -σ)(1 + σ 2 ) + v 1 5 log(A) + log(B) - 1 5 log(A) -log(B) • σ • (1 -σ 2 ).
We give A, one of the two units of relative norm 1 (the other being B = A σ ): So it is easy to compute A 4 -1, congruent modulo 5 8 to: 5 • α = 317056 x 3 + 260605 x 2 + 260934 x + 182595, whence log(A) ∼ 5 • α. The decompositions into prime ideals of 5 (which is totally split in K/Q) and of 5 • α give respectively for the 5-places:

[ [5,[-3,-2,2,2]~,1,1, [START_REF] Belabas | Jaulent The logarithmic class group package in PARI/GP[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF]1,1]

~]1]
[ [5,[-3,0,2,-2]~,1,1,[2,0,4,1]~]1] [ [5,[-1,-2,-2,-2]~,1,1,[1,1,1,1]~]1] [ [5,[0,-1,-2,2]~,1,1, [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF]1]~]1]

[ [5,[-3,-2,2,2]~,1,1, [START_REF] Belabas | Jaulent The logarithmic class group package in PARI/GP[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF]1,1]

~]2]
[ [5,[-3,0,2,-2] Dividing by 5, we find that 

U 2 + V 2 ≡ 2 (u 2 π 2 1 • π 2 2 + u 2 π 2 3 • π 2 4
) (mod 5) is 5-adically invertible. So A K (c) = 5 5 u(1-σ)(1+σ 2 )+w(1-σ 2 ), u, w invertible. This gives the optimal annihilation of both T k (since T K = j K/k (T k )), and the relative factor T * K = 1, as kernel of the relative norm 1 + σ 2 in K/k, since the operation is given by U -V σ which is invertible. . This field is also defined by P = x 4 -1097417x 2 + 18573782725. The conjugates of x are given by: nfgaloisconj(P)= [-x, x, -1/132015*x^3+1571/195*x, 1/132015*x^3-1571/195*x] We still consider the case p = 5. The prime = 677 splits in the quadratic subfield k = Q( √ 1621), the ramified prime 2 does not split in k; the class number of k is 1 and that of K is 4, so we obtain a trivial 5-class group and the following group structures giving, here, a non-trivial relative T * K : T k Z/5 2 Z, T K Z/5 2 Z × Z/5 3 Z.

In k, the cyclotomic unit is the fundamental unit and is given by: ε = 119806883557 26403

x 2 -3042847629386 39

; we compute that 1 5 • log(ε) ∼ 5 2 ∼ Ψ k as expected since T k = R k . The cyclotomic units A and B = A σ of K, of relative norm 1, are too large to be given here, but we can work with some representatives modulo a large power of 5. As in the previous example, we have to compute (up to 5-adic units since the Euler factors for 2 and 677 are invertible): We see that log(A) is of the form 5 • α, where α is a 5-adic unit, and that and we verify that, despite the denominators 5,

3 5 • x 3 - 1 5
• x is an integer of K (congruent to x σ modulo 5 as given by nf galoisconj(P )) so that:

C ≡ 5 3 • 3 • 3 5
x 3 -1 5

x + x 2 + 57 (mod 5 4 ).

Since the exponent of T K is 5 3 , we obtain that the coefficient U -V • σ (in (9.1)) is equal to (57 -σ) • (1 -σ 2 ); thus the whole annihilator is:

A K (c) ≡ 5 2 • u • (1 -σ)(1 + σ 2 ) + v • (57 -σ) • (1 -σ 2 ) (mod 5 4 ).
So, on the factor T k the annihilator A K (c) acts as the order 5 2 of T k , and on the relative submodule T * K , it acts as 57 -σ, which is very satisfactory since 57 is of order 4 modulo 5 3 (note that 57 2 + 1 = 5 3 • 26). These examples show that A K (c) takes into account the whole structure of T K ; but when the Euler factor is not a p-adic unit because of a prime ≡ 1 (mod p) which splits in k and is ramified in K/k, the annihilation is probably not optimal. It should be usefull to know if the annihilators, given more recently in the literature, have best properties or not in this point of view, which is not easy since numerical tests are absent (to our knowledge). 9.6. Ideal of annihilation for arbitrary real abelian number fields. We do not make any assumption on p and G K , nor on the decomposition of the primes | f K in the real abelian extension K/Q. If K/Q is cyclic, one can choose c (prime to 2pf K ) such that for all ψ = 1, 1 -ψ(c) is non-zero with minimal p-adic valuation; this valuation is 0 as soon as d is not divisible by p, taking K c as a generator of G K . Since in the non-cyclic case, this is impossible, we can consider the augmentation ideal

I K = 1 -K c , c prime to 2pf K Z[G K ]
of G K and the ideal:

I K • A K
which annihilates T K . It is clear, from Corollary 7.3, that the pseudomeasure A K does not depend on I K and that any choice of δ K ∈ I K is such that

δ K A K ∈ Z p [G K ].
In a p-group G K of p-rank r, δ K = r i=1 λ i • (1 -σ i ), where the generators σ i are suitable Artin symbols of integers c i prime to 2pf K ; then the characters ψ may be written ψ = r i=1 ψ i , with obvious definition of the ψ i , so that

ψ(δ K ) = r i=1 ψ(λ i ) • (1 -ψ i (σ i )) = r i=1 ψ(λ i ) • (1 -ξ i )
, where the ξ i are 10.

Conclusion

This elementary study, especially with the help of numerical computations, shows that the broad generalizations of Z p [G K ]-annihilations, that come from values of partial ζ-functions, with various base fields (see, e.g., [START_REF] Nguyen | Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie dIwasawa[END_REF][START_REF] Nickel | Annihilating wild kernels[END_REF][START_REF] Nguyen | Nombres de Weil, sommes de Gauss et annulateurs galoisiens[END_REF][START_REF] Snaith | Relative K0, annihilators, Fitting ideals and the Stickelberger phenomena[END_REF] among many others), may be difficult to analyse, owing to the fact that the results are not so efficients (especially in the non semi-simple and/or the non-cyclic cases), and that some degeneracies may occur because of Euler factors as soon as the p-adic pseudo-measures that are used are of "Stickelberger's type" like Solomon's elements or cyclotomic units.

Moreover, Iwasawa's techniques give more elegant formalism but do not avoid the question of Euler factors.

Depending on whether one deals with imaginary or real fields, the suitable object to be annihilated is not defined in an unique way as shown by the context of the present paper about the G K -module T K . Moreover, roughly speaking, some objects are relative to the values L p (0, χ) (order of some component of the p-class group of some non-real "mirror field"), while some other are relative to the values L p (1, χ) (groups T K ), and it is well known that the points "s = 0" and "s = 1" are mysteriousely independent, giving sometimes abundant "Siegel zeros" near 1, as explained by Washington in many papers (see [START_REF] Gras | Heuristics and conjectures in direction of a p-adic Brauer-Siegel theorem[END_REF] and its bibliography), whence an unpredictible order of magnitude of the annihilators.
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 151 and the result. The multiplicator δ c := 1 -c Ln c has a great importance since the image of δ c by the Spiegel involution is δ * c := 1 -Ln c (mod qp n ); the order of the Artin symbol of c shall be crucial. Annihilation of radicals and Galois groups 5.Annihilation of Rad n /L ×qp n n We begin with the classical property of annihilation of class groups of imaginary abelian fields by modified Stickelberger elements S Ln (c) = δ c • S Ln . Before let's give two technical lemmas. Recall that S Ln (c) = S Ln (c) • (1 -s ∞ ) and that, from § 4.2, the S Ln , S Ln (c) and S Ln (c)

  ordinary sense. The annihilation occurs with 2 S Ln (c) and with 4 S Ln (c). Thus 2 S Ln (c) * and 4 S Ln (c) * annihilate T K . (iii) p = 2, restricted sense. For all n ≥ n 0 +e res , the (Z/4•2 n Z)[G n ]-module Rad res n /L ×4•2 n n is annihilated by 2 S Ln (c); thus 2 S Ln (c) * annihilates T res K . Proof. Let w ∈ Rad n ; since L n ( qp n √ w)/L n is p-ramified, (w) = a qp n • b where a is an ideal of L n , prime to p, and b is a product of prime ideals p n of L n dividing p. Let p n | b and consider p S Ln (c) n ; one can replace S Ln (c) by its restriction to the decomposition field k (possibly k = Q) of p in the abelian extension L n /Q, which gives rise to the Euler factor 1 -

  up to a qp n th power, to a p-torsion element of the form ζ ∈ Rad n . Thus ζ = 1 (Lemma 5.1) and ε 2 n ∈ L ×qp n n .

5. 2 .

 2 Computation of S Ln (c) * or S Ln (c) * -Annihilation of T K . From the expressions (4.3) and (4.4) of S Ln (c), the image by the Spiegel involution is:

Remark 5 . 4 .

 54 Let α Ln :=

  {f=1201;N0=1;N1=1;X=exp(2*I*Pi/f);z=znprimroot(f);E=quadunit(f);zk=1; for(k=1,(f-1)/2,zk=zk*z^2;N0=N0*(1-X^lift(zk));N1=N1*(1-X^lift(zk*z))); print(N0*E," ",N1/E)}

6. 5 . 1 .

 51 Numerical data. We have P = x 4 + x 3 -1287 x 2 -12230 x + 3956 andT K Z/2 7 Z, knowing that the quadratic subfield k = Q( √ 3433) is such that T k Z/2 6 Z:{P=x^4+x^3-1287*x^2-12230*x+3956;K=bnfinit(P,1);p=2;nt=18; Kpn=bnrinit(K,p^nt);Hpn=component(component(Kpn,5),2);L=List; i=component(matsize(Hpn),2);for(k=1,i-1,c=component(Hpn,i-k+1); if(Mod(c,p)==0,listinsert(L,p^valuation(c,p),1)));print("Structure: ",L)} Structure: List([128]) {P=x^2-3433;K=bnfinit(P,1);p=2;nt=18;Kpn=bnrinit(K,p^nt); Hpn=component(component(Kpn,5),2);L=List;i=component(matsize(Hpn),2); for(k=1,i-1,c=component(Hpn,i-k+1);if(Mod(c,p)==0, listinsert(L,p^valuation(c,p),1)));print("Structure: ",L)} Structure: List([64])

[

  227193/338*x^3-6613325/338*x^2-93274465/338*x+14925255/169, 34349/169*x^3+1388772/169*x^2+10559389/169*x-3491425/169, 70276336974818125/338*x^3-677429229869394661/338*x^2 -83238272983560888143/338*x+13065197272033438434/169]

Corollary 7 . 3 .

 73 (i) Let K/k be an extension of fields of conductors f K and f k , respectively. Multiplying by 1-c ϕn ln c = N Ln/ln 1-c ϕn Ln c to get elements in the algebras

  σ∈G K Λ σ (c) • σ (given explicitely by the Theorem 5.5), without any hypothesis on K and p: Lemma 9.1. The expression ψ(A K (c)) is the product of the multiplicator 1 -ψ L∞ c by the non-primitive value L p (1, ψ). In other words, one has:

  χ) is invertible and C χ • log(η τ kχ ) ∼ 1 p • log(η τ kχ ) ∼ Ψ kχ (the original Solomon element); when p | f χ , the factor 1 p in C χ is replaced, ahead the logarithms, by the quotient 1 τ (χ)

  σ ) ∼ (π 1 • π 2 ) σ =: π 3 • π 4, where the π i are integers with valuation 1 at the four prime ideals dividing 5; thus the coefficient:1 • π 2 + u π 3 • π 4 -(u π 1 • π 2 -u π 3 • π 4 ) • σ, of 1 -σ 2 in A K (c) is such that:

9. 5 .

 5 A cyclic quartic field K of conductor 2 2 • 16212 • 677. Let K = Q(x) where x = 677

  ) -log(B) • σ • (1 -σ 2 ).

  + log(B) are 5-adically invertible, so we consider for instance:C := log(A) + log(B) log(A) -log(B) ≡ 13 • 5 2 x 3 + 5 3 x 2 + 19 • 5 2 x + 57 (mod 5 4 )

  a power of p, after the choice of c, prime to 2pf K , with an Artin symbol of order 3; in the program p ex is the exponent p e of T K and fn the conductor of L n . The parameter nt must be > ex.

	if(Mod(co,p)==0,R=R+1;val=valuation(co,p);if(val>ex,ex=val);
	listinsert(L,p^val,1)));Hpn1=component(Hpn,1);
	vptor=valuation(Hpn0/Hpn1,p);if(vptor>1,S0=0;S1=0;S2=0;
	pN=p*p^ex;nu=(f-1)/3;fn=pN*f;z=znprimroot(f);
	zz=lift(z);t=lift(Mod((1-zz)/f,2*p));c=zz+t*f;
	for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)^-1);
	lambda=(asurc*c-a)/fn;u=Mod(lambda*a^-1,pN);
	a0=lift((a*z^0)^nu);a1=lift((a*z^2)^nu);a2=lift((a*z)^nu);
	if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u));
	L0=lift(S0);L1=lift(S1);L2=lift(S2);
	j=Mod(y,y^2+y+1);Y=L0+j*L1+j^2*L2;nj=valuation(norm(Y),p);

{p=7;nt=8;forprime(f=7,10^4,if(Mod(f,3)!=1,next); for(bb=1,sqrt(4*f/27),if(vf==2 & Mod(bb,3)==0,next);A=4*f-27*bb^2; if(issquare(A,&aa)==1,if(Mod(aa,3)==1,aa=-aa); P=x^3+x^2+(1-f)/3*x+(f*(aa-3)+1)/27;K=bnfinit(P,1);Kpn=bnrinit(K,p^nt); C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); h=component

(component(component(K,8)

,1),2);L=List;ex=0; i=component(matsize(Hpn),2);R=0;for(k=1,i-1,co=component(Hpn,i-k+1);

  j 2 ) ; one sees that, as expected, all the examples give nj = vptor since T K is a finite Z 7 [j]-module which may be decomposed with two 7-adic characters:

	f	P	vptor	T_K	coefficients	nj
	313	x^3+x^2-104*x+371	2	[7,7]	[41, 41, 48]	2
	577	x^3+x^2-192*x+171	2	[49]	[183, 17, 280]	2
	823	x^3+x^2-274*x+61	3	[343]	[761, 419, 437]	3
	883	x^3+x^2-294*x+1439	2	[7,7]	[14, 0, 35]	2
	1051	x^3+x^2-350*x-2608	2	[49]	[4, 247, 309]	2
	1117	x^3+x^2-372*x+2565	2	[7,7]	[7, 7, 42]	2
	1213	x^3+x^2-404*x+629	2	[49]	[45, 313, 268]	2
	1231	x^3+x^2-410*x-1003	2	[49]	[247, 73, 273]	2
	1237	x^3+x^2-412*x+1741	2	[49]	[108, 336, 128]	2
	1297	x^3+x^2-432*x-1345	2	[49]	[277, 62, 14]	2
	1327	x^3+x^2-442*x-344	2	[49]	[217, 340, 251]	2
	1381	x^3+x^2-460*x-1739	4	[343,7]	[1738, 2186, 2361] 4
	1567	x^3+x^2-522*x-4759	2	[49]	[219, 137, 78]	2
	(...)					
	2203	x^3+x^2-734*x+408	2	[7,7]	[28, 28, 35]	2
	2251	x^3+x^2-750*x-1584	2	[49]	[191, 274, 151]	2
	2557	x^3+x^2-852*x+9281	3	[49,7]	[235, 3, 286]	3

  One gets the following examples (with vptor > 1 and where 2 Nni is the norm of

	f	P	A	L
	10399	x^3+x^2-3466*x+7703	4	[4,4]
	10513	x^3+x^2-3504*x-80989	8	[8,8]
	10753	x^3+x^2-3584*x-76864	4	[4,4]
	10771	x^3+x^2-3590*x-26728	4	[4,4]
	10903	x^3+x^2-3634*x+26248	8	[8,8]
	10939	x^3+x^2-3646*x-46592	16	[16,16]
	10957	x^3+x^2-3652*x-39364	4	[4,4]
	11149	x^3+x^2-3716*x+39228	4	[2,2,2,2]
	(...)			
	12757	x^3+x^2-4252*x+103001	4	[4,4]
	13267	x^3+x^2-4422*x+96800	16	[16,16]
	13297	x^3+x^2-4432*x+94064	4	[4,4]
	13309	x^3+x^2-4436*x+100064	4	[4,4]
	13591	x^3+x^2-4530*x-63928	8	[8,8]

  L2, L3]); then the list L gives the structure of T K :

	f	P	A	L	2^Nni
	17	x^4+x^3-6*x^2-x+1	[4, 6, 0, 6]	[4]	16
	41	x^4+x^3-15*x^2+18*x-4	[90, 28, 102, 100]	[32]	16
	73	x^4+x^3-27*x^2-41*x+2	[4, 4, 0, 0]	[2,2,2]	32
	89	x^4+x^3-33*x^2+39*x+8	[4, 4, 0, 0]	[2,2,2]	32
	97	x^4+x^3-36*x^2+91*x-61	[8, 10, 12, 2]	[4]	16
	113	x^4+x^3-42*x^2-120*x-64	[16, 28, 8, 12]	[2,2,8]	64
	137	x^4+x^3-51*x^2-214*x-236	[26, 8, 30, 16]	[16]	16
	193	x^4+x^3-72*x^2-205*x-49	[6, 0, 14, 12]	[4]	16
	233	x^4+x^3-87*x^2+335*x-314	[4, 0, 0, 4]	[2,2,2]	32
	241	x^4+x^3-90*x^2-497*x-739	[6, 0, 6, 4]	[4]	16
	257	x^4+x^3-96*x^2-16*x+256	[28, 20, 20, 60]	[2,4,16] 128
	281	x^4+x^3-105*x^2+123*x+236	[4, 4, 0, 0]	[2,2,2]	32
	313	x^4+x^3-117*x^2+450*x-324	[78, 12, 106, 108]	[32]	16
	337	x^4+x^3-126*x^2+316*x+104	[28, 12, 28, 28]	[2,8,8]	256
	353	x^4+x^3-132*x^2+684*x-928	[112, 60, 80, 68]	[2,2,32] 64
	401	x^4+x^3-150*x^2-25*x+625	[14, 4, 6, 8]	[4]	16
	409	x^4+x^3-153*x^2-230*x+548	[22, 8, 26, 24]	[8]	16
	433	x^4+x^3-162*x^2+839*x-1003	[2, 4, 10, 0]	[4]	16
	449	x^4+x^3-168*x^2-477*x+335	[10, 4, 10, 8]	[4]	16
	457	x^4+x^3-171*x^2+1114*x-2044			

  2 + 2 mb 2 . The following program gives many examples with non-trivial T k (with m prime, p = 5):

	{p=5;forprime(m=1,10^5,if(Mod(m,20)!=1,next);P=x^2-m;K=bnfinit(P,1);nt=12;
	Kpn=bnrinit(K,p^nt);Hpn=component(component(Kpn,5),2);L=List;
	i=component(matsize(Hpn),2);R=0;for(k=1,i-1,c=component(Hpn,i-k+1);
	if(Mod(c,p)==0,R=R+1;listinsert(L,p^valuation(c,p),1)));if(R>0,
	print("m=",m," structure",L)))}

ni=L0+Y*L1+Y^2*L2+Y^3*L3;Nni=valuation(norm(ni),2));V0=1;V1=1;V2=1;V3=1; if(L0!=0,V0=2^valuation(L0,2));if(L1!=0,V1=2^valuation(L1,2)); if(L2!=0,V2=2^valuation(L2,2));if(L3!=0,V3=2^valuation(L3,2)); print();F=component(factor(f),1); print("f=",F," Cl=",Cl," P=",P," tor=",2^vptor," Nni=",2^Nni); print("A=",V0,"*",L0/V0," ",V1,"*",L1/V1," ",V2,"*",L2/V2," ",V3,"*",L3/V3); print("q=",q," qq=",qq," T_k=",Lk," T_K=",L)))} f= [5,[START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] [13,[START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] 

q=13 qq=17 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF]] f= [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF][START_REF] Tsuji | The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions[END_REF] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF] 37] h= [START_REF] Gras | On p-rationality of number fields[END_REF] P=x^4-x^3-159*x^2+x+5662 tor=16 Nni=16 A= [4*1, 2*3, 8*1, 2*7] q=37 qq=17 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF]] f= [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF] 53] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-227*x^2+x+11714 tor=32 Nni=32 A= [2*1, 2*5, 2*3, 2*7] q=53 qq=17 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] f= [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF] 61] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-261*x^2+x+15556 tor=16 Nni=16 A= [2*1, 8*1, 2*5, 4*3] q=61 qq=17 T_k= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] T_K= [START_REF] Belliard | Annihilation of real classes[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF][START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF]] f= [5, 41] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-56*x^2-100*x+160 tor=256 Nni=32 A= [2*13, 2*45, 2*59, 2*27] q=5 qq=41 T_k= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] T_K=[32, 4, 2] f= [13, 41] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-138*x^2-264*x+1472 tor=256 Nni=32 A= [2*13, 2*27, 2*51, 2*5] q=13 qq=41 T_k= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] T_K=[32, 4, 2] f= [START_REF] Tsuji | The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions[END_REF] 41] h= [START_REF] All | Gauss sums, Stickelberger's theorem, and the Gras conjecture for ray class groups[END_REF] P=x^4-x^3-302*x^2-592*x+8032 tor=1024 Nni=128 A= [4*21, 4*5, 4*15, 4*15] q=29 qq=41 T_k= [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF] T_K= [32, 8,[START_REF] Belliard | Annihilation of real classes[END_REF] 

roots of unity of p-power order. So we can minimize the p-adic valuations of the ψ(δ K ) to obtain the best annihilator.

For instance, if K is the compositum of two cyclic cubic fields and p = 3, whatever the choice of δ K = λ 1 (1 -σ 1 ) + λ 2 (1 -σ 2 ), λ 1 , λ 2 prime to 3, where σ 1 , σ 2 are two generators of G K , then ψ(δ K ) ∼ 1 -j for 6 characters and ψ(δ K ) ∼ 3 for 2 other characters ψ = 1. So the result depends on the structures of the T k of the 4 cubic subfields k of K.

Remarks 9.5. (i) Let k be a subfield of K and let j K/k be the "transfer map" T k → T K . Then, for δ K A K , we get:

indeed, this comes from the injectivity of the transfer since the Leopoldt conjecture is true in abelian extensions (see e.g., [8,Theorem IV.2.1]); then if the product of Euler factors

is invertible (i.e., χ(E k ) prime to p for all χ), this means that there is no loss of information by using the annihilation of T K by the δ K A K , instead of that of T k by the δ k A k ; otherwise, it is not possible to eliminate the Euler factors "hidden" in δ K A K when they are non-invertible (although they are never zero) unless to restrict ourselves to the use of the δ k A k for T k , at the cost of a weaker information on the global Galois structure of T K .

(ii) The G K -module T K gives rise to the following submodules or quotientsmodules which have interesting arithmetical meaning and are of course annihilated by the δ K A K : 3 (2.1)), which explains that, in general, one says that the p-class group is annihilated by the annihilators of T K .

• The module W K and the normalized p-adic regulator R K defining the exact sequence (2.2).

• The Bertrandias-Payan module BP K := T K /W K for which the fixed field H bp K by W K in H pr K /K ∞ is the compositum of the p-cyclic extensions of K which are embeddable in p-cyclic extensions of arbitrary large degree.

Then some "logarithmic objects" defined and studied by Jaulent (see [START_REF] Jaulent | Théorie -adique globale du corps de classes[END_REF], [START_REF] Jaulent | Note sur la conjecture de Greenberg[END_REF]§ 2.3,Schéma] and [START_REF] Belabas | Jaulent The logarithmic class group package in PARI/GP[END_REF]), in a theoretical and computational point of view:

K the subgroup generated by S).

• The "logarithmic regulator" R K as quotient of the group of "semi-local logarithmic units" by the "global logarithmic units". 3 For some CK := Gal(H * K /K), H * K ⊆ H pr K , we put C ∞ K := Gal(K∞H * K /K∞).