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In this paper we discuss sufficient optimality conditions for an optimal control problem for the linear damped wave equation with the damping parameter as the control. We address the case that the control enters quadratic in the cost function as well as the singular case that the control enters affine. For the non-singular case we consider strong and weak local minima, in the singular case we derive sufficient optimality conditions for weak local minima. Thereby, we take advantage of the Goh transformation applying techniques recently established in Aronna, Bonnans, and Kröner [Math. Program. 168(1):717-757, 2018] and [INRIA research report, 2017]. Moreover, a numerical example for the singular case is presented.

Introduction

Let Ω be an open subset of R n , n ≤ 3 with sufficiently smooth boundary ∂Ω and T > 0. We consider optimal control problems for the damped linear wave equation in which the control u enters as a damping parameter, i.e. equations of type (1.1) ÿ(t, x) -∆y(t, x) = u(t)b(x) ẏ(t, x) + f (t, x) in (0, T ) × Ω, y(t, x) = 0 on (0, T ) × ∂Ω, y(0, x) = y 0,1 (x) in Ω, ẏ(0, x) = y 0,2 (x) in Ω with suitable chosen f , b and initial data y 0,i , i = 1, 2. In one space dimension this equation describes the motion of a string with forced damping and additional source term in the space-time domain. In the damping term we have a bilinear coupling of the control and the velocity. We consider optimal control problems for (1.1) with cost function 2 dt subject to (1.1) and u ∈ U ad , with U ad := u ∈ L 2 (0, T ) : u m ≤ u(t) ≤ u M , a.e. in (0, T ) the set of admissible controls, given constant control bounds 0 ≤ u m < u M , and sufficiently smooth desired states y d,i : (0, T ) × Ω → R, y dT,i : Ω → R for i = 1, 2, α 1 ∈ R, α 2 ≥ 0, and β j ≥ 0, j = 1, . . . , 4.

(1.2)                J(u, y) := β 1 2 y -y d,1 2 
L 2 (0,T ;L 2 (Ω)) + β 2 2 y(T ) -y 2 dT,1 2 L 2 (Ω) + β 3 2 ẏ -y d,2 2 
L 2 (0,T ;H -1 (Ω)) + β 4 2 ẏ(T ) -y 2 dT,2 2 
H -1 (Ω) + T 0 α 1 u(t) + α 2 2 u(t)
The main contribution of this paper is the application of techniques developed in Aronna, Bonnans, and Kröner [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF][START_REF] Aronna | Optimal control of PDEs in a complex space setting; application to the Schrödinger equation[END_REF] to the optimal control problem of the damped wave equation given in (1.2). We derive sufficient optimality conditions for weak and strong local minima in the case α 2 > 0 as well as for weak local minima in the singular case α 1 = 0. For the non-sigular case we rely on techniques developed in [START_REF] Aronna | Optimal control of PDEs in a complex space setting; application to the Schrödinger equation[END_REF], where control problems for the Schrödinger equation are considered. In the singular case the classical techniques of the calculus of variations do not lead to the formulation of second-order sufficient optimality conditions. By applying the Goh transformation [START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF] (introduced in the context of optimal control of ordinary differential equations) and following ideas in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF], we derive sufficient optimality conditions guaranteeing weak quadratic growth. Thereby, a commutator plays an important role. However, this commutator is a differential operator of qualitative difference to the one considered in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]; while in the latter reference singular optimal control problems for wave equations with bilinear coupling of control and state are considered which leads to a zero-order operator, here the control is coupled bilinearly with the velocity which gives a second-order differential operator for the commutator. Consequently, different regularity properties are necessary to obtain compactness results. We will restrict the presentation to differences to the setting developed in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]. At the end, a numerical example for the case α 1 = α 2 = 0 is presented.

The first extension of the Goh calculus to optimal control problems to PDEs was done in Bonnans [START_REF] Bonnans | Optimal control of a semilinear parabolic equation with singular arcs[END_REF], where a semilinear heat equation with scalar control was considered and then further extended in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF] to problems for strongly continuous semigroups. In [START_REF] Aronna | Optimal control of PDEs in a complex space setting; application to the Schrödinger equation[END_REF] the approach was transferred to a complex setting and applied to optimal control problems for the linear Schrödinger equation.

To complete the list of references we mention some applications of the Goh transformation in the context of ordinary differential equations, see, e.g., [START_REF] Kelley | A second variation test for singular extremals[END_REF][START_REF] Goh | Necessary conditions for singular extremals involving multiple control variables[END_REF][START_REF] Frankowska | The Goh necessary optimality conditions for the Mayer problem with control constraints[END_REF][START_REF] Aronna | Second order analysis of control-affine problems with scalar state constraint[END_REF].

In the context of optimal control of PDEs there exist only a few papers on sufficient optimality conditions for control-affine problems, see Bergounioux and Tiba [START_REF] Bergounioux | General optimality conditions for constrained convex control problems[END_REF], Tröltzsch [START_REF] Tröltzsch | Regular Lagrange multipliers for control problems with mixed pointwise controlstate constraints[END_REF], Bonnans and Tiba [START_REF] Bonnans | Control problems with mixed constraints and application to an optimal investment problem[END_REF], and Casas, Wachsmuth, and Wachsmuth [START_REF] Casas | Second-order analysis and numerical approximation for bang-bang bilinear control problems[END_REF].

For bilinear optimal control of wave equations, see, e.g., Lenhart and Protopopescu [START_REF] Lenhart | Identification problem for a wave equation via optimal control[END_REF] where an identification problem for a coefficient in the wave equation via optimal control is considered, and Sonawane [START_REF] Sonawane | Optimal control for a vibrating string with variable axial load and damping gain[END_REF] where a bilinear optimal control problem for a vibrating string is analyzed. Furthermore, we refer to Lasiecka and Triggiani [START_REF] Lasiecka | Control theory for partial differential equations: Continuous and approximation theories[END_REF] and Bales and Lasiecka [START_REF] Bales | Continuous finite elements in space and time for the nonhomogeneous wave equation[END_REF] for optimal control of wave equations in a semigroup setting.

For results on controllability of the damped wave equation see, e.g., [START_REF] Vancostenoble | Exact controllability of a damped wave equation with distributed controls[END_REF] and for stabilization, e.g., [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF][START_REF] Zuazua | Exponential decay for the semilinear wave equation with locally distributed damping[END_REF][START_REF] Dehman | Stabilization and control for the subcritical semilinear wave equation[END_REF].

The paper is organized as follows: In Section 2 the damped wave equation is introduced. In Section 3 existence of optimal controls is verified. In Section 4 we derive first-and second-order necessary optimality conditions. In Section 5 sufficient optimality conditions for the non-singular case (α 2 > 0), in Section 6 for the singular case (α 2 = 0) are derived, and in Section 7 we present a numerical example for the singular case.

Notation: For given Hilbert space H, with norm • H , we denote by H * its topological dual and by h * , h H the duality product between h ∈ H and h * ∈ H * . For the inner product we write (•, •) H . We omit the index H if there is no ambiguity. By L(H) we denote the space of linear and continuous operators on H. If A is a linear (possibly unbounded) operator from H into itself, its adjoint operator is denoted by A * . We use the standard notation for Lebesgue and Sobolev spaces. The Euclidean norm is denoted by | • | and for diagonal matrices D ∈ R n×n we use the notation diag(d 1 , . . . , d n ).

The damped wave equation

Let Ω ⊂ R n , n ≤ 3 be a bounded domain with smooth boundary T > 0, and

H := L 2 (Ω), V := H 1 0 (Ω). We define the unbounded operator T -1 := -∆ in H with domain dom(T -1 ) := H 2 (Ω) ∩ H 1 0 (Ω) as T -1 : dom(T -1 ) ⊂ H → H. (2.1)
Then T : H → H is a bounded operator. Let

H := H × V * . (2.2)
In the following we will consider for given b ∈ L ∞ (Ω), u ∈ L 1 (0, T ), f ∈ L 1 (0, T ; V * ), and (y 0,1 , y 0,2 ) ∈ H the general second-order hyperbolic equation

(2.3)      ÿ1 (t, x) -∆y 1 (t, x) = f (t, x) + u(t)b(x) ẏ1 (t, x) in (0, T ) × Ω, y 1 (0, x) = y 0,1 (x), ẏ1 (0, x) = y 0,2 (x) in Ω, y 1 (t, x) = 0 on (0, T ) × ∂Ω.
Setting y 2 (t) := ẏ1 (t), we can reformulate the state equation formally as a firstorder system in time given by (2.4) ẏ + Ay = F + uBy t ∈ (0, T ), y(0) = y 0 , with (2.5)

A := 0 -id T -1 0 , B := 0 0 0 b , F := 0 f , y 0 := y 0,1 y 0,2 .
From the Hille Yosida theorem we can derive by classical arguments that A is the generator of a contraction semigroup e -tA with dom(A) = H 1 0 × L 2 (Ω) ⊂ H. We define the mild solution of (2.4) as the function y ∈ C(0, T ; H) such that, for all t ∈ [0, T ]:

(2.6) y(t) = e -tA y 0 + t 0 e -(t-s)A F(s) + u(s)By(s) ds.
The existence of a mild solution follows by a fixed-point argument, cf. Ball, Marsden, and Slemrod [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]. Furthermore, we have the following estimate; cf. [4, Thm. 2].

Theorem 2.1. There exists c > 0 such that the solution y of (2.6) satisfies (2.7)

y C([0,T ];H) ≤ c y 0 H + f L 1 (0,T ;H -1 (Ω)) + B L(H) u L 1 (0,T ) e c u L 1 (0,T ) .
The dual semigroup on H * is well-defined (see [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) and generated by A * = -A with dom(A * ) = dom(A), identifying H with H * (cf. Appendix A).

From Ball [START_REF] Ball | Strongly continuous semigroups, weak solutions, and the variation of constants formula[END_REF] we recall that any mild solution of (2.4) coincides with a weak solution, i.e. y ∈ Y := C(0, T ; H) satisfies y(0) = y 0 and, for any φ ∈ dom(A * ), the function t → φ, y(t) is absolutely continuous over [0, T ] and

d dt φ, y(t) + A * φ, y(t) = φ, F + u(t)By(t) , for a.a. t ∈ [0, T ]. (2.8)
In the following we denote for given u ∈ U the corresponding mild solution by y[u] and its components by y 1 [u] and y 2 [u].

We introduce the linearized state equation at a point (ŷ, û) with ŷ = y[û], û ∈ U for given v ∈ U given by (2.9) ż(t) + Az(t) = û(t)Bz(t) + v(t)Bŷ(t); z(0) = 0, to be understood in the sense of mild solutions. It is easily checked that the equation (2.9) has a unique solution denoted by z[v], and using the implicit function theorem, that the mapping

u → y[u] from U to Y is of class C ∞ with Dy[u]v = z[v].
We recall the notion of restriction property from [4, Def. 2].

Definition 2.2. Let W be a Hilbert space with norm • W and continuous inclusion in H. Assume that the restriction of e -tA to W has image in W , and that it is a continuous semigroup over this space. We let A denote its associated generator, and e -tA the associated semigroup. Then we have that dom(A ) ⊂ dom(A), and A is the restriction of A to dom(A ). We have that (2.10) e -tA L(W ) ≤ c A e λ A t for some constants c A and λ A . Denote by B the restriction of B to W , which is supposed to have image in W and to be continuous in the topology of W , that is,

(2.11) B ∈ L(W ).
In this case we say that W has the restriction property. This allows to prove higher regularity. Let

E 1 := H 1 0 (Ω) × L 2 (Ω), (2.12) H 2 0,1 := H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω). (2.13) Hypothesis 2.1. We assume (2.14) y 0 ∈ E 1 , b ∈ L ∞ (Ω), f ∈ L 2 (0, T ; L 2 (Ω)).
Lemma 2.4. The space E 1 has the restriction property with restricted semigroup A and domain dom(A ) := H 2 0,1 . Proof. We refer to Pazy [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF].

The optimal control problem

Let q and q T be continuous quadratic forms over H, with associated symmetric and continuous operators Q, Q T ∈ L(H); q(y) := (Qy, y); q T (y) := (Q T y, y).

(3.1) Given (3.2) y d ∈ L ∞ (0, T ; H); y dT ∈ H,
we introduce the cost function

(3.3) J(u, y) := 1 2 T 0 q(y(t)-y d (t))dt+ 1 2 q T (y(T )-y dT )+ T 0 (α 1 u(t)+ α 2 2 u(t) 2 )dt
with α 1 ∈ R, and α 2 ≥ 0; this includes in particular the case (1.2). Then, recalling the set of admissible controls For optimal control problems of type (P) we consider weak local minima. We call û ∈ U ad a weak local minimum if there exists an ε > 0 such that

(3.4) U ad = u ∈ U : u m ≤ u(t) ≤ u M ,
(3.5) F (û) ≤ F (u) for all u in U ad with u -û L ∞ (0,T ) ≤ ε.
To obtain existence we need a compactness result.

Lemma 3.1. Let for given control u ∈ U and initial condition y 0 ∈ E 1 the function y = y[u] denote the corresponding solution of (2.4). Then the mapping

(3.6) U → L 2 (0, T ; H), u → by 2 [u],
is compact.

Proof. We have

(3.7) U → L 2 (0, T ; H), u → by 2 [u],
with y[u] being the solution of

(3.8) ẏ1 = y 2 , ẏ2 -∆y 1 = uby 2 + f.
We check the compactness hypothesis. We have 

(3.9) y[u] ∈ C(0, T ; E 1 ), ẏ[u] ∈ L 1 (

First and second-order necessary optimality conditions

The costate equation is given in H as

-ṗ + A * p = Q(y -y d ) + uB * p; p(T ) = Q T (y(T ) -y dT ). (4.1)
The corresponding mild solution is well-defined in C(0, T ; H) (cf. the comments on the dual semigroup in Section 2) and is denoted by p[u] = p.

Next, for given u ∈ U we introduce

(4.2) Λ(t) := α 1 + α 2 u(t) + y 2 [u](t)b(x)p 2 [u](t).
Since u → F (u) is of class C ∞ by the implicit function theorem, we have the representation

(4.3) DF (u)v = T 0 Λ(t)v(t)dt for all v ∈ U.
By standard arguments we obtain the necessary optimality: The contact sets are (4.4)

I m (u) := {t ∈ (0, T ) : u(t) = u m }; I M (u) := {t ∈ (0, T ) : u(t) = u M }.
and we have the following proposition.

Proposition 4.1. Let û ∈ U ad be a weak local minimum of (P). Then, up to a set of measure zero, there holds

(4.5) {t; Λ(t) > 0} ⊂ I m (û), {t; Λ(t) < 0} ⊂ I M (û).
To formulate second-order conditions we introduce the second variation of the Lagrangian Q : C(0, T ; H) × U → R by

(4.6) Q(z, v) := T 0 z(t) 2 H + α 2 v(t) 2 + 2v(t)(p 2 (t), z 2 (t)) V * dt + z(T ) 2 H .
Given a feasible control u, the critical cone is defined as

(4.7) C(u) := v ∈ U | Λ(t)v(t) = 0 a.e. on [0, T ],
v(t) ≥ 0 a.e. on I m (u), v(t) ≤ 0 a.e. on I M (u) .

Then we can formulate the second-order necessary optimality conditions.

Theorem 4.2. Let û be a weak local minimum of (P). Then we have,

(4.8) Q(z[v], v) ≥ 0 for all v ∈ C(û).
Proof. See [4, Thm. 6].

5.

Second-order sufficient optimality conditions for the non-singular case α 2 > 0 Next, we formulate sufficient optimality conditions for weak as well as strong local minima. Therefore we introduce a positive definiteness condition for the second variation of the Lagrangian: Let α 0 > 0 be such that (5.1)

Q(z[v], v) ≥ α 0 v(t) 2 L 2 (0,T )
for all v ∈ C(û).

Theorem 5.1. Let û ∈ U satisfy the first order optimality conditions in Proposition 4.1, and let the positive definiteness condition (5.1) hold. Then û is a weak local minimum of problem (P) that satisfies the quadratic growth condition.

Proof. It follows by an adaption of [START_REF] Bonnans | Optimal control of a parabolic equation with time-dependent state constraints[END_REF]Thm. 4.3] or Casas and Tröltzsch [START_REF] Casas | Second-Order Optimality Conditions for Weak and Strong Local Solutions of Parabolic Optimal Control Problems[END_REF].

We introduce the notion of strong local minima.

Definition 5.2. A control û ∈ U ad is a strong local minimum if there exists ε > 0 such that, for all u ∈ U ad and y[u] -y[û] C(0,T ;H) < ε we have F (û) ≤ F (u).

Definition 5.3. A control û ∈ U ad satisfies the quadratic growth condition for strong solutions if there exists σ > 0 and ε > 0 such that for any feasible control u:

(5.2)

F (û) + σ u -û 2 L 2 (0,T ) ≤ F (u), whenever y[u] -y[û] C(0,T ;H) < ε. Theorem 5.4.
Let û ∈ U ad satisfy the first order necessary optimality condition (4.5), and the positive definiteness condition (5.1). Then û is a strong solution that satisfies the above quadratic growth condition.

Proof. The proof follows the same ideas as in the complex setting presented in [2, Thm. 5.10] based on the decomposition principle and using techniques by Bonnans and Osmolovskiȋ [START_REF] Bonnans | Second-order analysis of optimal control problems with control and initial-final state constraints[END_REF].

6. Second-order sufficient optimality conditions for the singular case α 2 = 0

Here, we reformulate the second-order necessary optimality conditions for weak local minima by a transformed quadratic form, apply the Goh transformation, and derive sufficient optimality conditions.

Given û ∈ U, let ŷ = y[û] and p = p[û] be the associated state and costate.

Hypothesis 6.1. In the sequel we assume (additional to Hypothesis 2.1) that the costate p is in C(0, T ; E 1 ).

Remark 6.1. If Q(y -y d ) ∈ L 2 (0, T ; E 1 ) and Q T (y -y dT ) ∈ E 1 this can be guarenteed by the semigroup property. For Q and Q T given by cost functions as in (1.2) and y d ∈ E 1 this is the case.

The space E 1 ⊂ H with continuous inclusion has the restriction property (see Definition 2.2). Using for the restriction of A and B to E 1 the same notation we have by the regularity of b given in Hypothesis 2.1 that (6.1)

B k dom(A) ⊂ dom(A), (B k ) * dom(A * ) ⊂ dom(A * ), k = 1, 2.
This allows to define the following operators with domains dom(A) and dom(A * ):

(6.2) [A, B k ] := AB k -B k 2 A, [(B k ) * , A * ] := (B k ) * A * -A * (B k ) * . Let us define for k = 1, 2 (6.3) M k y := [A, B k ]y
considering the closure of the operator in E 1 . Then we have (6.4)

M k = 0 -b k -b k T -1 0 ; [M k , B] = 0 -b k+1 b k+1 T -1 0 ; k = 1, 2.
We observe that here the commutator is a second-order, self-adjoint differential operator (cf. Appendix A), i. e.

(6.5) M * k = M k . Thus, using the fact that p ∈ C(0, T ; E 1 ) (see Hypothesis 6.1) we have in particular (6.6) M * k p ∈ C(0, T ; H).

To illustrate the dependencies we restrict the presentation to cost functions of type (1.2), nevertheless corresponding statements can be derived for general cost functions as given in (3.3). We define the space

W := L 2 (0, T ; E 1 ) ∩ C([0, T ]; H) × L 2 (0, T ) × R (6.7)
and introduce a quadratic form over W by (6.8)

Q(ξ, w, h) := Q T (ξ, h) + Q a (ξ, w) + Q b (w),
where (6.9)

Q b (w) := T 0 w 2 (t)R(t)dt and (6.10) Q T (ξ, h) := β 2 ξ 1 (T ) 2 H + β 4 ξ 2 (T ) + hbŷ 2 (T ) 2 V * + h(p 2 (T ), bξ 2 (T )) V * + h 2 (p(T ), b 2 ŷ2 (T )) V * , Q a (ξ, w) := T 0 β 1 ξ 1 2 H + β 3 ξ 2 2 V * dt + T 0 2wβ 3 (ξ 2 , bŷ 2 ) V * dt, + T 0 2w β 3 (ŷ 2 -y d,2 , bξ 2 ) V * + (bp 2 , ξ 1 ) H -(bT -1 p2 , ξ 2 ) V * dt, R(t) := β 3 bŷ 2 2 V * + β 3 (ŷ 2 -y d,2 , b 2 ŷ2 ) V * + (p 2 , b 2 (f + T -1 ŷ1 )) V * -(p 1 , b 2 ŷ2 ) H .
We will show that the quadratic form Q is positive semidefinit on a transformed critical cone. Let P C 2 (û) be the closure in the L 2 × R-topology of the set (6.11

) P C(û) := {(w, h) ∈ W 1,∞ (0, T ) × R, ẇ ∈ C(û); w(0) = 0, w(T ) = h}.
Theorem 6.2. Let Hypothesis 2.1 and 6.1 hold and let the cost function be given by (1.2). Let û ∈ U ad be a weak local minimum of (P) and z solution of the linearized state equation at (û, y[û]). Furthermore, let for given v ∈ U the functions (w, ξ) be defined by the Goh transformation (6.12) w(t) := t 0 v(s)ds, ξ := z -wBŷ.

(i) Then ξ is the mild solution of

(6.13) ξ1 -ξ 2 = wbŷ 2 , ξ2 -∆ξ 1 = ûbξ 2 -wb∆ŷ 1 -wbf with ξ(0) = 0. (ii) We have (6.14) Q(ξ, w) = Q(z, v).
(iii) In particular, the transformed second-order variation is positive semidefinit on the transformed critical cone, i.e.

(6.15) Q(ξ, w) ≥ 0 for all (w, h) ∈ P C 2 (û).

Proof. (i) By a direct calculation (cf. [4, (3.28)]) we obtain formally

(6.16) ξ + Aξ = ûBξ -wBF -w[A, B]ŷ, ξ(0) = 0.
We check well-posedness. Since by the regularity assumption on the data in Hypothesis 2.1 we have ŷ ∈ C(0, T ; E 1 ) and since the commutator is a second-order differential operator we derive ξ ∈ C(0, T ; H). Furthermore, (6.16) is, in the case under consideration, equivalent to (6.13).

(ii) We apply [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]Thm. 7] to obtain (6.14). We have to verify the conditions [4, (3.23)], namely: (6.1), which is satisfied, and (6.17)

   (a) for k = 1, 2 : M k has a continuous extension to E 1 , (b) for k = 1, 2 : M * k p ∈ L ∞ (0, T ; H), (c) ŷ ∈ L 2 (0, T ; E 1 ); [M 1 , B]ŷ ∈ L ∞ (0, T ; H).
In (6.4) we have seen that the commutator M k is a second-order differential operator having a continuous extension to E 1 which gives (a). Condition (b) results from the regularity of the costate p ∈ C(0, T ; E 1 ), cf. Hypothesis 6.1. Finally, we have ŷ ∈ C(0, T ; E 1 ) by Hypothesis 2.1 so [M 1 , B]ŷ ∈ C(0, T ; H) which gives (c).

(iii) This follows from (4.8) and (ii), cf. [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]Lem. 6].

Remark 6.3. In comparison to [START_REF] Aronna | Optimal control of PDEs in a complex space setting; application to the Schrödinger equation[END_REF], where the control is coupled bilinearly with the state and not the velocity component, the right hand side of the equation in ξ given in (6.13) is of qualitativ difference, since it involves the Laplacian of y 1 .

Definition 6.4 (Singular arc). A control u ∈ U ad is said to have a singular arc over (t 1 , t 2 ), with 0 ≤ t 1 < t 2 ≤ T , if, for all θ ∈ (0, 1 2 (t 2 -t 1 )), there exists ε > 0 such that (6.18) u(t) ∈ [u m + ε, u M -ε], for a.a. t ∈ (t 1 + θ, t 2 -θ).

We may also say that (t 1 , t 2 ) is a singular arc itself. We call (t 

y 0 ∈ E 2 ; f ∈ L ∞ (0, T ; H 1 0 (Ω)), b ∈ W 1,∞ ( 
Ω). Corollary 6.5. Let Hypothesis 6.2 hold and û ∈ U ad be a weak local minimum for problem (P). Then, (6.21) the mapping w → ξ[w] is compact from L 2 (0, T ) to L 2 (0, T ; H).

Let (t 1 , t 2 ) be a singular arc. Then R ∈ L ∞ (0, T ; H) defined in (6.10) satisfies (6.22) R(t) ≥ 0 for a.a. t ∈ (t 1 , t 2 ).

Proof. We know ξ ∈ C(0, T ; H). Since E 2 has the restriction property (by the Hille-Yosida theorem) [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Cor. 3.8] we have by Hypothesis 6.2 and Lemma 2.3 that the first component y 1 of the solution of (2.4) is in C(0, T ; H 2 0 (Ω)). Consequently, the right hand side of equation (6.13) is in C(0, T ; E 1 ). Similarly as in the proof of Lemma 3.1 we further obtain ξ[w] ∈ L 1 (0, T ; H) and thus the compactness property in (6.21). Using (6.21) we obtain that the terms of Q where ξ is involved are weakly continuous. We conclude as in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]Cor. 5].

To formulate second-order sufficient optimality conditions we make the following hypotheses. Hypothesis 6.3. We assume (1) Regular data: Let Hypotheses 2.1, 6.1, and 6.2 hold and additionally, (6.23) f ∈ C(0, T ; H -1 (Ω)), y d ∈ C(0, T ; H).

(2) finite structure:

(6.24) there are finitely many boundary and singular maximal arcs and the closure of their union is [0, T ],

(3) strict complementarity for the control constraint (note that Λ is a continuous function of time) We say that û satisfies a weak quadratic growth condition if there exists β > 0 such that for any u ∈ U ad , setting v := u -û and w(t) := T 0 v(s)ds, we have (6.29) F (u) ≥ F (û) + β( w 2 L 2 (0,T ) + w(T ) 2 ), if v L 1 (0,T ) is small enough. The word 'weak' refers to the fact that the growth is obtained for the L 2 -norm of w, and not of v.

Similar as in [START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF]Thm. 8] (taking into account [START_REF]Optimal Control of Infinite Dimensional Bilinear Systems: Application to the Heat and Wave Equations[END_REF]) we obtain the following statement. Theorem 6.7. Let û ∈ U ad , the cost function be given by (1.2), and let Hypothesis 6.3 hold. Remark 6.8. When û has no bang-bang switch, the cones P C 2 (û) and P C 2 (û) coincide and, therefore, the necessary and sufficient conditions have no gap.

Numerical example

We present a numerical example for the singular case α 1 = α 2 = 0. Let Ω = (0, 1), T = 1, and for (t, x) ∈ (0, T ) × Ω we set For the approximation in space we use a spectral basis { √ 2 sin(kπx) | 1 ≤ k ≤ N } with N = 10 and for the approximation in time an implicit Euler scheme with 1000 time steps. The numerical simulation was performed with Bocop [START_REF] Bonnans | Bocop, the optimal control solver, open source toolbox for optimal control problems 2011[END_REF] which uses IPOPT [START_REF] Wächter | On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[END_REF]. In Fig. 1 we see the control is first on the lower bound, then a singular arc appears, and then it is on the upper bound. The computed control is stable with respect to time and space discretization. 
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 23 Let W have the restriction property, y 0 ∈ W , and f ∈ L 1 (0, T ; W ) hold. Then the solution of (2.4) satisfies y ∈ C(0, T ; W ) and the mapping u → y[u] is of class C ∞ from L 1 (0, T ) to C(0, T ; W ). Proof. See [4, Lem. 1].

  a.e. on (0, T ) ; with U := L 2 (0, T ) and defining the reduced cost by F (u) := J(u, y[u]) the optimization problem reads as (P) Min u∈U ad F (u).

( 6 . 6 .

 66 [START_REF] Sonawane | Optimal control for a vibrating string with variable axial load and damping gain[END_REF] Λ has nonzero values over the interior of each boundary arc, and at time 0 (resp. T ) if an initial (resp. final) boundary arc exists, (4) letting T BB denote the set of bang-bang junctions, we assume (6.26) R(t) > 0, t ∈ T BB . h) ∈ L 2 (0, T ) × R; w is constant over boundary arcs, w = 0 over an initial boundary arc, and w = h over a terminal boundary arc. Let û ∈ U ad satisfy (6.24) and (6.25). Then P C 2 (û) defined before(6.11) can be characterized as (6.28) P C 2 (û) = {w ∈ P C 2 (û) : w is continuous on bang-bang junctions} Proof. See [1, Proposition 4].

  (a) If û satisfies the necessary optimality conditions (4.1) and if there exists α > 0 such that(6.30) Q(ξ[w], w, h) ≥ α( w 2 L 2 (0,T ) + h 2 ), for all (w, h) ∈ P C 2 (û), then the quadratic growth condition (6.29) is satisfied.(b) If û is a weak minimum and the quadratic growth condition (6.29) is satisfied, then(6.31) Q(ξ[w], w, h) ≥ α( w 2 L 2 (0,T ) + h 2 ), for all (w, h) ∈ P C 2 (û), holds.Proof. We have to check: (6.32)(i) B 2 f ∈ C(0, T ; H); y d ∈ C(0, T ; H); (ii) M * k p ∈ C(0, T ; H), k = 1, 2.Then we conclude by[START_REF]Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations[END_REF] Thm. 8]. (i) follows immediately from (6.23); (ii) results from the fact that p ∈ C(0, T ; E 1 ), cf. Hypothesis 6.1.

(7. 1 )

 1 y 0,1 = sin 2 (πx); y 0,2 = 0; f = 0; b = 1; y d,1 = 0; y d,2 = 1 10 sin(2πt) sin(πx); Q = id; Q T = 0; u m = 0; u M = 10.

Figure 1 .

 1 Figure 1. Optimal control with singular arc.

  0, T ; H); the second inclusion in (3.9) follows from (2.8) and estimate (2.7) with E 1 instead of H. Since E 1 is compactly embedded in H, we conclude by Aubin's Lemma in the variant given in [26, Remark 2.1, p. 189]; cf. also[24, p. 37].

Corollary 3.2. Problem (P) has a solution. Proof. The existence follows by classical arguments using the compactness result from Lemma 3.1; cf. [2, Thm. 2.15].

  1 , t 2 ) a lower boundary arc if u(t) = u m for a.a. t ∈ (t 1 , t 2 ), and an upper boundary arc if u(t) = u M for a.a. t ∈ (t 1 , t 2 ). We sometimes simply call them boundary arcs. We say that a boundary arc (c, d) is initial if c = 0, and final if d = T .

	Let	
	(6.19)	E 2 := H 2 0 (Ω) × H 1 0 (Ω).
	Hypothesis 6.2. We assume	
	(6.20)	
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Appendix A. On the adjoint equation

We consider the derivation of the costate equation for problem (P) with cost function (1.2).

Lemma A.1. Given constants c i ∈ R, i = 1, . . . , 4 and the operator

Identifying H with its dual H * the adjoint operator N * is given by

This proves the claim.

Corollary A.2. (i) The adjoint operators of A and M k defined in (2.5) and (6.4) are given as where p takes the role of p 2 .