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Abstract—Video codecs are primarily designed assuming that
rigid, block-based, two-dimensional displacements are suitable
models to describe the motion taking place in a scene. However,
translational models are not sufficient to handle real world
motion types such as camera zoom, shake, pan, shearing or
changes in aspect ratio. We present here a region-based inter-
prediction scheme to compensate such motion. The proposed
mode is able to estimate multiple homography models in order
to predict complex scene motion. We also introduce an affine
photometric correction to each geometric model. Experiments
on targeted sequences with complex motion demonstrate the
efficiency of the proposed approach compared to the state-of-
the-art HEVC video codec.

I. INTRODUCTION

The efficiency of video compression tools heavily relies

on their ability to reduce the temporal redundancy between

consecutive frames. The classical and current approach con-

sists in predicting the motion between frames by estimating

translational motion vectors. A prediction is then performed by

translating blocks from the reference frame according to the

corresponding motion vectors. A potential residue is added

when this prediction is inaccurate in respect to the targeted

encoding bit-rate or quality.

However, classical translational models cannot compensate

accurately some specific motion types such as camera zoom,

shake, shearing, pan, changes in aspect ratio. Such complex

motion are currently handled by splitting large objects into

multiple coding blocks compensated with translational motion

models. This requires more side information to code the

block splitting tree and produces inaccurate predictions, which

consequently result in costly residues.

Using more complex transformation models has long been

investigated by the video compression community. Early at-

tempts were proposed for MPEG-4 [1] to apply homographic

global motion compensation to sprites [2], [3] and for an

associated global and local compensation [4] in H.263 [5].

These approaches were discarded at that time in favor of

translational models and dense block partitioning, both for

coding performances and complexity reasons. Recent works

have demonstrated that coding improvements could still be

achieved by using global homographic motion models in

current state-of-the-art video codecs.

In the ongoing work to improve the compression efficiency

of the High Efficiency Video Coding (HEVC) [6] codec, an

affine mode was proposed in [7] to the Joint Video Exploration

Team (JVET) [8]. Chen et al. proposed a simplified affine

prediction model estimated at the block level which achieves

significant gains on the targeted sequences and good results

on the common test condition (CTC) sequences [9].

Recently, support for global (frame-based) and local (block-

based) homography models has also been proposed and inte-

grated in the emerging AV1 codec from the Alliance for Open

Media [10], [11]. Parker et al. demonstrated the effectiveness

of such motion prediction tools on videos with complex or

steep camera motion. However, they noted that a single global

motion model may not be sufficient to handle geometric

distortions in scenes with strong parallax.

In a previous work [12], the authors proposed a novel

prediction method for compressing highly correlated images

as found in photo albums or image cloud databases. In order to

compensate for strong distortions such as differences of view-

point, focal length or cameras, a region-based compensation

method was developed. We adapt here the previously proposed

scheme to be used for video compression in a classical state-

of-the-art video codec (HEVC).

In this paper, we present a region-based prediction mode for

motion compensation in video compression. The proposed ap-

proach aims at extracting multiple homographic transformation

models between video frames. A photometric compensation

model is also estimated for each segmented region. We demon-

strate the efficiency of the proposed scheme on sequences

with non-translational motion, compared both to the classical

translational compensation and to a single global homographic

motion model. Coding results were obtained with the reference

HEVC implementation (HM software1).

II. REGION-BASED MODELS ESTIMATION

A. Single homography model estimation

To model large geometric distortion between frames, a

homography model is often used as it can handles many types

1https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/


of distortions. A homography model H can be defined by the

following 3 × 3 matrix

H =





sx. cos(θ) −sy. sin(θ + σ) tx
sx. sin(θ) sy. cos(θ + σ) ty

kx ky 1



 (1)

where (tx, ty) represent the translation coefficients, θ the ro-

tation, (sx, sy) the scale parameters, σ the shear, and (kx, ky)
the keystone distortion coefficients. To estimate the homogra-

phy parameters, the first step consists in matching common

landmarks between the frames. The model parameters are

then estimated from the matched locations by minimizing

the projection error between the projected keypoints of the

reference frame and the target frame keypoints.

To detect and match common landmarks, local feature

descriptors are often used as they are more robust to geo-

metric distortions (e.g. translation, rotation, zoom, scale) and

illumination variations than pixel values [13]. These keypoint

descriptors are used to detect and match common landmarks

between frames. Feature vectors (or descriptors) are extracted

from both images at the detected keypoint locations and then

matched exhaustively. The SIFT [13] algorithm is used as it

has been proven to be robust and efficient. In order to further

improve the matching, we use the recent RootSIFT variant

proposed by Arandjelovic et al. in [14].

A homography matrix H is then estimated via the

RANSAC [15] algorithm from the matched keypoints. To

robustly compute the homography model parameters with

RANSAC, the Symmetric Transfer Error (STE) [16] is used

to measure the distances (the l2-norm here) between matched

keypoints. Since the STE takes into account both the forward

and backward projections of the matched keypoints, this

distance is well suited for real-world data where local features

detection and their matching will likely contain errors [16].

To increase the robustness of the estimation, the determinant

of the homography matrix is also used to discard invalid

models. As pointed out by Vincent et al. in [17], homographies

with high or low determinants can be discarded as they

correspond to degenerated cases, i.e. when the absolute value

of the determinant of the matrix (or its inverse) is close to

zero. Following the recommendation of [17], a threshold of

10 is used.

B. Multiple homography models estimation

A single homography is not always sufficient to describe the

possible geometric distortions between frames, especially for

non-planar scenes and scenes with strong parallax. To robustly

estimate multiple homography models between a reference

image and a target image, we propose to use a region-based

estimation [12], consisting of a semi-local approach to better

capture correlation between the two images. The main idea is

to detect the major regions (planes or objects) found in both

images and estimate the geometric transformations between

them. We present here the main steps of the multiple models

estimation, more details about the method can be found in [12].

(a) (b)

(c) (d)

Fig. 1. Region-based estimation process: (a) current frame, (b) reference
frame, (c) and (d) matched descriptors.

The target image is first segmented into small homogeneous

regions by leveraging the efficient SLIC super-pixels algo-

rithm [18]. SLIC uses a combined colorimetric and spatial

distance metric to cluster similar and neighbouring pixels.

For each extracted super-pixel, a projective transforma-

tion, i.e. a homography model, is estimated from the SIFT

keypoints located inside the super-pixel boundaries. We use the

single homography estimation method previously presented

in subsection II-A. However, some super-pixels may not have

enough keypoints to estimate correctly a homography, may

contain outliers, or may share similar or close homographies.

To improve the robustness as well as to reduce the number

of homographies, the extracted models are recursively re-

estimated and fitted to the matched keypoints via the energy

minimization method proposed in [19]. The expansion (assign-

ment) and re-estimation steps are performed iteratively until

convergence of the minimization or until a maximum number

of iterations is reached. At each iteration, the keypoints are

assigned to the homography model that minimizes a combined

energy function, the sum of three terms: data cost, smoothness

cost and label cost. The data cost is a fidelity term, computed

from the STE, which ensures that the model properly describes

the projection. The smoothness cost is defined from the

Delaunay triangulation of the matched keypoints. It penalizes

neighboring points with different assigned homographies in

order to preserve spatial coherence. The label cost is used

to restrict the number of models. Due to the likely presence

of outliers in the matches, an additional model is introduced

to fit their distribution (a priori estimated). An example of

the resulting labelling is shown in Figure 1d, where one can

observe that 3 regions are detected successfully.

C. Photometric compensation

Once the finite set of homographies describing the geo-

metric transformations between frames has been determined,

predictions can be constructed. However, disparities due to

illumination differences between the constructed blocks image



Fig. 2. Coding scheme: illustration for a GOP of 8 frames with the default
random access configuration. The dashed lines represent the default references,
the straight lines the extra reference for the proposed mode.

and the current block to encode may exist. During the encod-

ing, these disparities will result in a highly energetic residue,

limiting the use of the predictor by the encoder.

To compensate these distortions, we estimate an affine pho-

tometric compensation model for each previously estimated

region. The two model coefficients, α and β are computed by

minimizing the sum of absolute errors (SAD) on the matched

pixel regions with a linear solver:

argmin
α,β

∑

P

|Y ′(x′

p) − (α.Y (xp) + β)| (2)

This scale-offset model is estimated and applied only on the

main component channel (Y) of the prediction blocks. We use

the sum of absolute differences (SAD) to decide whether to

enable or not the photometric model for each region during the

prediction. If selected, the compensation is performed for all

the blocks in the region. The SAD is used in this context as a

fast estimator for the quality of reconstruction, compared to the

full RDO process. As the SAD tends to favour more compact

residues, it is preferred over the sum of squared differences

(SSD).

III. CODING SCHEME

When compressing a video sequence with a classical video

codec, most of the sequence frames are coded with the inter-

prediction mode enabled, to make use of the temporal redun-

dancy. All frames coded with inter-prediction leverage a set of

reference frames, from which block predictions are performed

by estimating and transmitting motion vectors and residues

in the bit-stream. The proposed region-based estimator was

implemented in this context.

In our setup, the region-based models are estimated between

the original current frame and the original first frame of the

group of picture (GOP). Although the predictor could be used

for all the frames in the reference pictures buffer of the current

image, we choose to use only one frame for implementation

reasons, focusing on demonstrating the efficiency of the pro-

posed mode. Potential prediction blocks are generated for each

extracted model by warping and interpolating the reconstructed

(encoded/decoded) blocks of the reference frame from the ho-

mography model, then compensating the luminance channel.

Once all the blocks of the current frame have been encoded,

we determine which models have been actually used by

the encoder through the rate distortion optimization (RDO)

TABLE I
BD-RATE REDUCTION COMPARED WITH HEVC. AFFINE SEQUENCES IN

SET (1), NON-AFFINE IN SET (2).

Sequence GLB GLB-L RB RB-L

(1)

CStoreGoods 720x1280 -2.29% -2.29% -2.58% -2.71%

DrivingRecorder1 720x960 0.16% 0.16% -0.90% -1.05%

DrivingRecorder2 720x960 0.11% 0.07% -1.63% -1.81%

LakeWalking 720x960 -7.06% -7.06% -9.26% -10.45%

ParkSunny 720x1280 -0.13% -0.37% -0.28% -0.74%

ParkWalking 720x1280 -2.04% -2.04% -2.73% -3.11%

bluesky 1920x1080 -3.90% -4.21% -3.97% -4.32%

station2 1920x1080 -11.28% -11.75% -12.13% -13.27%

tractor 1920x1080 0.53% 0.16% -0.27% -0.27%

average -2.88% -3.04% -3.75% -4.19%

(2)

B Cactus 1920x1080 0.02% -0.03% -3.16% -3.17%

city 1280x720 0.13% 0.13% 0.00% -0.26%

in to tree 1280x720 -0.28% -0.28% -0.54% -0.54%

shields 1280x720 -2.06% -2.06% -2.13% -2.13%

average -0.55% -0.56% -1.46% -1.52%

Total average -2.16% -2.27% -3.04% -3.37%

process. The default inter-prediction modes of HEVC are

often efficient enough to predict the blocks and sending the

parameters for multiple models is more expensive than simple

motion vector parameters. As such, our mode competes with

the other inter-prediction modes in the RDO loop and is only

activated when the classical translational estimation fails to

predict correctly the current block.

A specific syntax is added in the HEVC bit-stream to

signal the used models, so that the stream can be decoded.

The geometric and photometric models parameters are also

encoded and stored in the bitstream for each frame, as half-

precision floating point (16 bits).

IV. EXPERIMENTAL RESULTS

The coding experiments are performed on common test

sequences [9], [20] and proposed User Generated Content

(UGC) sequences [21]. The selected sequences display a wide

variety of motion caused by camera zooms, camera rotations,

camera shakes, and classical 2D translational motion.

The HEVC HM software version 16.16 was used for all

the experiments. The rate-distortion performances presented

here are computed with the Bjontegaard metric [22] using

the common 22, 27, 32, 37 Quantization Parameter (QP)

values. The PSNR is computed on the Y channel only. The

default HM random access configuration mode [9] is used as a

baseline in all the following tests, with a GOP size of 16. The

parameters for the region-based models estimator are fixed for

all the experiments, more details about the adjustment of these

parameters can be found in [12].

A. Coding results

Experimental results for the coding experiments are reported

in Table I, the first set (1) of sequences corresponds to targeted

sequences with known affine content, other sequences are

placed in the second set (2). For comparison, we also introduce

a global motion estimator as a second baseline, estimated



(a) “station2” (b) “bluesky”

(c) “tractor” (d) “Cactus”

Fig. 3. Region-based prediction mode usage. Red and orange blocks are
coded with classical intra- and inter-prediction, respectively. Predictions made
by our mode are depicted with the other colors.

with a classical SIFT+RANSAC approach (Section II-A). BD-

rates reductions are presented for the global motion estimator

(GLB), the global motion estimator with a global luminance

compensation (GLB-L), the proposed region-based approach

(RB) and the region-based approach with the luminance com-

pensation (RB-L).

First, one can note that the GLB scheme brings an improve-

ment of -2.88% over the default translational motion models

of HEVC on the targeted sequences, highlighting the need

for more complex motion prediction models. On the whole

dataset, improvements go up to -11.75% with a mean BD-rate

reduction of -2.16%.

The proposed region-based prediction mode achieves a

greater improvement, with an average gain of -3.04%, up to

-12.13%. Most of the sequences benefit from the multiple

models prediction, with an average improvement of -0.88%

over the single model mode. Although the gains are limited for

most sequences, videos with affine motion display significant

gains such as “station2” (-12.13%), “LakeWalking” (-9.26%)

and “bluesky” (-4.32%).

The efficiency of the luminance compensation is low in

the context of the global estimator, with only a marginal

improvement of -0.11%, whereas a higher gain of -0.33% can

be obtained with the region-based approach. As the luminance

compensation is estimated from the matched regions content

and not on the global frame, the estimation is more precise

and robust.

Overall, our scheme achieves an average BD-rate gain

of -3.37%, with -4.19% on targeted affine sequences and

especially -1.52% on the second set.

To illustrate the use of the proposed models by the encoder,

we adapted an HEVC bit-stream analyzer to display the use

of the mode for each block. Examples are shown Figure 3 on

4 sequences. One may note that our prediction tool is enabled

for a large number of the blocks within the reference frame

“footprint”. For example, in the “station2” and “bluesky”

TABLE II
MEAN COMPLEXITY INCREASES COMPARISON AGAINST HEVC

Method
Complexity

Encoding Decoding

GLB 189.92% 174.10%
GLB-L 190.27% 173.18%
RB 299.93% 196.01%
RB-L 301.45% 198.39%

sequences, the borders are not available for the prediction as

a zoom and a rotation were respectively performed by the

camera.

B. Complexity study

We present here a brief complexity study of the proposed

scheme. The prediction tool was implemented in the HM

software (version 16.16) without particular optimization.

As it is often the case, the main complexity overhead

of the prediction scheme resides on the encoder side. The

mean complexity increases are reported in Table II. The

mean runtime increase of the RB-L scheme is of ∼300%

compared to the default HM encoder. Most of the overhead is

spend estimating the region-based models and in the increased

RDO loop. Numerous improvements are possible to optimize

the region-based estimator, especially the keypoints detection,

extraction and matching process.

The complexity on the decoder side has a mean increase of

∼200% for the RB-L method. Again, our implementation is

not optimized. For example, we warp a whole frame for each

model instead of warping only the selected blocks. Moreover,

compared to the encoder, the decoder performs only a few

extra operations. The model parameters are first decoded, then

the blocks are generated by warping and interpolating the

reference frame, and the luminance pixel values are finally

corrected. All these operations can be optimized for fast

processing. Besides, as the computation is still linear on the

input (O(n)), an hardware implementation would have almost

no overhead.

V. CONCLUSIONS

In this paper we present a novel video prediction mode to

describe complex motion in video sequences. The efficiency

of the proposed solution was demonstrated against state-of-

the-art video coding tools on multiple sequences, with an

average gain of -3.37% over HEVC. The complexity of the

prediction mode is limited, especially on the decoder side, with

respect to the gains that can be obtained. Although the region-

based prediction is currently limited to one reference frame,

it could be extended to use more frames from the reference

pictures buffer. Improving the speed and the robustness of the

prediction also constitutes an important future work.
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