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Optimal releases for population replacement

strategies, application to Wolbachia

L. Almeida∗ Y. Privat† M. Strugarek‡§ N. Vauchelet¶

Abstract

In this article, we consider a simplified model of time dynamics for a mosquito popula-
tion subject to the artificial introduction of Wolbachia-infected mosquitoes, in order to fight
arbovirus transmission. Indeed, it has been observed that when some mosquito populations
are infected by certain Wolbachia strains, various reproductive alterations are induced in
mosquitoes, including cytoplasmic incompatibility. Moreover, these Wolbachia bacteria can
reduce the ability of insects to become infected by viruses such as the dengue ones, cutting
down their vector competence and thus effectively stopping local dengue transmission.

The behavior of infected and uninfected mosquitoes is assumed to be driven by a com-
partmental system enriched with the presence of an internal control source term standing for
releases of infected mosquitoes, distributed in time. We model and design an optimal release
control strategy with the help of a least square problem. In a nutshell, one wants to mini-
mize the number of uninfected mosquitoes at a given time horizon, under relevant biological
constraints. We derive properties of optimal controls and study a limit problem providing
useful asymptotic properties of optimal controls. We numerically illustrate the relevance of
our approach.

Keywords: biomathematics, ordinary differential systems, compartmental models, asymptotic
analysis, optimal control, bang-bang solutions.
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1 Introduction

For many years (since [17]), scientists have been studying Wolbachia, a bacterium living only
inside insect cells. Recently, there has been increasing interest in the biology of Wolbachia and in
its application as an agent for control of vector mosquito populations, by taking advantage of a
phenomenon called cytoplasmic incompatibility. In key vector species such as Aedes aegypti, if a
male mosquito infected with Wolbachia mates with a non-infected female, the embryos die early in
development, in the first mitotic divisions (see [31]). This also happens even if the male and female
are both infected with Wolbachia but are carrying mutually incompatible strains. Interestingly,
an infected female can mate with an uninfected male producing healthy eggs just fine. Hence,
using cytoplasmic incompatibility (CI) allows scientists to produce functionally sterile males that
can be released in the field as an elimination tool against mosquitoes. This vector control method
is known as incompatible insect technique (IIT).

Another promising application of this symbiotic bacteria is the control of endemic mosquito-
borne diseases by means of population replacement. This control relies on the pathogen interference
(PI) phenotype of some Wolbachia strains, especially with Zika, dengue and chikungunya viruses
in Aedes mosquitoes (see [30]). Population replacement methods have the benefit of being more
environmentally benign than insecticide-based approaches (since they are species specific) and
potentially more cost effective (since they are long-lasting). Despite the broad range of arthropods
carrying Wolbachia, no transmission event to any warm-blooded animals has been reported. The
principle is to release Wolbachia carrying mosquitoes in endemic areas. Once released, they breed
with wild mosquitoes. Over time and if releases are large and long enough, one can expect the
majority of mosquitoes to carry Wolbachia, thanks to CI. Due to PI, the mosquito population then
has a reduced vector competence, decreasing the risk of Zika, dengue and chikungunya outbreaks.

Both IIT and population replacement procedure have been imagined since a long time (see e.g.
the work by Laven in 1967 [22] for population replacement, or the one by Curtis and Adak [10]
in 1974 for population elimination, both on mosquitoes in genus Culex), but there has been a
resurgence of interest lately for both techniques due to the increasing burden of arboviral diseases
transmitted by mosquitoes in genus Aedes, and their operational implementation is a hot topic
since the first report in [19] of field success in Australian Aedes aegypti (see [23] for IIT). We focus
here on population replacement strategies.

Motivated by the issue of controlling a population of wild Aedes mosquitoes by means of Wol-
bachia infected ones, we investigate here a simplified control model of population replacement
strategies, where one acts on the wild population by means of time-distributed releases of infected
individuals. The evolution equations we use incorporates the competition of released individuals
with the wild ones. Formally, let n1(t) denote the density of Wolbachia-free mosquitoes (the wild
individuals) and n2(t) the density of Wolbachia-infected mosquitoes (the introduced ones) at time t.
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We model population densities dynamics by the following competitive compartmental system:

dn1

dt
(t) = f1(n1(t), n2(t)),

dn2

dt
(t) = f2(n1(t), n2(t)) + u(t), t > 0,

n1(0) = n0
1, n2(0) = n0

2,

(1)

where u(·) is a non-negative function standing for a control (it models the release of Wolbachia-
infected mosquitoes). The terms fi(n1, n2), i = 1, 2, are defined by

f1(n1, n2) =b1n1

(
1− sh

n2

n1 + n2

)(
1− n1 + n2

K

)
− d1n1, (2)

f2(n1, n2) =b2n2

(
1− n1 + n2

K

)
− d2n2. (3)

The term (1−sh n2

n1+n2
) models the cytoplasmic incompatibility (CI): the parameter sh is the CI

rate; one has 0 6 sh 6 1 and when sh = 1, CI is perfect, whereas when sh = 0 there is no CI. The
other parameters (bi, di) for i ∈ {1, 2} are respectively mortality and birth rates, and K denotes
the environmental carrying capacity. A model such as (2)-(3) for mosquito population dynamics
with Wolbachia has been introduced in [12, 13], and also studied [20] where it was coupled with
an epidemiological model. In [8], similar dynamics have been described (including also a spatial
dimension); further discussion on these various models can be found in [26]. We note that the
addition of a control term was already proposed in [4] for population replacement and in [27] for
IIT (coupled with insecticide), where some associated optimization problems were described.

To make it closed, this system is complemented with nonnegative initial data (n0
1, n

0
2) and we

will assume to be, at time t = 0, in the “worst” initial situation where there are no Wolbachia-
infected mosquitoes in the population, in other words n0

2 = 0. When useful, we will use the
notations

n = (n1, n2) and f = (f1, f2)

to denote respectively the density mosquitoes vector and the right-hand side functions vector
in (2)-(3).

The mathematical model (1)-(2)-(3) in the absence of control (in other words when u = 0) will
be analyzed and commented in Section 2.1. The starting point of our analysis is to notice that
this system has, as steady states (in addition to the trivial one (0, 0))

(n∗1, 0) and (0, n∗2), with n∗i = K

(
1− bi

di

)
, i = 1, 2,

corresponding to the invasion of the total population of mosquitoes, either by the wild ones or
the Wolbachia-infected one. In the following, we will make several assumptions guaranteeing that
System (1) is bistable and monotone. Our main objective is to build a strategy allowing us to reach
the stable state (0, n∗2), starting from the other stable state (n∗1, 0), by determining in an optimal
way a control law u(t). Any path leading from (n∗1, 0) to the basin of attraction of (0, n∗2) will be
called a population replacement strategy. Our aim is thus to steer the control system as closely as
possible to the steady state (0, n∗2) at time T > 0. In an informal way, we investigate the following
issue:

How to design optimally the releases of Wolbachia-carrying mosquitoes (in other words, how to
choose a good control function u(·)) in order to favor the establishment of Wolbachia infection?
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Of course, to make this issue relevant, it is necessary to assume some constraints on the control
function u(·), modeling in particular the fact that the ability of scientists to create Wolbachia-
infected mosquitoes is limited. In the converse case, it is likely that a trivial answer would be to
release the maximal possible number of mosquitoes at each time t. In the sequel, we will hence
consider the following constraints (of pointwise and integral types) on the control function u(·)

0 6 u(t) 6M a.e. on (0, T ) and

∫ T

0

u(t) dt 6 C

for some positive constants M and C, meaning that the flux of Wolbachia-infected mosquitoes that
can be released at each time t is limited, as well as their total amount over the horizon of time T .

In the analysis to follow, we use the essential property that System (1) is competitive, meaning
that it enjoys a comparison principle (see Lemma 1).

From the mathematical point of view, problems investigated within this article are related
to optimal control theory for biological systems. Such kind of application has not been much
investigated at this time. We nevertheless mention [6, 21, 28] on optimal control problems for
mono/bi-stable systems, on the understanding that this list is far from being exhaustive.

Let us describe our main results. When b1, b2 are large, we show that the proportion of
Wolbachia-infected mosquitoes p = n2/(n1 +n2) converges to the solution of a reduced problem of
the form

dp

dt
= f(p) + ug(p), (4)

with g > 0 and f of bistable type1. Bistable frequency-based models such as (4) have been
studied extensively (see in particular [2, 25]) for cytoplasmic incompatibility modeling since the
works of Caspari and Watson [7]. Yet, as a new feature (4) incorporates rigorously a control term.
The typical control for this biological system being the releases of individuals, it was unclear to
understand how that control would act on the proportion p of infected individuals. Our approach
thus provides a way to derive a relevant control system on p from the standard control system (1)
where the input is a density of released individuals. We first prove that the optimization problems
converge along with the equations (Γ-convergence result stated in Proposition 2) to a limit problem,
and then solve it completely (Theorem 1). It appears that the solutions to the limit problem consist
of a single release phase where the maximal flux capacity M is used. Generically, this phase occurs
either at the very beginning or at the very end of the time frame [0, T ], depending on whether the
constraints allow for the existence of a population replacement strategy or not.

Numerical investigations illustrate this behavior and also hint that the optimal strategies for
steering system (1) toward infection establishment may differ significantly from those suitable
for (4).

The article is organized as follows. Section 2 is devoted to modeling issues: we introduce the
simplified dynamics we consider for the system of wild versus Wolbachia-carrying mosquitoes, as
well as the optimal control problem (Pfull) used to design a release strategy.

This problem is then analyzed in Section 3. More precisely, we show in Section 3.1 that (Pfull)
and its solution converge to a population replacement strategy optimization problem (Preduced)
for the simplified model (4), in the limit when birth rates are assumed to be large. Numerical
experiments validating our approach are presented in Section 3.2.

1The wording “bistable function” means that f(0) = f(1) = 0 and there exists θ ∈ (0, 1) such that f(x)(x−θ) <
0 on (0, 1) (in particular, one has necessarily f(θ) = 0 whenever f is smooth).
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2 Toward an optimal control problem

2.1 On the dynamics without control

First we describe precisely the asymptotic behavior of System (1) in the absence of control (in other
words, when u(·) = 0). An example of phase portrait illustrating this lemma is provided on Fig 1.
There and for all numerical illustrations of our results, the parameter values we choose for bi, di and
sh reflect the effects of a Wolbachia infection in Aedes mosquitoes. In the well-documented case of
the Wolbachia strain wMel in Aedes aegypti and according to [30, 11], it is relevant to choose: slight
fecundity reduction (b2/b1 ' 0.9), slight life-span reduction (d2/d1 ' 1.1) and almost perfect CI
(sh = 0.9). We do not fix a time scale, hence the last biologically meaningful parameter is b1/d1,
the basic reproduction number for the wild population. Freely inspiring from literature estimates
(see [14, 24, 20]) we assume that this number is large, at least equal to 3 (and describing all the
range [3.7, 7400] in Section 3.2). Since these values are used only for results illustration, they are
not intended to represent precisely a well-identified mosquito population-Wolbachia strain couple.

Lemma 1. System (1) is positive and (monotone) competitive2.
Let us assume that

b1 > d1 and b2 > d2. (5)

Then, System (2)-(3) with u(·) = 0 has at least three non-negative steady states:

(0, 0), (n∗1, 0), (0, n∗2), with n∗i = K

(
1− di

bi

)
, i ∈ {1, 2}.

In this case, each population can sustain itself in the absence of the other one. In addition, (0, 0)
is (locally linearly) unstable.

Moreover, there exists a fourth distinct positive steady state if and only if

1− sh <
d1b2
d2b1

< 1. (6)

In this case, this coexistence equilibrium is (locally linearly) unstable, and is given by

nC = K

((
1− 1

sh

(
1− d1b2

d2b1

))(
1− d2

b2

)
,

1

sh

(
1− d1b2

d2b1

)(
1− d2

b2

))
.

Moreover, the two other nontrivial steady states are locally asymptotically stable in this case.

For the sake of readability, the proof of this result is postponed to Appendix A. Notice that
conditions (5) and (6) on the parameters are relevant since Wolbachia-infected Aedes mosquitoes
typically have (even slightly) reduced fecundity and lifespan (for instance in the case of wMel strain,
[30]). Moreover CI is almost perfect in these species-strain combination (see [11]), i.e. sh is close
to 1.

Interpretation. In short, under the biologically relevant conditions (5) and (6), the two mutual
exclusion steady states are stable while whole population extinction and coexistence state are
unstable: in our model, either one of the two phenotypes must prevail in the long run, eliminating
the other one.

2This means that if (n±1 , n
±
2 ) are solutions of (1) such that n−1 (0) < n+

1 (0) and n−2 (0) > n+
2 (0) then one has

n−1 (t) < n+
1 (t) and n−2 (t) > n+

2 (t) for every time t ∈ [0, T ], where (n−1 , n
−
2 ) (resp. (n+

1 , n
+
2 )) denotes the solution

of System (1) associated to the choice of initial conditions (n0
1, n

0
2) = (n−1 , n

−
2 ) (resp. (n0

1, n
0
2) = (n+

1 , n
+
2 ))
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Figure 1: Phase portrait of System (1) for the parameters choice: b1 = 0.8, b2 = 0.6, d1 = 0.27,
d2 = 0.3, sh = 0.8 andK = 1 for which conditions (5) and (6) are satisfied. Examples of trajectories
are plotted with continuous lines. The dots locate the four steady states.

2.2 Objective function and constraints on the control

Let us fix a horizon of time T > 0. In this section, we propose a relevant choice of objective
function u 7→ J(u), trying to model that we expect the control be chosen so that the final state
(at time T ) of System (1) be as close as possible to the steady state (0, n∗2) corresponding to a
population replacement situation. Since there is no obvious choice, we will consider a least square
type functional, having the property to decrease as n(T ) gets closer to (0, n∗2).

This leads to introduce

J(u) =
1

2
n1(T )2 +

1

2
(n∗2 − n2(T ))2

+, (7)

where the we used the notation X+ = max{X, 0} for X ∈ IR and n = (n1, n2) is the solution
of (1) associated to, in some sense, the worst initial data n(0) = (n∗1, 0). Notice that, to ensure
consistency of our model, any larger value of the introduced population than the equilibrium value
n∗2 is beneficial for J(u). This objective function differs from the ones introduced in [4, 5], where
a L2 norm is used to optimize a similar protocol of Wolbachia infection establishment by releases.
Here, we are only interested in the state at the end of the treatment, which determines protocol
success or failure.

Let us enumerate the mathematical constraints we will assume on the control function u(·),
stemming from biology.

• u(t) corresponds to the density of Wolbachia-infected released mosquitoes and must be non-
negative (since we assume that we only release individuals and cannot remove them).
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• Since System (1) is monotone, it is relevant to assume an upper bound on the total number
of released individuals, namely ∫ T

0

u(t)dt 6 C

for some given C > 0. Indeed, releasing more and more individuals can never be detrimental.
Without such a constraint, the solution of the considered optimal control problem is trivial
and consists in releasing as much individuals as possible at each time.

• For practical reasons, it is neither possible to create an infinite number of Wolbachia-infected
individuals nor to release them “instantly” at time t. Hence, this leads to assume a pointwise
upper bound on the control, by setting u(t) 6 M for some M > 0 and all t ∈ [0, T ]. This
constraint models that a release is necessarily distributed in time (possibly on a very short
period of time) and cannot be an impulse.

All these considerations lead us to introduce the following set of admissible controls

UT,C,M = {u ∈ L∞([0, T ]), 0 6 u 6M a.e. ,

∫ T

0

u(t) dt 6 C} . (8)

We then deal with the following optimal control problem.

inf
u∈UT,C,M

J(u). (Pfull)

where J is defined by (7) and UT,C,M is defined by (8).

Interpretation. Problem (Pfull) amounts to finding a constrained release protocol (in terms of
total number of released individuals and maximal release flux) which steers the system as close as
possible to the target state: elimination of the wild phenotype and establishment of the introduced
one.

2.3 System and problem reductions

From a practical point of view, it appears relevant to consider that birth rates are large compared
with death rates, since vector Aedes species typically have a very high reproductive power. For this
reason, we will introduce (at the end of this section) and then analyze (in Section 3) a simplified
version of Problem (Pfull) that will help to infer some interesting qualitative properties of the
solution of Problem (Pfull). This way, we will reduce System (1) into a simple scalar equation on
the proportion of Wolbachia-infected mosquitoes in the spirit of [26]. To do so, let us introduce a
small parameter ε > 0 and the birth rates

b1 = b01/ε and b2 = b02/ε (9)

for some positive numbers b01, b02.
It is notable that, in that case, the steady-states (n∗1, 0) and (0, n∗2) respectively converge to

(K, 0) and (0,K) as ε ↘ 0, since n∗i = K(1− εdi
b0i

), i = 1, 2. Notice also that (5) is automatically

satisfied as soon as ε is small enough.
In what follows, we will denote by Jε the functional defined by

Jε(u) =
1

2
nε1(T )2 +

1

2
(n∗2 − nε2(T ))2

+, (10)
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where (nε1, n
ε
2) denote the solution to Problem (1) with b1 and b2 given by (9). Let us introduce

the variables
Nε = nε1 + nε2 and pε = nε2/N

ε. (11)

Setting nε = 1
ε

(
1− Nε

K

)
, we have the following (technical but crucial) convergence result, saying

that the pair (nε, pε) converges in some sense to a well-identified limit (u, p).

Proposition 1. Let uε ∈ UT,C,M such that (uε)ε>0 converges weakly-star to u ∈ UT,C,M in
L∞(0, T ) as ε↘ 0.

The pair (nε, pε) associated to the control uε and the parameter scaling (9) solves a slow-fast
system of the form

ε
dnε

dt
= (1− εnε)a(pε)

(
Z(pε)− nε

)
− uε

K
,

dpε

dt
= pε(1− pε)

(
nε(b02 − b01(1− shpε)) + d1 − d2

)
+

uε(1− pε)
K(1− εnε)

, t > 0

nε(0) =
d0

1

b01
, pε(0) = 0,

(12)

where a(p) and Z(p) are defined by

a(p) = b01(1− p)(1− shp) + b02p > 0, Z(p) =
d1(1− p) + d2p

a(p)
> 0.

Let us assume that (6) holds and let ε0 > 0 be such that

d1

b01
<

1

ε0
and max

[0,1]
Z <

1

ε0
. (13)

Then for all ε ∈ (0, ε0) we have the uniform estimates

0 6 pε(t) 6 1 and n− 6 nε(t) 6 n+ (14)

for all t ∈ [0, T ] where

n− = min

{
d1

b01
, min
ε∈[0,ε0]

min
p∈[0,1]

1 + εZ(p)−
√

(1− εZ(p))2 + 4εM/(Ka(p))

2ε

}

n+ = max

{
d1

b01
, max
p∈[0,1]

Z(p)

}
.

Then up to a subfamily, (pε)ε>0 converges uniformly as ε↘ 0 to p, solving
dp

dt
= f(p) + ug(p), t > 0

p(0) = 0

(15)

where

f(p) = p(1− p) d1b
0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
and g(p) =

1

K
· b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

. (16)
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Interpretation. Proposition 1 is a rigorous result showing that a single equation on the propor-
tion of Wolbachia-carrying mosquitoes (equation (15)) is a fair approximation of the time dynamics
induced by the model with two populations (1), provided that the fecundity is large.

Remark 1. It is notable that the function [0, ε0] 3 ε 7→ 1+εZ(p)−
√

(1−εZ(p))2+4εM/(Ka(p))

2ε used to
define n− in the statement of Proposition 1 above converges to the finite (and bounded in p ∈ [0, 1])
value Z(p)−M/(Ka(p)) as ε→ 0. Therefore n− is uniformly bounded for ε ∈ [0, ε0].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.01

-0.005

0

0.005

0.01

0.015
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Figure 2: Equation (15) is the form dp
dt = f(p) + ug(p), with f of bistable type (see Footnote 1).

Plot of the right-hand side function f with the same parameters values as in Figure 1.

Proof. System (1) reads 
dnε1
dt

= b01n
ε
1(1− shpε)nε − d1n

ε
1

dnε2
dt

= b02n
ε
2n
ε − d2n

ε
2 + uε.

(17)

Hence, the resulting system (12) on (nε, pε) in Proposition 1 is obtained from straightforward
computations.

Let us now provide a priori bounds on (nε(t), pε(t)) (uniform in ε 6 ε0, for all t > 0). Note
that 0 6 pε 6 1 is an easy consequence of the Cauchy-Lipschitz theorem since pε = 0 and pε = 1
are respectively sub- and super-solutions.

We infer that the right-hand side of the equation on nε in (12) is bounded from below by

a(p)(1− εn)(Z(p)− n)− M

K
,

which is positive as soon as n is smaller than the smallest root of this second order polynomial in
n given by

a(p)(1 + εZ(p))− a(p)
√

(1− εZ(p))2 + 4εM/(Ka(p))

2a(p)ε
.

Moreover, the right-hand side of the equation on nε in (12) is bounded from above by

a(p)(1− εn)(Z(p)− n),

9



which is negative as soon as n is between Z(p) and 1/ε. We then infer the expected uniform
estimates on nε as soon as ε0 is small enough.

We are then driven to the slow-fast system (12). Using the uniform bounds on nε, pε, uε, we
infer that the right-hand sides are bounded. Hence, by using the Arzelà-Ascoli theorem, we get
that (pε)ε>0 converges up to a subfamily uniformly to some function p such that p(0) = 0 and
0 6 p 6 1 as ε↘ 0. Moreover, dp/dt is uniformly bounded since dpε/dt is.

According to Lemma 3 below, the limit p satisfies

dp

dt
= f(p) + ug(p), p(0) = 0,

with f and g defined by (16). Since the solution to this equation is unique, we finally get the
uniform convergence of the whole family (pε)ε>0 to p.

The two following technical lemmata are used in the proof of Proposition 1.

Lemma 2. Up to a subfamily, the family (nε)ε>0 converges weakly to Z(p) − u
K as ε ↘ 0 in

(W 1,1)′, with p the uniform limit of any subfamily (pε)ε>0.

Proof. Let φ ∈ W 1,1 and multiply the differential equation satisfied by nε by φ and integrate by
parts over [0, T ]. We get

ε[φnε]T0 − ε
∫ T

0

dφ

dt
nε =

∫ T

0

φa(pε)(Z(pε)− nε)−
∫ T

0

φ
uε

K
.

By weak-star convergence of uε in L∞, uniform convergence of pε in L∞ and uniform boundedness
of nε we infer that

0 = lim
ε→0

∫ T

0

φa(pε)(Z(pε)− nε)−
∫ T

0

φ
u

K
,

leading to the expected result.

Lemma 3. Up to a subfamily, (pε)ε>0 converges uniformly to p solving the ordinary differential
equation

dp

dt
= f(p) + ug(p), p(0) = 0,

with f and g defined by (16).

Proof. Let us first recast the equation on pε in system (12) under the form

dpε

dt
= βε(n

ε, pε, uε), pε(0) = 0,

with

βε(n, p, u) = p(1− p)
(
n(b02 − b01(1− shp)) + d1 − d2

)
+

u(1− p)
K(1− εn)

so that we easily infer (with obvious notations) that βε → β as ε ↘ 0 with βε(n, p, u) = nβ̂(p) +

β0(p) + uβ̃ε(n, p), β(n, p, u) = nβ̂(p) + β0(p) + uβ̃(p), β̂(p) = p(1 − p)(b02 − b01(1 − shp)), β0(p) =

(d1 − d2)p(1− p) and β̃(p) = 1−p
K(1−εn) .

Using the previous considerations (and in particular the uniform boundedness of pε, nε and

uε), we deduce that p is in fact Lipschitz-continuous, and that β̂ and β̃ are continuous on [0, 1].
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Now, let us show that p satisfies the limit equation in a weak sense. Let φ ∈ C∞c (0, T ). We
compute each term separately: the terms in dpε/dt and β0(pε) converge by uniform convergence
of pε. Therefore, we have∫ T

0

φnεβ̂(pε) =

∫ T

0

φnεβ̂(p)︸ ︷︷ ︸
→

∫ T
0
φnβ̂(p)

+

∫ T

0

φnε
(
β̂(pε)− β̂(p)

)
︸ ︷︷ ︸

|·|6‖nε‖∞o(1)

.

and ∫ T

0

φuεβ̃ε(nε, pε) =

∫ T

0

φuεβ̃(p)︸ ︷︷ ︸
→

∫ T
0
φuβ̃(p)

+

∫ T

0

φuε
(
β̃ε(nε, pε)− β̃(p)

)
︸ ︷︷ ︸

|·|6Mo(1)

.

by using simultaneously the weak convergence properties of (uε)ε>0 and (nε)ε>0 (see Lemma 2)

as well as the aforementioned convergence of βε to β. Here, it is crucial that the limit β̃ does not
depend on n but merely on p, and we rely on the uniform estimate on nε.

Finally a standard argument yields that p must satisfy the equation in a strong sense since it
is Lipschitz-continuous.

We are now in position to determine the asymptotic behavior of the solutions of Problem (Pfull)
as ε↘ 0, in the case where (9) is assumed.

We have already observed that the invasion equilibrium (0, n∗2) is in particular changed into
(0,K(1−εd2

b02
)), which converges to (0,K) as ε↘ 0. By using the result stated in Proposition 1, we

formally infer that (Nε(T ))ε>0 converges to K and (pε(T ))ε>0 converges to some limit p(T ) ∈ [0, 1]
as ε↘ 0, meaning that (nε1(T ), nε2(T )))ε>0 converges to (K(1−p(T )),Kp(T )). It follows that Jε(u)
converges, as ε↘ 0 to

K2

2
(1− p(T ))2 +

K2

2
(1− p(T ))2 = K2(1− p(T ))2,

where p denotes the solution of (15).
This leads to introduce the cost function (7) defined by

J0(u) = K2(1− p(T ))2, (18)

as well as an asymptotic version of Problem (Pfull) reading

inf
u∈UT,C,M

(1− p(T ))2, (Preduced)

where p solves (15) and UT,C,M is defined by (8).

In Section 3, we will analyze the connections between Problem (Pfull) and Problem (Preduced),
by providing a partial description of minimizers and highlighting good convergence properties as
ε↘ 0.

3 Analysis of Problem (Pfull) and numerics

3.1 Description of minimizers

This section is devoted to the analysis of Problems (Pfull) and (Preduced). It mainly contains two
results:

11



• In Prop. 2, we state a Γ-convergence type result relating the asymptotic behavior of the
solutions of Problem (Pfull) to the ones of Problem (Preduced). We also investigate existence
issues for these problems.

• In Theorem 1, we completely describe the solutions of Problem (Preduced).

Definition 1 (Γ-convergence, [3]). One says that Jε Γ-converges to J0 if for u ∈ UT,C,M and
(uε)ε>0 converging weak-star to u in L∞(0, T ), one has

lim inf
ε→0

Jε(uε) > J0(u) (19)

and there exists a sequence (uε)ε, with uε ⇀ u, such that

lim sup
ε→0

Jε(uε) 6 J0(u). (20)

To investigate the convergence of minimizers for Problem (Pfull), we will use the fundamental
theorem of Γ-convergence (see e.g. [3, Theorem 2.10]) stating that, under a Γ-convergence property
and equicoercivity of the considered functional, closure points of the sequence of minimizers are
themselves solution of an asymptotic problem.

Proposition 2. Let T,C,M > 0 and assume that (5) and (6) hold. Problem (Pfull) and Problem
(Preduced) have (at least) a solution.

Moreover, let (uε)ε>0 be a family of minimizers for Problem (Pfull). Then, one has

lim
ε↘0

inf
u∈UT,C,M

Jε(u) = inf
u∈UT,C,M

J0(u)

and any closure point of this family (as ε ↘ 0, for the L∞-weak star topology) is a solution of
Problem (Preduced).

Interpretation. Proposition 2 establishes that the controlled scalar equation (15) is not only a
fair approximation of the time dynamics of the infection frequency n2/(n1+n2) from system (1), but
also provides a sound framework for studying optimization problems. Morally, a release protocol
defined by solving the simpler problem (Preduced) will be typically good for (Pfull) as well, provided
that the fecundity is large.

We now solve Problem (Preduced) involving p, the solution to (4), in other words

dp

dt
= f(p) + ug(p),

In what follows, we assume that (6) is satisfied and will mainly use structural properties of
f and g. Namely they are C1 functions on [0, 1] such that g > 0 on [0, 1), g(1) = 0, and f is a
bistable function (see Footnote 1). We denote by θ the unique real number satisfying

f(θ) = 0 and θ ∈ (0, 1),

where f is given by (16), in other words,

θ =
1

sh

(
1− d1b

0
2

d2b01

)
. (21)
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Proof. Let us first investigate the existence of solutions for Problem (Pfull) under the assumption
(9).

Fix ε > 0 and consider (uεn)n∈IN a minimizing sequence. According to the Banach-Alaoglu
Bourbaki theorem, the set UT,C,M is compact for the weak star topology of L∞(0, T ). Therefore,
up to a subsequence, (uεn)n∈IN converges to some element uε ∈ UT,C,M . Let us use the same
notation to denote (uεn)n∈IN and any converging subsequence (with a slight abuse of notation).

An immediate adaptation of the proof of Proposition 1 yields successively that (nεn)n∈IN (the
sequence of solutions nεn of System (1) corresponding to u = uεn) is uniformly bounded and con-
verges uniformly to some limit nε as n → +∞, which corresponds to the solution of System (1)
with u = uε. We then infer that (Jε(uεn))n∈IN converges to Jε(uε) and the conclusion follows.

To prove the convergence of minimizers as ε ↘ 0 and the existence of solutions for Problem
(Preduced), we will show that Jε Γ-converges to J0 as ε→ 0, and conclude by using the fundamental
theorem of Γ-convergence ([3, Theorem 2.10]).

We compute

Jε(uε) =
K2

2

(
(1− εnε(T ))2(1− pε(T ))2 +

(
1− pε(T )− ε(d2

b02
− pε(T )nε(T ))

)2
+

)
so that if ε > 0 is small enough,

Jε(uε) =
K2

2

(
2(1− pε(T ))2 − 2εnε(T )(1− pε(T ))(2pε(T )− 1)− 2ε(1− pε(T ))

d2

b02

+ ε2(
d2

b02
)2 − 2ε2pε(T )nε(T ) + ε2nε(T )2((1− pε(T ))2 + pε(T )2)

))
.

By the uniform estimates on nε, pε provided in Proposition 1, we get that dpε/dt is uniformly
bounded in ε on [0, T ], and thus by Arzelà-Ascoli theorem up to extraction pε converges uniformly
to some p.

In the particular case where uε = u we get that limε→0 J
ε(u) = J0(u), which implies (20).

Indeed, according to Proposition 1, the limit p is unique and solves precisely

dp

dt
= f(p) + ug(p), p(0) = 0.

Note that Proposition 1 proves in fact the stronger result that Jε(uε) converges to J0(u) as ε
goes to 0, whence (19).

Theorem 1. Let T , C, M be three positive numbers and assume that T > C/M (in other words

that the horizon of time is large enough). Any solution u to (Preduced) satisfies
∫ T

0
u∗(t)dt = C

and is bang-bang (i.e. equal a.e. to 0 or M).
If M 6 maxp∈[0,θ]−f(p)/g(p) then the unique solution to (Preduced) is given by M1[T−C/M,T ].
Otherwise, defining

C∗(M) =

∫ θ

0

Mdp

f(p) +Mg(p)
, (22)

one has

• if C < C∗(M) then the solution to (Preduced) is unique and equal to u∗ = M1[T−C/M,T ]. In
this case J0(u∗) > (1− θ)2;

• if C > C∗(M) then the solution to (Preduced) is unique and equal to u∗ = M1[0,C/M ]. In this
case J0(u∗) < (1− θ)2;
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• if C = C∗(M) then there is a continuum of solutions to (Preduced) given by u∗λ = M1[λ,λ+C/M ]

for λ ∈ [0, T − C/M ], with J0(u∗λ) = (1− θ)2,

where θ is given by (21).

Theorem 1 is illustrated on Fig. 3.

Interpretation. Theorem 1 implies that the best release protocol in the framework of the fre-
quency model (15) consists in a single release phase, either at the beginning of the time frame if
the desirable state is reachable, or at the end otherwise. To what extent must this strategy be
adapted when ε > 0 is small but nonzero (i.e. in the real situation where fecundity is large but
finite)? Numerical results in Section 3.2 begin to answer this challenging question.

The proof relies on several intermediary lemmas which we state and prove below. We first
prove that the L1 constraint on the control u is saturated.

Lemma 4. If u∗ solves the optimization problem (Preduced), then

∫ T

0

u∗(t) dt = min(C, TM).

Proof. This is a consequence of the fact that the function g defined by (16) satisfies g(p) > 0 for
p ∈ [0, 1). Indeed, if u1 < u2 then if there exists a time τ > 0 such that the corresponding solution
to (4) satisfies q1(τ) = q2(τ) < 1. We deduce from (4) that q̇1(τ) < q̇2(τ). Thus there exists τ1 > τ
such that q1(t) < q2(t) on [τ, τ1].

As a consequence, if h is a nonnegative function such that
∫

[0,T ]
h > 0 then J0(u+αh) < J0(u)

whenever α is small enough. Thus, the constraint is saturated.

Let us define the adjoint state q defined by

− q̇ =
(
f ′(p) + ug′(p)

)
q on (0, T ), q(T ) = −2(1− p(T )). (23)

Standard arguments yield existence and uniqueness of a solution for System (23). Moreover, since
0 < p(·) < 1, we deduce that q(·) < 0 on [0, T ].

Let us now state the (necessary) first order optimality conditions for Problem (Preduced).

Lemma 5. Let u ∈ UT,C,M . Then, for every admissible perturbation3 h, the Gâteaux-derivative
of J0 at u in the direction h reads

〈dJ0(u), h〉 =

∫ T

0

h(t)q(t)g(p(t))dt.

Proof. Let h be an admissible perturbation of u (see Footnote 3). The Gâteaux-differentiability
of J0 is standard and follows from the differentiability of the mapping UT,C,M 3 u 7→ p, where p
denotes the unique solution of (15), itself deriving from the application of the implicit functions
theorem combined with variational arguments.

Let us then compute the Gâteaux-derivative of J0 at u in the direction h, defined by

〈dJ0(u), h〉 = lim
ε→0

J0(u+ εh)− J0(u)

ε
.

3More precisely, we call “admissible perturbation” any element of the tangent cone Tu,UT,C,M
to the set UT,C,M

at u. The cone Tu,UT,C,M
is the set of functions h ∈ L∞(0, T ) such that, for any sequence of positive real

numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(0, T ) converging to h as n → +∞, and
u+ εnhn ∈ UT,C,M for every n ∈ IN (see e.g. [9]).
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Let us introduce δp, the Gâteaux-differential of p at u in the direction h. Straightforward compu-
tations yield that δp solves the linearized problem to (4),

δ̇p(t) = f ′(p)δp+ ug′(p)δp+ hg(p), δp(0) = 0.

Then, one has
〈dJ0(u), h〉 = −2(1− p(T ))δp(T ) = q(T )δp(T ),

where q is the solution to the adjoint equation (23). Then, we compute

0 =

∫ T

0

δp(q̇ + f(p)q + ug′(p)q) dt = δp(T )q(T )− δp(0)q(0)−
∫ T

0

h(t)q(t)g(p(t)) dt

and we infer that

〈dJ0(u), h〉 =

∫ T

0

h(t)q(t)g(p(t)) dt.

Lemma 6. Let u ∈ UT,C,M be a solution of Problem (Preduced). Define the switching function w
by w(t) = g(p(t))q(t) for all t ∈ [0, T ]. There exists Λ < 0 such that

• u(t) = M ⇐⇒ w(t) < Λ,

• 0 < u(t) < M ⇐⇒ w(t) = Λ,

• u(t) = 0 ⇐⇒ w(t) > Λ,

each equality being understood up to a zero Lebesgue-measure set.

Proof. Introduce the Lagrangian function L associated to Problem (Preduced), defined by

L : UT,C,M × IR 3 (u,Λ) 7→ J0(u)− Λ

(∫ T

0

u(t) dt− C

)
.

Standard arguments enable to show the existence of a Lagrange multiplier Λ such that (u,Λ) is a
saddle-point of the Lagrangian functional L. Moreover, according to Lemma 4 and since T > C/M ,

we have necessarily
∫ T

0
u = C.

Let x0 be a density-one point of {u = M}. Let (Gk,n)n∈IN be a sequence of measurable subsets
with Gn,k included in {u = M} and containing x0. Let us consider h = 1Gk,n

and notice that
u− ηh belongs to UT,C,M whenever η is small enough. Writing

L(u− ηh,Λ) > L(u,Λ),

dividing this inequality by η and letting η go to 0, it follows that

−〈dJ0(u), h〉+ Λ

∫ T

0

h(t) dt > 0

or equivalently that

−
∫
Gn,k

q(t)g(p(t)) + Λ|Gn,k| > 0.

according to Lemma 5. Dividing this inequality by |Gk,n| and letting Gk,n shrink to {x0} as
n → +∞ shows the first point of Lemma 6, according to the Lebesgue Density Theorem. The
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proof of the third point is similar, and consists in considering perturbations of the form u + ηh
where h denotes a positive admissible perturbation of u supported in {u(t) = 0}. Finally, the proof
of the second point follows the same lines, by considering bilateral perturbations of the form u±ηh
where h denotes an admissible perturbation of u supported in {0 < u(t) < M}.

Note also that the obtained properties are in fact equivalent by observing that the sets {w(t) <
Λ}, {w(t) > Λ} and {w(t) = Λ} realize a partition of [0, T ].

Lemma 7. Let u ∈ UT,C,M be a solution of Problem (Preduced). One has 0 < u(t) < M on an
open interval containing t if and only if w′(t) = 0, which rewrites f ′(p(t))g(p(t)) = f(p(t))g′(p(t)).

Under the assumption (6), there exists a unique p∗ ∈ (0, 1) such that (f/g)′(p∗) = 0 and
therefore, {u ∈ (0,M)} is an open interval containing t if and only if p(t) = p∗, which implies
u(t) = −f(p∗)/g(p∗).

Proof. Let us differentiate t 7→ g(p(t))q(t). We get

d

dt

(
qg ◦ p)(t)

)
= q′(t)g(t) + p′(t)g′(t)q(t)

= (−f ′(t)− u(t)g′(t))g(t)q(t) + (f(t) + u(t)g(t))g′(t)q(t)

= q(t)
(
f(p(t))g′(p(t))− f ′(p(t))g(p(t))

)
.

Combining this computation with Remark 2 yields the expected result.

From this general fact we deduce

Lemma 8. Let u ∈ UT,C,M be a solution of Problem (Preduced). Under the assumption (6) and if
M > max[0,1]−f/g, u is either bang-bang or constant and equal to −f(p∗)/g(p∗) (the latter case
may occur only if C = −Tf(p∗)/g(p∗)).

Proof. Between 0 and 1, f changes sign only once, at θ. In addition, the switching function
w : t 7→ q(t)g(p(t)) is decreasing if p(t) < p∗ and increasing if p(t) > p∗, since it is positively
proportional to (f/g)′, which changes sign only once, and f/g changes sign only once, and is
decreasing at 0, so (f/g)′ has the same sign as p− p∗.

Necessarily, θ > p∗. Indeed, f/g is decreasing on (0, p∗) and equal to 0 at 0 and θ.
Let I = (t1, t2) be the maximal interval on which p(t) = p∗, u(t) = −f(p∗)/g(p∗), w(t) = Λ. If

at t+2 we have u = 0 then p must decrease since p∗ < θ, so p(t) < p∗ at t+2 , and therefore w must
decrease at t2, but this contradicts the necessary optimality condition of Lemma 6. If at t+2 we
have u = M then p must increase if M is large enough. Then w must increase, and again this is
in contradiction with Lemma 6. Hence I = ∅ or I = [0, T ]. But I = [0, T ] is admissible if and only
if −Tf(p∗)/g(p∗) = C.

Let us define pM as the solution of

dpM
dt

= f(pM ) +Mg(pM ), pM (0) = 0.

Assume that M > maxp∈[0,θ]− f(p)
g(p) . Then dpM

dt = f(pM ) + Mg(pM ) > 0. Introduce the function

GM defined by G′M (p) = 1
f(p)+Mg(p) and GM (0) = 0. Then, GM is an increasing function and we

have

GM (pM (t)) = GM (pM (t0)) + t− t0, and GM (pM (C/M)) =
C

M
.

The use of all these results allows us to prove Theorem 1.

Proof of Theorem 1. We split the proof into three cases :
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• Case pM (C/M) < θ. This condition is equivalent to GM (pM (C/M)) < GM (θ) (since GM
is increasing). By Lemma 8, the control u is bang-bang and the set where u = M is open,
(since from Lemma 6, it is the set of interval on which g(p)q < Λ). Consider that u is given
by u(t) = M

∑
i∈IN 1(t2i,t2i+1), where (ti)i∈IN is an increasing sequence of times in [0, T ]. We

denote by p the corresponding solution to (4).

We want to compare with the control ū = M1[T−C/M,T ], for which the corresponding solution

to (4) is denoted p̄. Then, p̄(T ) = G−1
M (C/M).

Let us show that p(T ) < p̄(T ) = G−1
M (C/M). We use an induction to prove that for all

i ∈ IN, p(t2i) < G−1
M (C/M). Indeed, if we assume that for a i ∈ IN∗, we have for every k 6 i,

p(t2k) < G−1
M (C/M) < θ. Then, on (t2i, t2i+1), we solve the equation

ṗ = f(p), p(t2i) < θ.

Since f < 0 on (0, θ), it implies that p is decreasing on (t2i, t2i+1), thus p(t2i+1) < p(t2i). On
[t2i+1, t2i+2), we have

GM (p(t2i+2)) = GM (p(t2i+1)) + t2i+2 − t2i+1 < GM (p(t2i)) + t2i+2 − t2i+1.

By induction, we deduce that

GM (p(t2i+2)) <GM (p(t2i−2)) + t2i − t2i−1 + t2i+2 − t2i+1

<G(p(t0)) + t2 − t1 + . . .+ t2i+2 − t2i+1 6 C/M,

since p(t0) = 0 and

i∑
k=0

(t2k+2 − t2k+1) 6
C

M
. We infer

p(t2i+2) < G−1
M (C/M).

This concludes the induction and the proof in this first case.

• Case pM (C/M) > θ. We use the same strategy and introduce the solution p to (4) with u
given by u(t) = M

∑
i∈IN 1(t2i,t2i+1), where (ti)i∈IN is an increasing sequence of time in [0, T ].

We want to compare with the solution p̄ for ū = M1[0,C/M ].

We first observe that since p̄(C/M) = pM (C/M) > θ and f > 0 on (θ, 1), we have p̄ increasing
on [C/M,T ] and p̄(C/M) = G−1

M (C/M). If at time t1, we have p(t1) < θ, then on (t1, t2),
p is decreasing. Then p(t2) < p(t1) 6 p̄(t1 − t0) and we may prove as above that as long as

p(t2i+1) < θ, we have p(t2i+2) < p̄
(∑i

k=0(t2k+1 − t2k)
)

.

As a consequence the solution p associated with the optimal control should satisfy p(t1) > θ.
Then, on (t1, T ) the function p solving (4) is increasing, thus on (t1, T ), we have p > θ > p∗.
Then the switch function w is increasing. However, we have w > Λ on (t1, t2) since u = 0
from Lemma 6. Hence, it is not possible to have u = M for larger times.

• In the case where pM (C/M) = θ. In this case, we have u = M1(λ,C/M+λ) for any 0 6 λ 6
T − C/M . Indeed, for such a function, we have p ≡ 0 on [0, λ] and p ≡ θ on [C/M + τ, T ].
By contradiction, assume there is an interval on which u = 0 between two intervals on which
u = M , then on this interval p is decreasing, and thus p cannot reach the value θ at the final
time of control, by comparison.
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Remark 2. It is notable that the proof of Theorem 1 rests upon a property of the functions
involved in Equation (15), namely the existence of a unique p∗ ∈ (0, 1) such that (f/g)′(p∗) = 0,

and C 6= −Tf(p∗)/g(p∗). Indeed, letting ξ =
d1b

0
2

d2b01
we have

f

g
(p) = Kd2

( p

1− shp
ξ − p

)
,
(f
g

)′
(p) = Kd2

( 1

(1− shp)2
ξ − 1

)
.

The roots of the second-order polynomial at the numerator of the right-hand side read

p± =
1

sh

(
1±

√
ξ
)
,

so assuming (6) (i.e. ξ < 1) yields

p∗ =
1

sh

(
1−

√
ξ
)

(which indeed belongs to [0, θ) as a consequence of (6): from 1 − sh < ξ < 1 it follows that
0 < p∗ < (1 −

√
1− sh)/sh < 1 since sh ∈ (0, 1]). On the contrary, assuming d2b

0
1 < d1b

0
2 (i.e.

ξ > 1) implies that there is no such p∗ in [0, 1] (and in this case the control must be bang-bang, as
a consequence of Lemma 8 below).

Figure 3: Left: solution u∗ in the case M > maxp∈[0,θ]−f(p)/g(p) and C > C∗(M). Middle: one
solution u∗λ in the case M > maxp∈[0,θ]−f(p)/g(p) and C = C∗(M). Right: solution u∗ in the
case M 6 maxp∈[0,θ]−f(p)/g(p) or M > maxp∈[0,θ]−f(p)/g(p) and C < C∗(M). .

From Proposition 2 and Theorem 1, we provide hereafter a more precise result about the
convergence of optimal values for Problem (Pfull) as ε↘ 0.

Corollary 1. Let (uε)ε>0 be a family of minimizers for Problem (Pfull). Then, (uε)ε>0 converges
strongly in L1(0, T ) to a solution of Problem (Preduced) as ε ↘ 0 (which is unique whenever
C 6= C∗(M) with the notations of Theorem 1).

Proof. According to Proposition 2, we know that (uε)ε>0 converges weak star in L∞(0, T ) to a
solution of Problem (Preduced), say u∗.

Since u∗ is an extremal point of the convex set UT,C,M to which all elements of the sequence
(uε)ε belong, it follows from [1] that the L∞-weak∗ convergence (that is here, L1-weak convergence)
implies strong convergence in L1, and therefore

lim
ε→0

∫ T

0

|uε(t)− u∗(t)|dt = 0.
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Finally, we conclude by observing that, whenever C 6= C∗(M), the solution to Problem (Preduced)
is unique according to Theorem 1.

3.2 Numerics

This section is devoted to computing the solution of Problem (Pfull) and to illustrating the relations
with its reduced version (Preduced).

All the simulations are obtained with a direct method applied to the optimal control problem
(Pfull), consisting in discretizing System (1), the control, and to reduce the optimal control problem
to some minimization problem with constraints. To this aim, we used the open-source optimization
routine from IPOPT (see [29]) combined with AMPL modeling language (see [15]). This enables the
computation of a local minimizer for a discretized version of (Pfull).

Choice of numerical parameters and methods. Populations are normalized by setting K =
1, and Table 1 yields the values used for the other parameters. The time-dynamics (the slow-fast
system (12) depending on ε) are discretized with the Runge-Kutta implicit scheme Lobatto IIIC
of order 2 (two stages). This scheme is asymptotic preserving in ε (see [16]) and allows for sound
comparison of the simulations across a range of values of this parameter.

We obtain a solution n∆t ∈ (IR+)2Nd as well as an approximate local minimizer for the dis-
cretized problem (Pfull), û

ε,∆t ∈ [0,M ]Nd .

Category Parameter Name Value or range
Discretization ∆t Time step [0.0004, 0.0015]
Singular limit 1/ε Birth rates normalization [1, 2000]

Optimization
T Final time 10
C Maximal release number [0.15, 0.75]
M Maximal release flux 10

Biology

b01 Normalized wild birth rate 1
b02 Normalized infected birth rate 0.9
d1 Wild death rate 0.27
d2 Infected death rate 0.3
sh Cytoplasmic incompatibility level 0.9

Table 1: Parameters for the numerical resolution of (Pfull)

Results. It is convenient to introduce the number of steps in the time discretization Nd = T/∆t.
For the parameters given in Table 1, we can compute the critical value C∗(M) from Theorem 1

numerically: it is close to 0.24. Therefore we choose three values of C (0.15, 0.4 and 0.75) both
above and below this threshold, so as to get contrasting results. On Figure 4 below, solutions of
Problem (Pfull) are computed for these three different values of the integral bound C and for ε = 1.

We observe that the set I∆t,κ
M := {k ∈ J1, NdK, û

ε,∆t
k >M − κ} (approximating the set {u = M}),

for κ small enough, is made of two segments containing either 1 or Nd. Let us denote these two
segments J1, k0(∆t)K and Jk1(∆t), NdK. It seems that

• a relaxation type phenomenon may occur for optimal controls meaning that the solution is
not bang-bang.

• the set I∆t,κ
relax := {k ∈ J1, NdK, κ 6 ûε,∆tk 6 M − κ} (approximating the set {0 < u < M})

seems to be a segment for κ small enough.
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• for small values of C, k0 = 0, k1 = Nd and there is replacement failure, suggesting that
it is necessary to release a minimal number of infected mosquitoes in order to guarantee
population replacement.
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Figure 4: Top: time dynamics (plots of the wild mosquitoes density n1 starting from a positive
value versus the Wolbachia-infected mosquitoes density n2 starting from 0). Bottom: numerical
optimal control. From the left to the right: C = 0.15, C = 0.4 and C = 0.75. The parameter ε is
fixed to 1.

Figures 5 and 6 are used to validate our approach of considering the asymptotic problem
(Preduced) instead of the real one (Pfull), with C = 0.75 (leading to replacement success) and
C = 0.15 (leading to replacement failure), respectively. We compare the numerical values of
J(u = ûε,∆t) obtained either by using the direct optimization routine described above, or by
choosing u = u∗0 as the (explicit) solution of Problem (Preduced). As expected, the ratio

Jε(u∗0)− Jε(ûε,∆t)
Jε(ûε,∆t)

visually converges to 0 as ε↘ 0. The bottom panels in figures 5 and 6 illustrate the convergence
properties for pε stated in Proposition 1, and for uε stated in Corollary 1.

4 Conclusion

In this article, we proposed a strategy of Wolbachia-infected mosquitoes releases to control a sim-
plified competitive compartmental system involving wild and infected individuals. Our approach
is validated by numerical results that seem promising. Hereafter, we enumerate a list of issues that
remain open and will be investigated in a future work.
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Figure 5: Case C = 0.75. Top left: numerical minimum value Jε(ûε,∆t) and Jε(u∗0) w.r.t. ε. Top
right: relative error between the value of Jε at the numerical minimizer ûε,∆t and at the exact
solution u∗ of the asymptotic problem (Preduced) w.r.t. ε. Bottom left: plot of the absolute error
between p̂ε and p∗0. Bottom right: L1 error between ûε,∆t and u∗0.

Partial or complete solving of Problem (Pfull). When investigating numerically this problem
(see Section 3.2), we observed several interesting properties of minimizers, at least for several
relevant values of parameters: relaxation phenomena may appear (meaning that the minimizer u∗

is not bang-bang anymore). The set {u∗ = M} seems to have two connected components meeting
0 and T .

Asymptotic of Problem (Pfull) when one makes simultaneously ε go to zero and M (the
pointwise upper-bound constraint on u) go to +∞. According to Theorem 1, one shows
easily that making successively ε tend to 0 and then M tend to +∞ yields to a new asymptotic
problem whose minimizers are a (typically unique) Dirac mass. When making simultaneously ε
tend to 0 and then M tend to +∞, the behavior of minimizers is not so clear and a careful analysis
must be led to understand it.

Investigation of a more realistic model. Coming back to the initial Wolbachia-infected
mosquitoes control problem, it is likely that a model taking into account dispersal effects would
provide more satisfying and workable results. To this aim, System (1) could be replaced by a
more general reaction-diffusion system of partial differential equations. It is likely that numerical
difficulties may arise for the related optimization problem, needing to develop an adapted approach.
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Figure 6: Case C = 0.15. Top left: numerical minimum value Jε(ûε,∆t) and Jε(u∗0) w.r.t. ε. Top
right: relative error between the value of Jε at the numerical minimizer ûε,∆t and at the exact
solution u∗ of the asymptotic problem (Preduced) w.r.t. ε. Bottom left: plot of the absolute error
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A Proof of Lemma 1

Solving the equation f(n1, n2) = 0 yields the steady states by direct computation. Let us use the
notations N = (n1 +n2)/K and p = n2/(n1 +n2). The Jacobian associated to the right-hand side
f of the system reads

Jac(n) =(
b1
(
(1− shp)(1− (2− p)N) + shp(1− p)(1−N)

)
− d1 −b1(1− p)

(
sh(1− p) +N(1− sh)

)
−b2pN b2(1− (1 + p)N)− d2

)
.

It is readily seen that the extra-diagonal terms are non-positive (and even negative if p ∈ (0, 1) and
N > 0). By Kamke-Muller conditions (see [18]), this implies that the system is monotone with
respect to the cone IR+ × IR−, in other words it is competitive.

22



In particular,

Jac(n∗1, 0) =

(
−(b1 − d1) −b1 + (1− sh)d1

0 b2d1/b1 − d2

)
,

Jac(0, n∗2) =

(
b1d2(1− sh)/b2 − d1 0

−(b2 − d2) −(b2 − d2)

)
,

so that conditions (5) and (6) easily yield the linear stability of (n∗1, 0) and (0, n∗2). Combined with
the monotonicity property of the system, we get the asymptotic stability.

Then, nC belongs to the interior of the interval [(n∗1, 0), (0, n∗2)] (for the order induced by the
comparison principle recalled in Footnote 2), whose bounds are stable steady states, and there is
no other steady state in the interior of this interval. Hence it must be unstable, since the dynamics
of (1) is order-preserving.

At (0, 0), we compute the directional derivative in direction (h, k) as

Df(h, k) = lim
t→0

f(th, tk)

t
=

(
(b1(1− sh k

h+k )− d1)h

(b2 − d2)k

)
,

and in particular we find that the direction (0, 1) is unstable.
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