Guillaume Gerber

Yohann Le Faou
email: yohann.lefaou@courriel.upmc.fr

Olivier Lopez
email: olivier.lopez@sorbonne-universite.fr

Michael Trupin

The impact of churn on client value in health insurance, evaluation using a random forest under random censoring

Introduction

In insurance brokerage, an important problem is to evaluate what is known as "prospect value".

Roughly speaking, this represents the rentability of a potential policyholder. More effort could then be dedicated to attract a prospect with probable high profitability. A first approach to evaluate this prospect value is to predict how long a given current customer will keep their contract.

To investigate this, brokers now have access to large databases of potentially relevant information. In the present paper, our aim is to discuss an extension of the random forest algorithm which takes into account specific details of this framework. Among these, a crucial issue is to deal with right-censoring, which is a common problem when dealing with duration variables.

Due to the temporal phenomenon that we study, a significant number of observations are incomplete and require particular care to counterbalance the corresponding lack of information. The method we propose consists of an appropriate weighting of the observations to compensate for censoring. We discuss different approaches and compare them using simulation and real data analysis.

The random forest algorithm was first proposed in [START_REF] Breiman | Random forests[END_REF]. The underlying aim is to estimate E[φ(T)|X] with the help of bootstrap data augmentation and aggregation of regression trees. In our case, T is a right-censored variable, X a vector of covariates, and φ a known gain function, namely the value of a customer remaining a time T in the portfolio. In the presence of censoring [START_REF] Hothorn | Survival ensembles[END_REF] proposed a generalization extending the random forest algorithm. Using the inverse probability of censoring weights (IPCW) approach, described in [START_REF] Van Der Laan | Unified methods for censored longitudinal data and causality[END_REF], they introduce weights to compensate for censoring. The novelty of our approach is to compute weights in situations where censoring depends on the covariates. We will also discuss its performance compared to other weighting strategies. The IPCW technique is a very general one: once the weights have been determined, any regression technique can be generalized to this framework -see for example [START_REF] Koul | Regression analysis with randomly rightcensored data[END_REF] for linear regression, [START_REF] Goldberg | Support vector regression for right censored data[END_REF] for support vector machines, and [START_REF] Lopez | Tree-based censored regression with applications in insurance[END_REF] for classification and regression trees (CART). The difficulty in defining appropriate weights is in determining which identifiability assumption is reasonable given the situation. The weights may be considerably different if censoring is allowed to depend on covariates X (see e.g., [START_REF] Lopez | Single index regression models in the presence of censoring depending on the covariates[END_REF]), or not (see e.g., [START_REF] Stute | Kaplan-meier integrals[END_REF]), and, as we will show on real data, this has important consequences on the results of the procedure.

Another modification of random forests to the presence of censoring is the random survival forest (RSF) of [START_REF] Ishwaran | Random survival forests[END_REF] (see also [START_REF] Ishwaran | Random survival forests for r[END_REF]). In this procedure, a log-rank test is used to split the observations at each computational step of the the regression trees. This type of procedure for growing a survival tree was previously proposed in [START_REF] Ciampi | Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates[END_REF] and [START_REF] Segal | Regression trees for censored data[END_REF], and studied in [START_REF] Leblanc | Survival trees by goodness of split[END_REF], and in [START_REF] Hothorn | Unbiased recursive partitioning: A conditional inference framework[END_REF] in the context of conditional inference trees. Moreover, [START_REF] Zhu | Recursively imputed survival trees[END_REF] have studied the impact of recursively fitted RSF models on prediction quality. [START_REF] Leblanc | Relative risk trees for censored survival data[END_REF] introduced the relative risk tree algorithm, where a proportional hazard likelihood is used as the criterion at the splitting step. Forests of relative risk trees were investigated in [START_REF] Hothorn | Bagging survival trees[END_REF] and [START_REF] Ishwaran | Relative risk forests for exercise heart rate recovery as a predictor of mortality[END_REF]. The extension to left-truncation of this approach was considered in [START_REF] Fu | Survival trees for left-truncated and right-censored data, with application to time-varying covariate data[END_REF]. Additional splitting criteria examined in the literature include the exponential log-likelihood in [START_REF] Davis | Exponential survival trees[END_REF], and splits determined through analysis of residuals of the Cox model [START_REF] Ahn | Tree-structured proportional hazards regression modeling[END_REF]). A review of the literature on survival trees can be found in [START_REF] Bou-Hamad | A review of survival trees[END_REF].

The rest of the paper is organized as follows. In Section 2, we present the specific details of the types of observations we examine here, and describe the relevant random forest algorithm we have adapted to censoring. A simulation study is performed in Section 3, while the realworld behavior of our procedure is illustrated in Section 4, where we present an application of this weighted random forest to model the churn behavior of health insurance policy holders.

2 Description of the method

The survival regression setting

To study the termination risk, we introduce the lifetime of a contract, denoted T . This duration is not directly observed due to the presence of right-censoring (which is a classical issue in survival analysis). Instead of observing T , we observe a pair of variables (Y, δ) defined as

Y = min(T, C), δ = 1 T ≤C .
The need for the censoring variable C is due to the fact that some contracts may not have been terminated at the end of the observation period. Additionally, a vector of covariates X ∈ X ⊂ R p is available, in order to identify certain characteristics that may influence the termination time. Observations correspond to i.i.d. replicates (Y i , δ i , X i) 1≤i≤n of this set-up. For the sake of simplicity, we consider the case where T and C are continuous random variables. For any continuous random variable U, we will denote by S U (t) = P(U > t) its survival function.

Our aim is to estimate the function f (x) = E[φ(T)|X = x]. In our application, φ is a pricing function that associates a unitary profit with a customer remaining a time T with the portfolio in question.

Since T is not directly observed because of censoring, classical estimators of f (random forests, as developed below, or any other regression estimator) are biased if no attempt is made to correct for this phenomenon. The procedure we propose is based on the inverse probability of censoring weighting (IPCW, see e.g., [START_REF] Van Der Laan | Unified methods for censored longitudinal data and causality[END_REF]) which, through an appropriate weighting of the observations, aims to suppress this bias. This general method is described in Section 2.2 below.

Inverse probability of censoring weighting

Introduction

IPCW is a general principle which consists of correcting the bias introduced by censoring.

Given a continuous random variable V (possibly multidimensional), the key task is to determine which weights should be put on an uncensored observation in order to retrieve the distribution of the variable of interest.

Proposition 1 (The IPCW principle) Let γ =        1 if V is not censored 0 if V is censored and V = γV.
Let p(v) = P(γ = 1|V = v) and assume that ∀v, p(v) > 0.

Then for any function ψ,

E W • ψ(V) = E ψ(V) , with W = γ p(V)
.

This result states that given a random variable V that is not always observable, it is still possible to estimate its distribution based on the observations (V i , γ i) i=1,..,n . This is done by attributing weights γ i p(V i) to the observations, with p(v) the probability of V being non-censored, given V = v.

In our setting, we can apply the IPCW routine to the vector (T, X). This results in the equality:

E W • ψ(Y, X) = E ψ(T, X) , (1)
where W = δ p(Y,X) and p(t, x) = P(δ = 1|T = t, X = x) = P(t ≤ C|T = t, X = x).

In the survival setting, it is generally impossible to infer values for p(t, x) since -as it is well known -the identifiability of the model requires assumptions on the dependence between T and C that cannot be statistically verified (see Section 4.1 in [START_REF] Lagakos | General right censoring and its impact on the analysis of survival data[END_REF]). However, with assumptions on the dependence between T and C, it is possible to compute p(t, x).

Let H1 and H2 denote the following hypotheses:

H1 : P(t ≤ C|X = x, T = t) = S C (t), H2 : P(t ≤ C|X = x, T = t) = S C (t|X = x), with S C (•|X = x) the conditional distribution function of C given X = x. Sufficient conditions
for these hypotheses to be satisfied are, respectively, (T, X) C (H1) and T C conditionally on X (H2).

Clearly H2 is more general than H1, but requires estimation of a conditional survival function, which is more tricky, especially if the dimension of X is high. Hence, if the strongest assumption H1 is reasonable, it may be interesting to use it instead of H2, in order to facilitate computation of the appropriate weights. The obvious drawback is that, if the censoring is dependent on the covariates, H1 does not hold.

In what follows, we consider these two assumptions as separate cases, but both are handled simultaneously. Depending on the hypothesis we make, we note W = δ/S C (Y) (H1) or W = δ/S C (Y|X) (H2), so that in both cases equation (1) holds. We also note for all i ∈ {1, .., n},

W i = δ i /S C (Y i) (or W i = δ i /S C (Y i |X = X i))
the exact IPCW weights. However, the function S C (resp. S C (•|X)) is unknown and we have to estimate it in order to compute the weights W.

Computation of the weights

Computation of the IPCW weights requires us to estimate the survival function of the censoring variable. In many applications, the roles of the variables T and C are symmetric, and the censoring variable needs to be studied using survival models. In our work, we have used three strategies to estimate S C (resp. S C (•|X)):

• S C estimated with the Kaplan-Meier (KM) estimator [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF]):

Ŝ C (t) = Y i ≤t 1 -(1 -δ i)/ n j=1 1 Y j ≥Y i .
• S C (•|X) estimated with the Cox model [START_REF] David | Regression models and life tables (with discussion)[END_REF]). This model assumes that the hazard rate has the form: λ C (t|X = x) = λ 0 (t) • e t β•x with β a vector of coefficients, and for some random variable U, λ U = -S U /S U .

• S C (•|X) estimated with the random survival forest (RSF) algorithm [START_REF] Ishwaran | Random survival forests[END_REF]).

An alternative idea for estimating S C (•|X) would be to use a kernel estimator such as the conditional Kaplan-Meier estimator of [START_REF] Beran | Nonparametric regression with randomly censored survival data[END_REF] and [START_REF] Dabrowska | Uniform consistency of the kernel conditional kaplan-meier estimate[END_REF]. Nevertheless, this would rely on kernel smoothing, which does not behave well when the dimension of X is high, as noted in [START_REF] Lopez | Single index regression models in the presence of censoring depending on the covariates[END_REF]. This is the reason for imposing a stronger assumption on the conditional distribution of the censoring as a feasible compromise.

Given estimators Ŝ

C (resp. Ŝ C (•|X)) of S C (resp. S C (•|X)), the weights (Ŵi) i=1,..n are com- puted using the formula Ŵi = δ i / Ŝ C (Y i) (resp. Ŵi = δ i / Ŝ C (Y i |X i))
. Therefore, each method used to estimate S C leads to different IPCW weights, then to different estimators of the joint distribution of (T, X). In the following section, the weights (Ŵi) i=1,..n refer to any collection of weights computed with one of the three methods.

A weighted random forest algorithm for the regression of right-censored data

Random forest is an ensemble learning algorithm which consists of an aggregation of elemental regression trees (base learners), see e.g., [START_REF] Breiman | Random forests[END_REF] and [START_REF] Biau | A random forest guided tour[END_REF]. A regression tree (see [START_REF] Breiman | Classification and regression trees[END_REF]) produces a partition of a dataset using successive binary splits based on values of the covariates. In each subset obtained (called a leaf), the observations correspond to a homogeneous group. The key behind group formation is the choice of the splitting criterion (e.g., least squares) which aims to reduce heterogeneity at each step.

The random forest algorithm is a combination of two methods: a classification and regression tree (CART) algorithm to compute each tree, and a bagging algorithm (bagging means bootstrap aggregating, see [START_REF] Breiman | Bagging predictors[END_REF]) to introduce randomness into partition formation by building bootstrap samples. Compared to a single regression tree approach, tree aggregation in random forests stabilizes results by making them less sensitive to changes in the database.

The rest of this section is devoted to adapting the random forest algorithm to the presence of right censoring. In Section 2.3.1, we propose a modification of the splitting criterion to work in our framework. Computation of predictions given a tree is shown in Section 2.3.2. An overall description of the algorithm is given in Section 2.3.3, and we discuss its parameters in Section 2.3.4.

Split selection

In the building of a binary tree, the main interest is in the way splits are determined. Here, we describe the split selection procedure used at each node of the tree, for the growing of one tree of the forest. This tree is built using a bootstrap sample of the initial data.

Let D n be a list of indices in {1, . . . , n} which represents a bootstrap sample of size n of the initial data, drawn uniformly with replacement. Given a set B ⊂ X, let n D n ,w (B) =

i∈D n W i 1 X i ∈B be the weighted number of observations of D n that belong to B, and φD n ,w

B = 1/n D n ,w (B) i∈D n W i φ(Y i)1 X i ∈B the weighted mean of φ(Y i) for the observations within B (we set φD n ,w B = +∞ if n D n ,w (B) = 0).
Let A ⊂ X be a node of a tree, j ∈ {1, . . . , p} a variable, and u real number. Define:

L w (u, j, A, D n) = 1 n D n ,w (A) • i∈D n W i • φ(Y i) -φD n ,w A l 1 X (j) i ≤u -φD n ,w A r 1 X (j) i >u 2 • 1 X i ∈A ,
where

A l = A ∩ {X (j) ≤ u} and A r = A ∩ {X (j) > u}.
We also define n D n , ŵ(B), φD n , ŵ B and L ŵ(u, j, A, D n) as the same quantities with the weights W i replaced by the weights Ŵi .

The binary split chosen at node

A is A = A * l ∪ A * r , with A * l = A∩{X (j *) ≤ u * }, A * r = A∩{X (j *) > u * },
and (u * , j *) given by:

(u * , j *) = argmin j ∈ {1, .., p} u ∈ X (j) i i ∈ D n s.t. X i ∈ A L ŵ(u, j, A, D n).
For a heuristic understanding of the algorithm, consider a fixed set A. We abusively assume that A is independent from the data, which is not correct in practice since A is selected from the data. Under this assumption, we can study the asymptotics of L w (u, j, A, D n) since the observations (Y i , X i) i∈D n which belong to A are i.i.d. and follow the conditional distribution

L ((Y, X)|X ∈ A).
Until the end of this section, we assume that A is independent from the data.

With A z standing for either A l or A r , we have from the law of large numbers and equation

(1),

φD n ,w A z -→ n→+∞ E W • φ(Y)|X ∈ A z = E φ(T)|X ∈ A z , and
1 n D n ,w (A z) • i∈D n X i ∈A z W i • φ(Y i) -φD n ,w A z 2 -→ n→+∞ E W • φ(Y) -E[W • φ(Y)|X ∈ A z] 2 X ∈ A z = E φ(T) -E[φ(T)|X ∈ A z] 2 X ∈ A z .
Then, by splitting the sum in L w (u, j, A, D n) between A l and A r , we get:

L w (u, j, A, D n) -→ n→+∞ L ∞ (u, j, A), with L ∞ (u, j, A) = P(X ∈ A l) P(X ∈ A) • E (φ(T) -E[φ(T)|X ∈ A l]) 2 X ∈ A l + P(X ∈ A r) P(X ∈ A) • E (φ(T) -E φ(T)|X ∈ A r) 2 X ∈ A r .
Therefore we observe that, at the cost of replacing Ŵi by W i , the selected split is asymptotically the one which minimizes the sum of the within variances of the two child nodes, weighted by their relative importance.

It is also important to see that given D n and the splitting criteria L, the growing of a tree is deterministic. Therefore we can define a function T (D, L) which outputs a tree given a sample and a splitting criterion.

Tree prediction

The growing of a binary tree T results in a partition (X k) k=1,..,K of the input space. In order to predict the mean value of the target variable, a natural estimator is

m ŵ(x) = K k=1 φD n , ŵ X k 1 x∈X k . Under H1/H2 we have for the denoised version m w , m w (x) -→ n→+∞ K k=1 E φ(T)|X ∈ X k 1 x∈X k ,
which shows that m ŵ approximates a piecewise constant estimator of f . However, though the growing step is done using a least-square criterion -which is welladapted to mean regression -the prediction made in the terminal leaf may not necessarily be a sample mean (e.g., it may be a quantile -see [START_REF] Meinshausen | Quantile regression forests[END_REF]). We can formalize this by defining a function M(T , D, m) which outputs a predictor given a binary tree, a sample, and a type of terminal leaf-based estimator. In the following section, we propose a second terminal leaf estimator for the mean within a leaf.

Both for tree prediction and split selection, note that the method we propose is a generalization of the classical CART regression algorithm. Indeed, setting the weights W i all equal to 1 results in Breiman's original algorithm. We note L and m the split criteria and terminal leaf estimator obtained when setting all weights W i to 1.

Description of the algorithms

The tools we developed in previous sections can be used in different random forest algorithms.

We have studied three survival weighted random forests (swRF) in this article: swRF1, swRF2 and swRF3. These algorithms differ in the way weights Ŵi are introduced.

In swRF1 the weights Ŵi are taken into account in the bootstrap part of the random forest.

Based on the whole training set, we build Ŝ C (or Ŝ C (•|X)) and deduce (Ŵi) i=1,...,n . Then, all bootstrap samples of the forest are drawn with replacement and with sampling probabilities proportional to the weights (Ŵi) i=1,...,n . A CART tree is then grown on each bootstrap sample, using the classical algorithm (i.e. with L and m which denote the splitting criterion and the terminal leaf estimator with uniform weights).

In algorithms swRF2 and swRF3, bootstrap samples are drawn uniformly with replacement, as it is done in the classical random forest algorithm, and the weights are computed on the bootstrap samples. This means that the weights of a given observation may vary from tree to tree.

The only difference between swRF2 and swRF3 is the terminal leaf estimator used. In swRF2, m ŵ is used as described in Section 2.3.2, whereas in swRF3 we use

m ŵloc (x) = K k=1 φD n , ŵloc X k 1 x∈X k .
In fact, m ŵloc is similar to m ŵ except that the weights used in each terminal leaf are computed using a Kaplan-Meier estimator inside the leaf.

Pseudocode of the three algorithms we study is shown in Algorithms 1 and 2 below.

Algorithm 1: swRF1 Input : Data : (Y i , δ i , X i) i=1,..,n , M > 0 : number of trees Output: Ensemble predictor swRF1 1 Compute weights (Ŵi) i=1,..,n : Ŵi = δ i / Ŝ C (Y i) (or Ŵi = δ i / Ŝ C (Y i |X i)) 2 for j = 1, . . . ,
: i ∈ D n, j) : ŴD n, j i = δ i / Ŝ D n, j C (Y i) or ŴD n, j i = δ i / Ŝ D n, j C (Y i |X i) 4 Build T j = T (D n, j , L ŵ) 5 mj = M(T j , D n, j , m ŵ) if mode = 1 (mj = M(T j , D n, j , m ŵloc) if mode = 2) 6 end return : mswRF(2,3) = 1 M M i=1 mj
Remark 1 For each of swRF1, swRF2 or swRF3, we can build three models which correspond to the three ways to estimate the weights (W i) i=1,...,n developed in Section 2.2.2.

A practical limitation of the weighted random forest algorithm is that for a large noncensored observation Y i , the corresponding weight tends to be very big. This is even more so in the conditional case where the estimated survival function Ŝ C (•|X = x) may decrease quickly for some values of x. Overly-large weights may give too much importance to a single observation, both in terms of split selection and terminal leaf estimation.

We propose two ways to deal with this problem. The first is to threshold the weights Ŵi so that the maximum ratio between two weights does not exceed some value (r max argument). The choice of the value for the threshold corresponds to a typical bias-variance trade-off. Thresholding the weights introduces bias in the swRF procedure since large non-censored observations get smaller weights, and thus predicted values tend to be lower, but on the other hand this lowers the estimator's variance, which is high when some observations have very large weights.

The second strategy is to use swRF to model the time T = min(T, T max) and not the original time T . This is natural because we are working on the estimation of the expected value for T , and the problem of estimating the average of a right-censored time is generally hard to solve; indeed, there is high variance in the estimation of the tail of the distribution, which causes fluctuations in the estimated mean.

In the following, we will combine the two strategies to achieve good accuracy using swRF.

Parameters of the random forest algorithm

In our earlier presentation of random forests, we made no mention of the parameters which need to be specified to build them. Since there is a large number of parameters, and since parameters may differ according to the random forest implementation in question, we only mention the most common ones -those which have been shown to have the strongest impact on the resulting model.

The main parameters in a random forest are summarized in Tab. 1. The parameters minlea f and maxdepth impact tree size in the forest, and a rule of thumb for their values is: the better the predictive power of the covariates X with respect to Y (i.e., explained variance in a regression setting), the deeper the individual trees should be. As for the parameter mtry, it is especially important in high-dimensional settings, i.e., when p is large.

Note also that as indicated in [START_REF] Boulesteix | Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics[END_REF] and [START_REF] Huang | The parameter sensitivity of random forests[END_REF], the impact of the parameters used to grow a random forest should not be underestimated.

Parameter Description minlea f minimum value for the number of observations that should be present in a leaf; a split that would result in a leaf of less than minlea f observations cannot be selected maxdepth maximum number of layers in a tree mtry number of candidate variables that are randomly sampled at each node when choosing the best split Tab. 1: Parameters of the random forest algorithm.

Assessing the quality of a model's fit

In the applications which follow, our strategy to evaluate a fitted model relies on train-test approaches: let D tr and D te be train and test set of indices. However, due to the right censoring, the usual accuracy criterion used in regression settings cannot be computed on the test set.

In fact, since the problems of bias on the test and train samples are similar, we can use for model validation the same sample fitting method with IPCW that we use for model training.

Let (Ŵi) i∈D te be the estimated IPCW and f the predictor function of a fitted model. Then, the

quantity 1/n te • i∈D te Ŵi • (φ(Y i) -f (X i))
2 is an estimator of the mean squared error (mse) of the model f (with n te = #D te the number of test observations). This is the method suggested in [START_REF] Gerds | Consistent estimation of the expected brier score in general survival models with right-censored event times[END_REF] and the one we adopt in this article. One disadvantage is that again this approach raises the question of the choice of weights to consider for IPCW; in the same way as for training, we choose here to compute the validation error corresponding to three types of weight: KM, Cox and RSF. Therefore, we use not one but three criteria to compare model performance. Computation of the IPCW weights is performed separately on the training and test sets.

The problem of model validation in the presence of censoring has received considerable attention in the literature, and other performance measures exists. The C-index [START_REF] Harrell | Evaluating the yield of medical tests[END_REF]), which generalizes the Kendall tau for right-censored data, is the most popular, so we also compute it when comparing models.

3 Simulated data example 3.1 Technical details

Data simulation

In our simulations, the covariates X are distributed as marginal uniform distributions on [-1, 1] linked through a Gaussian copula with covariance given by an AR(1) covariance matrix with coefficient ρ, i.e., a matrix K ρ such that K ρ i, j = ρ |i-j| . The coefficient ρ is random and uniformly distributed on [0, 0.6].

We investigate three experimental settings which correspond to three different models for L (T |X), the distribution of T given X. In the following description of the three cases, λ T and k T are constants that will be specified later, and Weibull(λ, k) refers to the distribution with density

g(u) = k/λ • (u/λ) k-1 e -(u/λ) k 1 u≥0 : • Case 1 (Weibull): T |(X, β T) ∼ Weibull(λ T e -t β T •X , k T), with β T ∼ N(µ = 0, σ 2 = 0.04 • I p) and β T X. • Case 2 (Independent mixture of Weibulls): T |(X, G, (β T, j) j=1,...,4) ∼ Weibull(λ T e -t β T,G •X , k T) with:
-G ∼ Uni f {1, 2, 3, 4} and G X, (β T, j) j=1,...,4 , -(β T, j) j=1,...,4 i.i.d. with ∀ j ∈ 1, 4 , β T, j ∼ N(µ = 0, σ 2 = 0.09 • I p) and (β T, j) j=1,...,4 X.

• Case 3 (Covariate-dependent mixture of Weibulls, p ≥ 2):

T |(X, G, (β T, j) j=1,...,4) ∼ Weibull(λ T e -t β T,G •X , k T) with: -G = 1 X 1 ≥0,X 2 ≥0 + 2 • 1 X 1 ≥0,X 2 <0 + 3 • 1 X 1 <0,X 2 ≥0 + 4 • 1 X 1 <0,X 2 <0 , -(β T, j) j=1,..,4 i.i.d. with ∀ j ∈ 1, 4 , β T, j ∼ N(µ = 0, σ 2 = 0.04 • I p) and (β T, j) j=1,...,4 X.
The nature of L (C|X) is the same in every setting:

C|X ∼ Weibull(λ C e -t β C •X , k C) with λ C
and β C fitted to satisfy certain conditions (see Algorithm 3).

In each setting, we test the algorithm for two different functions φ: φ(t) = t and φ(t) = log(t + 1). We also assess the sensitivity of the results to the censoring rate of the simulated data (q = 0.1, 0.3 or 0.5) and to the strength of the dependence between C and X (measured in terms of percentage of explained variance: R2 C = 0.05 or 0.1).

The process of data simulation is detailed in Algorithm 3.

Algorithm 3: Simulated data generation

Input : n : number of simulated observations p : dimension of X q : proportion of censored observations R2 C : proportion of explained variance for C|X k C : shape parameter of C (λ T , k T) : scale and shape parameter for T T max : threshold for T Output: Dataset of generated data

1 Draw ρ uniformly on [0, 0.6] 2 Simulate (X i) i∈1,...,n i.i.d. with X ∼ GaussianCopula(K ρ) and marginals Uni f [-1, 1] 3 Generate (T i) i=1,...,n from case 1, 2 or 3 4 Draw β C 0 ∼ N(µ = 0, σ 2 = 0.04 • I p), let β C = η • β C 0 ,
and calibrate η so that the empirical estimate of the explained variance R2 C satisfies R2 C ≈ R2 C 5 Calibrate λ C so that the empirical proportion of censored observations q satisfies q ≈ q 6 Generate (C i) i=1,...,n with ∀i,

C i ∼ Weibull(λ C e -t β C •X i , k C) 7 Check on the simulated (C i) i=1,..,n that R2 C ≈ R2 C and q ≈ q 8 Build ∀i = 1, . . . , n, Y i = min(T i , C i), δ i = 1 T i ≤C i 9 Build ∀i = 1, . . . , n, T i = min(T i , T max), Y i = min(T i , C i), δ i = 1 T i ≤C i (cf. Section 2.2.2.
Remark: q at step 5 is derived from T and not T) return : Dataset with columns X, T , C, Y, δ, T , Y , δ

We take n = 2000, p = 6, λ T = 100, k T = 1, and k C = 0.8 as parameters for the data simulation. The parameter T max is set to 1000.

Different models

In our experiments, we compare the performance of ten models. First, we have three swRF1 models, associated with , Cox (swRF12) and random survival forest (swRF13) weights, respectively.

For swRF2 and swRF3, many weight computations are necessary since weights are computed on the bootstrap samples. The use of RSF to compute the weights is thus computationally intensive, so for these two models we only use KM (swRF21 and swRF31) and Cox (swRF22 and swRF32) weights.

We also test two other algorithms to compare with swRF. They both follow the same idea: first, fit a model to estimate S T (•|X) (which gives an estimator Ŝ T (•|X)), and second, integrate

Ŝ T (•|X) to get an estimator of E[φ(T)|X = x]: f (x) = -φ • d Ŝ T (•|X = x).
We use both a Cox model and RS F to estimate S T (•|X) at the first step, which give two benchmarks for swRF that we call Cr and RSFr.

Finally, since here we are working with simulated data, it is interesting to consider, as a baseline indicator, the performance of the random forest algorithm as if there was no censoring in the data. This random forest is trained on the non-censored data (X i , T i) i=1,..n , and the associated model is denoted RF.

So that the different random forest models involved are comparable, all of the random forests in the simulations are set with the same values for the three parameters we evoked in Section 2.3.4. The parameter mtry is set to 6 so that mtry = p and there is no randomness involved in split selection. We also take maxdepth = 4 and minlea f = 50.

The swRF models are trained on the thresholded data (Y , δ , X), setting r max = 50 (see 2.2.2). RF is trained on the data (T , X), whereas Cr and RS Fr are trained on the data (Y, δ, X).

For the two latter models, we then compute the prediction at the point

x with f (x) = -φ • d Ŝ T (•|X = x), where Ŝ T (t|X) = Ŝ T (t|X) • 1 t≤T max .

Results and analysis

Performance of the models

To compare the models, we generated 100 simulated datasets of 2000 observations with Algorithm 3. For each iteration, we train all models on the same 1000 observations, and evaluate them on the 1000 remaining ones. Model accuracy is measured in terms of the mean squared error (mse), which can can be computed in the simulated data context since we have access to all of the φ(T i) values. The means of the mse over the 100 i.i.d. replicates of the simulation process are given in Fig. 1.

The results on simulated data help us to learn more about the various models. An initial observation is that the results are quite affected by the φ function being considered, and less by changes in the distribution of L (T |X). Of course, RF is generally the best model, except when the constrained form of the Cox model is well-suited to the problem, whereby Cr may outperform RF. Recall that the RF algorithm should only be seen as a benchmark that cannot be used in practice, since it relies on the complete (uncensored) observations. For q = 0.1, the performance of the swRF models are very close to that of RF, which is natural since swRF is For each setting, the mean of the mse values over 100 i.i.d. replicates of the simulation process is shown. The censoring rate q is equal to 0.1, 0.3, or 0.5, while the percentage of explained variance of C given X: R2 C , is set to 0.05 or 0.1. equivalent to RF in the non-censored case (i.e., q = 0).

We can also see that swRF models are more sensitive to an increase in censoring rate than Cr and RS Fr. They perform well for q = 0.3 and 0.1, but the mse is much larger when q = 0.5.

For φ(t) = t, Cr and RS Fr perform very well overall, but for φ(t) = log(t + 1), the swRF models are usually more accurate, especially when q = 0.1 and q = 0.3.

We can also compare the swRF models with each other. We first remark that the swRF scores are organized in terms of the groups of swRF (swRF1, swRF2 or swRF3). Therefore, the type of weights we consider has a second-order impact on the results, which becomes more significant with larger censoring rates. However, it is interesting to note that no matter whether we look at swRF1, swRF2 or swRF3, we see that conditional weights computed with RSF or the Cox model tend to give better results than the Kaplan-Meier ones. In particular we highlight the swRF13 model, which performs well overall. On the other hand, the two swRF3 models do not behave similarly to the other swRF ones: while for φ(t) = t and q = 0.5 they achieve high mse (due to particular iterations where swRF3 does not work well), the results for φ(t) = log(t + 1)

show that the terminal leaf estimators are the same for both swRF3 and RS Fr.

Correlations between weighted mse (IPCW) and mse

The results shown in Fig. 1 are estimated mse which do not suffer from the effects of censoring.

Since such estimators are not available for real data studies, in practice we rely -as explained in Section 2.4 -on weighted estimators (involving KM, Cox, RSF, or uniform weights) when comparing models. Therefore, it is of interest to compute, in the simulated data case, correlations between the non-censored mse and weighted approximations of it. The average values of these correlations are displayed in Tab. 2. These results show that RSF and Cox weights better replicate the non-censored mse than the KM ones, and therefore offer better comparison criteria for model selection. On the other hand, the criterion based on uniform weighting of the non-censored observations has little correlation with the non-censored criterion, so we should not rely on it.

Real data application 4.1 Modeling the churn behavior of policy holders

The problem of predictive modeling has gained interest in recent years in the insurance community, and optimization of underwriting is one relevant application [START_REF] Frees | Predictive modeling applications in actuarial science[END_REF] Mean Spearman correlations between the non-censored and weighted (IPCW) mse, as a function of q and R2 C .

For each of the six cases, we have 600 calculations of the mse and weighted mse (2 choices for φ × 3 choices for L(T |X) × 100 iterations), and we calculate correlations between different fitting criteria.

insurance contract brokers, forecasting customer value represents an opportunity to improve margins in a competitive environment [START_REF] Cummins | The economics of insurance intermediaries[END_REF], [START_REF] Maas | How insurance brokers create value-a functional approach[END_REF]). Moreover, churn modeling is important for the estimation of customer value, as described in [START_REF] Verhoef | Predicting customer potential value an application in the insurance industry[END_REF]. Here, we focus on applying the methodology developed in Section 2 to build a predictive model of the impact of churn on prospect value (as defined in Section 1) as predicted by insurance brokers.

A broker's approach to estimate the prospect values is given by the following multiplicative formula, where the hats indicate we are referring to estimated quantities:

value = p sub • pr • f ew • f ch ,
with p sub the probability of subscription, pr the predicted premium, f ew the early withdrawal factor, and f ch the churn factor. We are only interested in modeling f ch here. In this factorization, the churn factor only depends on the termination time of the contract via a function φ ch as shown in Fig. 2.

The data that we study here is the customer base of an insurance broker from 1 st October 2009 to 31 st July 2016, and we focus in particular on complementary health insurance contracts. Data are available about the effective dates of the contracts, current states of contracts (active, terminated), and termination dates of contracts (if terminated). Before the underwriting, prospective information is given as 6 variables: age (8 levels starting from 18 years old), gender (2 levels: female, male), number of children insured (5 levels: 0, 1, 2, 3, ≥ 4), social security regime (7 levels: agricultural employee, employee, retired, retired self-employed, selfemployed, student, unemployed), level of insurance (3 levels: low, medium, high), geographi- Here, φ ch is the broker's commission, expressed per unit of annual premium. It divides into two parts: a withholding part during the first year -which reaches 50% of the annual premium after one year -and a subsequent part, starting after one year, equal to 10% of annual premiums (taking into account annual resets of the premium). cal zone (4 levels: Ile-de-France region, north, southern, other). Other client characteristics are available in the database but are only known after subscription occurs, hence it is impossible to use them to evaluate prospects.

We use this information to predict churn factors, which correspond to the variable φ(T). This variable is censored for a contract which is still active on the 31 st of July 2016. The censoring variable C is the age of the contract, i.e., the duration between the date of effect of the contract and the 31 st of July 2016. The 6 variables above constitute the covariate vector X.

Additional details about the experiments

The same models as in the simulated data application (see Section 3.1.2) are compared in this real data application, excluding RF which cannot be used in the real data case. Also, T max is set at 1465 days; this makes sense from the point of view of this application since we are then estimating the expected return of a prospect within the four years following subscription. All swRF and RS Fr models are set with the parameters mtry = 6, maxdepth = 5, and minlea f = 100. For swRF models, r max is set to 50.

We test the various models with 4 φ functions: φ = φ ch (Fig. 2), φ(t) = log(t + 1), φ(t) = t, and φ(t) = 1 t>380 . For the latter, T max was set to 381 since, from 381 days on information on φ(T) is not censored.

Results and analysis

As in the simulated data case, we use a train-test approach (5000 observations each) for model testing, with 100 repetitions. Each training and testing set are drawn uniformly without replacement from the original dataset in such a way that the training and test sets do not overlap. The results in terms of mse computed with KM, Cox and RSF weights, and on the C-index, are shown in Fig. 3.

We first observe that the results for φ = φ ch , φ(t) = log(t + 1), and φ(t) = t look very similar, especially for φ = φ ch and φ(t) = log(t + 1). Hence, the strong influence of the function φ that we noticed for the simulated data does not carry over to the real data. Moreover, there is a tendency in the results that swRF models fitted using a certain type of weights perform very well with the mse computed using the same type of weights. This is especially clear for the Cox and KM weights, indicating that the type of weights considered has a real impact on the estimated distribution of (T, X).

We choose to consider the RSF weighted estimation of the mse as the reference criteria for comparing the models. Indeed, we saw in Section 3.2.2 that Cox and RSF weights give approximations of the mse that are the most correlated with the mse computed on non-censored data. In addition, there is a risk of overfitting the type of weights we use, and since RSF weights are only involved in the model swRF13, they constitute a good choice. In Fig. 4 and Tab. 3, we show the performance of each model, calculated with RSF weights and for φ = φ ch . Fig. 4 indicates the the model swRF32 achieves on average the lowest error, followed by swRF13 and swRF22, an ordering confirmed by the table of rank statistics.

The C-index's ĉ statistic [START_REF] Harrell | Evaluating the yield of medical tests[END_REF]) corresponds to the proportion of ordered pairs in the test set which are well-ordered by the model f (i.e., ĉ = #{(i, j) ∈ D 2 te / f (X i) > f (X j), Y i > Y j , δ j = 1} / #{(i, j) ∈ D 2 te /Y i > Y j , δ j = 1}). We can see in Fig. 3 that RS Fr and Cr achieve the best C-index out of the set of models. This illustrates that it is important to consider a quadratic error criterion rather than a rank one when the goal is to estimate a mean value. The C-index values nevertheless show the benefit of using conditional weights within the swRF algorithm in order to get models that rank the observations well.

Conclusion

In this paper, we have considered a class of weighted random forest algorithms, where the weight put on each observation is designed to compensate for censoring. A classical issue in censored regression models is the identifiability assumption that defines the dependence struc- ture between the censoring and the variables involved in the model. Therefore, we have distinguished between two situations, namely the case where censoring is independent, and the case where this variable is allowed to depend on the duration variable T through the covariates.

The latter case is the more general of the two, but leads to difficulties in computing appropriate weights, due to potentially high-dimensional covariates. For this reason, we have proposed a

M do 3

 3 Draw D n, j : sample n observations w.r.t. weights (Ŵi) i=1,..,n , with replacement4 Build T j = T (D n, j , L) 5 mj = M(T j , D n, j , m) swRF2 & swRF3 Input : Data : (Y i , δ i , X i) i=1,..,n , M > 0 : number of trees, mode ∈ {1, 2} : type of terminal leaf estimator Output: Ensemble predictor swRF2 (or swRF3) 1 for j = 1, . . . , M do 2 Draw D n, j : sample n observations uniformly with replacement 3

Fig. 1 :

 1 Fig. 1: Results on simulated data.

Fig. 2 :

 2 Fig. 2: The churn factor as a function of termination time.

Fig. 3 :

 3 Fig. 3: Results on real data.

Fig. 4 :

 4 Fig. 4: Average performance (mse) of the models; φ = φ ch , with RSF weights.

Acknowledgements

We would like to thank the company Santiane, who provided the data that served for the experiments.

Software

All analyses were performed with the R package sword (github.com/YohannLeFaou/sword) which was developed for the purposes of this article. The code used for producing the results is available at the address: github.com/YohannLeFaou/impact-churn-health-insurance.

compromise by modeling the conditional censoring distribution using a Cox model. We showed on simulated data that our method is competitive with other statistical methods in terms of accuracy. Also, this approach appeared to give the most accurate results in our application to modeling the commission received by an insurance broker, which is a non linear function of the time at which an insurance policyholder surrenders their contract. Moreover, it gives more accurate results than competing approaches such as random survival forests in the setting we have considered. Finally, the weighting strategies we have proposed easily generalize to other regression-based approaches such as, to give one example, quantile regression.