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ABSTRACT
The statistical properties of cosmic structures are well known to be strong probes for cos-
mology. In particular, several studies tried to use the cosmic void counting number to obtain
tight constrains on dark energy. In this paper, we model the statistical properties of these
regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-
linearly evolved Universe in the standard � cold dark matter model. This formalism applies
similarly for minima (voids) and maxima (such as DM haloes), which are here considered
symmetrically. We first derive the full joint Gaussian distribution of CoSphere’s parameters
in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where
the compensation radius becomes very large, i.e. when the central extremum decouples from
its cosmic environment. We compute the probability distribution of the compensation size
in this primordial field. We show that this distribution is redshift independent and can be
used to model cosmic voids size distribution. We also derive the statistical distribution of the
peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic
environment. We show that small central extrema with low density are associated with nar-
row compensation regions with deep compensation density, while higher central extrema are
preferentially located in larger but smoother over/under massive regions.

Key words: early Universe – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Statistical properties of high-density regions [as dark matter (DM)
haloes] or under dense regions (as cosmic voids) have been exten-
sively used to address the main questions of modern cosmology
such as the origin of dark energy (DE) or the nature of gravity.
Numerous successes have been obtained from the mass function
of DM haloes through the Press Schechter formalism (Press &
Schechter 1974) or its powerful extensions like Excursion Set The-
ory (Bond et al. 1991). Predictions using these formalism are gen-
erally in very good agreement with numerical simulation results
(Sheth & Tormen 1999; Jenkins et al. 2001; Tramonte et al. 2017),
but these formalisms do not probe the large-scale environment of
DM haloes. Moreover, a full understanding of such cosmological
probes needs a full or at least a better understanding of the non-linear
evolution of gravitational collapse.

Concerning under dense regions as cosmic voids, it is even more
challenging to describe precisely the statistics of such regions (Sheth
& van de Weygaert 2004; Achitouv, Neyrinck & Paranjape 2015),
mainly because we do not have an objective definition and a physi-
cally motivated dynamical model for voids. Both dynamical and
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statistical properties of cosmic voids depend on their algorith-
mic definition (Platen, Weygaert & Jones 2007; Neyrinck 2008;
Cautun, Cai & Frenk 2016), a full comparative analysis of algo-
rithms for detecting voids in numerical simulations is for example
necessary.

In de Fromont & Alimi (2018), labelled thereafter Paper I, we
introduced the spherically compensated cosmic regions, named
thereafter CoSpheres. Such regions describe the large-scale cos-
mic environment around local extremum in the density field.
CoSphere can be splitted in two distinct radial regions. An over
(respectively, under) massive spherical core around the central max-
imum (respectively, minimum) and an exterior under (respectively,
over) massive surrounding belt. By over massive, we mean that the
total mass m(r) is higher than the homogeneous mass 4π/3ρ̄mr3 .
In the Newtonian limit, over massive regions collapse (i.e. r̈ < 0),
while under massive region expand towards larger radii. For each
central extremum, the radius separating these two distinct regions
is called the compensation radius R1. By definition, it satisfies
m(R1) = 4π/3ρ̄mR3

1 . The origin of CoSpheres within the primor-
dial Gaussian random field (GRF) has been precisely described
using the constrained GRF formalism with an appropriate compen-
sation constraint (Paper I). In this primordial Gaussian field, the
expected spherically average profiles can be fully parametrized by
four independent scalars. Beside the compensation radius R1, they
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are described by three shape parameters: ν, x, and ν1. The first pa-
rameters x and ν, already introduced by (Bardeen et al. 1986, named
thereafter BBKS), qualify the central extrema, while ν1 defines the
compensation density contrast δ1 = ν1σ 0 as δ(R1) = δ1.

The non-linear dynamical evolution of CoSpheres is described
with high precision through the spherical collapse model. These
cosmic regions can be detected in numerical simulations, in Paper
I we showed that they can be fully reconstructed from high redshift
(within the GRF) until z = 0 in � cold dark matter (�CDM)
cosmology. Consequently, these regions can be used as powerful
probes for cosmology and gravity itself as it will be investigated in
Alimi & de Fromont (in preparation) and de Fromont & Alimi (in
preparation) .

While Paper I focused on the construction of these cosmic re-
gions and the derivation of their average density and mass profiles
at any redshift, this paper is fully dedicated to the study of their sta-
tistical properties. We thus derive the full joint Gaussian probability
distribution for the profile parameters R1, ν, x, and ν1 in GRF. This
distribution measures the probability to obtain a CoSphere with the
corresponding parameters in the primordial Gaussian Universe.

We then deduce the one-dimensional probability distribution
dP(R1) marginalized over the shape parameters ν, x, and ν1. This
distribution is proportional to the count number of compensation
radii. It gives the probability to find a R1 around any extremum.
Despite being derived in the primordial Gaussian field, since com-
pensation radii evolve comovingly (Paper I), this distribution is
expected to be redshift-independent. Using numerical simulations,
we show that it is indeed well conserved during evolution. Inter-
estingly, this size distribution provides a well-defined analytical
prediction for cosmic voids sizes once considered as compensated
regions around minimum whose size is defined as R1.

From the full joint Gaussian probability distribution, we also
compute the marginalized conditional distribution of the three shape
parameters at a given compensation radius R1. We then derive their
constrained moments 〈αn|R1〉 with α = {ν, x, ν1}. For n = 1, the
mean values 〈ν|R1〉, 〈x|R1〉, and 〈ν1|R1〉 can be used to define the
mean average profile at fixed compensation radius. These profiles
are expected to reproduce the full matter field of CoSpheres once
averaged over all possible stochastic realization, i.e. all possible
value for each shape parameters ν, x, and ν1 given R1. We then
study the shape of the mean average profiles according to R1 and
show that the central extrema progressively tends to the universal
BBKS peak profile for large R1. For small R1 however, the central
extremum is strongly correlated to its cosmic environment through
ν1 and R1.

Using the spherical collapse model, we derive the exact non-
linear evolution of the compensation density distribution dP(δ1, R1)
for any redshift. We compute analytically the evolved moments〈
δn

1 |R1

〉
for both cosmic voids (central minimum) and central over

densities. We compare our results with numerical simulation and
show that the agreement is very good, even in the non-linear regime.

This paper is organized as follows: in the first section, we define
precisely CoSpheres and their compensation radius R1. We also dis-
cuss how such cosmic regions are detected in numerical simulation.
In Section 3, we derive the statistical properties of these regions in
the primordial Gaussian field, the radii distribution dP(R1) together
with the statistical study of the shape parameters. We discuss the
properties of the mean averaged density profile at fixed compensa-
tion radius R1. In the last section, Section 4, we study the dynamical
properties of these distribution by using the Lagrangian spherical
collapse and compare the results to numerical simulations at z = 0
in �CDM cosmology.

2 C O S P H E R E S I N T H E SK Y

We study the statistical properties of CoSpheres. These cosmic
structures are defined around extrema (minima or maxima) in the
density field at any redshift (Paper I). Around each extremum, we
define the concentric mass m(r) as the mass enclosed in the sphere
of radius r, from which we deduce the spherical mass contrast 	(r)
as

	(r) := m(r)

4π/3ρ̄mr3
− 1 (1)

This profile is linked to the density contrast δ(r) = ρm(r)/ρ̄m − 1
through

	′(r) = 3

r
[δ(r) − 	(r)] ⇔ 	(r) = 3

r3

∫ r

0
u2δ(u)du (2)

where 	′(r) = ∂	(r)/∂r . As discussed in Paper I, each extremum
must be compensated on a finite scale. For each spherical profile, it
exists a unique scale R1 called compensation radius satisfying.

	(R1) = 0 (3)

R1 is defined as the smallest radius satisfying equation (3). This
scale measures the size of the over (respectively, under) massive
region1 surrounding each maximum (respectively, minimum). Since
r̈ ∝ −	(r) in Newtonian regime, the mass contrast 	(r) drives the
local gravitational collapse. The compensation radius separates the
collapsing and the expanding regions.

These regions can be detected in numerical simulations. We use
in this work, the numerical simulations from the ‘Dark Energy
Universe Simulation’ project, publicly available through the ‘Dark
Energy Universe Virtual Observatory’ Database.2 These simula-
tions consist of N-body simulations of DM for realistic DE models.
For more details, we refer the interested reader to dedicated sec-
tions in Alimi et al. (2010), Alimi et al. (2012), Rasera et al. (2010),
Courtin et al. (2011), and Reverdy et al. (2015). We focus in this
paper on the flat �CDM model with parameters calibrated against
measurements of WMAP 5-yr data (Komatsu et al. 2009) and lu-
minosity distances to supernova Type Ia from the UNION data set
(Kowalski et al. 2008).

The reduced Hubble constant is set to h = 0.72 and the cosmo-
logical parameters are 
DE = 0.74, 
b = 0.044, ns = 0.963, and
σ 8 = 0.79. All along this work, The reference simulation is chosen
with Lbox = 2592 h−1Mpc and npart = 20483. It provides both a large
volume and a good mass resolution. Here, the mass of one particle
is mp ∼ 1.5 × 1011 h−1 M	 .

The construction procedure of numerical CoSpheres consists first
in finding the position of local extremum. In the case of a central
overdensity, we identify maxima with the centre of mass of DM
haloes. Haloes are founded by a friend-of-friend algorithm with a
linking length b = 0.2. We considered in the reference simulation
200000 haloes with a mass Mh ∼ 3 × 1013 h−1 M	 . Selecting
haloes with a mass Mh is equivalent to impose a threshold on the
height of their progenitor, i.e. it selects local extrema with ν ≥
ν0 = δc/σ 0(Mh), where δc � 1.686 for �CDM cosmology and
σ 0(Mh) is the fluctuation level.

For central underdensities, we smooth the density field with a
Gaussian kernel on a few number of cells. Minima are founded
by comparing the local density of each cell to its neighbours. The
centre of the cell is then identified with the position of the local

1 Not to be confused with over/underdense regions.
2 http://www.deus-consortium.org/deus-data/
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1914 J.-M. Alimi and P. de Fromont

Figure 1. Radial average mass contrast at z = 0 in the reference simulation. Each colour corresponds to a given compensation radius R1 from 15 to 80
h−1Mpc . Whereas each single individual profile is far from a smooth curve, stacked profiles display a global shape with well-defined properties. The inset
plots zoom on the compensation region, i.e. the under (respectively, over) massive regions for central maximum (respectively, minimum).

minimum. The backward procedure is simplistic and assumes that
the comoving position of each void is conserved during cosmic
evolution. At any redshift, each void’s position is assumed to be the
same than the one detected at z = 0.

From each extrema, we compute the concentric mass m(r) from
DM particles

m(r) =
∑

i

mp� [r − |xi − x0|] (4)

where mp is the mass of one particle, xi the position of the ith
particle, and x0 the position of the central extremum. �(x) is the
standard Heaviside distribution such as �(x) = 1 if x > 0 and 0
elsewhere.

The second step consists into building average profiles by stack-
ing together individual profiles with the same compensation radius.
For each R1, we take at least 1000 profiles for both haloes and voids
in order to ensure a fair statistics. In Fig. 1, we show the resulting
average profiles for both central over and under densities and several
compensation radii at z = 0 in the reference simulation. As claimed
before, the radial structure of these regions is symmetric; a central
over (respectively, under) massive core until r = R1 surrounded by
a large under (respectively, over) massive compensation belt for r
≥ R1.

Numerical simulations can be used to follow the gravitational
evolution of CoSpheres. By definition, these regions are detected at
z = 0. For a central maximum, i.e. build from DM halo, we identify
the position of its progenitor at higher redshift to the centre of mass
of its particles at z = 0. For each halo detected today, this procedure
provides an estimated position of its progenitor at other redshift.
These positions are used to define CoSpheres for any z �= 0.

3 STATISTICS O F C OSPHERES IN GAUSSI AN
R A N D O M FI E L D S

In this section, we study the statistical properties of CoSpheres in
the framework of GRF with appropriate constraints (Paper I).

3.1 Gaussian random fields, the basics

Let us first recall the basic elements necessary for the derivation
of average quantities in GRF. We consider here an homogeneous,
isotropic random field whose statistical properties are fully deter-
mined by its power spectrum (or spectral density) P(k). It can be
written as the Fourier transform of the auto-correlation of the field
ξ (r) = ξ (|x1 − x2|) = 〈δ(x1)δ(x2)〉 :

ξ (r) = 1

2π2

∫ +∞

0
k2P (k)

sin(kr)

kr
dk (5)

The Gaussianity of the field δ(x) leads to the joint probability

dPN = P [δ(x1), ..., δ(xN)] dδ(x1)...dδ(xN) (6)

that the field has values in the range [δ(xi), δ(xi) + dδ(xi)] for each
position xi. In this GRF model, it is

dPN = 1√
(2π)N det M

exp

[
−1

2
δt · M−1 · δ

] N∏
i=1

dδi (7)

δ is the N-dimensional vector δi = δ(xi) and M is the N × N covari-
ance matrix, here fully determined by the field auto-correlation

Mij := 〈
δiδj

〉 = ξ (|xi − xj|) (8)

where the average operator 〈...〉 denotes thereafter an ensemble
average on every statistical configuration of the field. Using the
ergodic theorem, this mean can be identified with the spatial average
of the same quantity. The average of any operator X can be computed
from the mean of its Fourier component X̃(k)

〈X〉 := 1

2π2σ 2
0

∫ +∞

0
k2P (k)X̃(k)dk =

∫ +∞
0 k2P (k)X̃(k)dk∫ +∞

0 k2P (k)dk
(9)

where the fluctuation rms is

σ0 =
[

1

2π2

∫ +∞

0
k2P (k)dk

]1/2

(10)

Furthermore, we are interested in deriving the properties of the field
subject to a set of linear constraints C = {C1, ..., Cn}. Following
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Bertschinger (1987), each constraint Ci can be written as

Ci[δ] :=
∫

Wi(xi − x)δ(x)dx = ci (11)

where Wi is the corresponding window function and ci its value.
For example, constraining the value of the field to a certain δ0 at
some point x0 leads to Wi = δD(x − x0) and ci = δ0m where δD

is the Dirac delta. For n constraints, the joint probability dP[C]
that the field satisfies these conditions reaches (van de Weygaert &
Bertschinger 1996; Bertschinger 1987)

dP[C] = 1√
(2π)n det Q

exp

[
−1

2
C t · Q−1 · C

] n∏
i=1

dci (12)

where Q is the covariance matrix of the constraints defined through
Q = 〈

C t · C
〉
.

3.2 The full joint Gaussian probability distribution

In this section, we derive the full joint Gaussian probability to find a
CoSphere with a given set of parameters in GRF. Since these regions
are build around extremum, we must include the peak conditions
derived by BBKS. A local extrema located at x0 is defined by three
conditions

δ(x0) = νσ0 (13)

ηi = ∂δ(x0)

∂xi
= 0 (14)

ζij = ∂2δ(x0)

∂xi∂xj
(15)

where equation (13) gives the height of the peak in unit of the
fluctuation level (see equation 10), whereas equation (14) imposes
that the local gradient η vanishes (since we consider extrema).
Equation (15) defines the Hessian matrix ζ of the density profile
around the peak.

In addition to the peak condition, we must explicitly encode the
compensation condition equation (3). This is achieved by adding
the new constraints (Paper I)

CR1 [δ] :=
∫

� (R1 − |x − x0|) δ(x)dx = ν̄σ0 = 0 (16)

Cν1 [δ] :=
∫

δD (R1 − |x − x0|) δ(x)dx = ν1σ0 (17)

where � is the Heaviside step function and δD is the usual Dirac
delta. Equation (16) is the transposition of equation (3) in the form
equation (11). The parameter ν̄ is defined by 	(R1) = ν̄σ0 and is
set to 0 by definition of the compensation radius R1. Equation (17)
defines the compensation density on the sphere of radius R1 such
that δ(R1) := δ1 = ν1σ 0.

3.2.1 The full joint probability for spherically compensated peaks

Without any assumption on the symmetry, CoSpheres in
primordial field are described by 12 independent scalars
(ν, ν̄, ν1, η1, η2, η3, andζij) with i and j running in {1, 2, 3}. The
computation of the conditional probability equation (12) involves
the correlation matrix Q between these 12 constraints. The intro-
duction of two new degree of freedom makes the computation of Q
more complicated than for a standard unconstrained peak. However,

following BBKS, we can simplify Q by introducing the reduced
variables linked to the local curvature of the profile around the peak

x = − ζ11 + ζ22 + ζ33

σ0

√〈
k4
〉 , y = − ζ11 − ζ33

2σ0

√〈
k4
〉 ,

z = − ζ11 − 2ζ22 + ζ33

2σ0

√〈
k4
〉

where the various moments of P(k) are given by

〈
k2n

〉
:= σ 2

n

σ 2
0

= 1

2π2σ 2
0

∫ +∞

0
k2+2nP (k)dk (18)

y and z quantify the asymmetry of the profile around the peak,
whereas x defines the local curvature. It is directly related to the
spherical density profile by

lim
r→0

∂2δ(r)

∂r2
= −x

3
σ0

√〈
k4
〉

(19)

With these variables, Q reduces to a partitioned matrix where the
only non-diagonal terms are included in a 4 × 4 sub-matrix Q̃.
This sub-matrix encodes the new correlations introduced by R1 (or
ν̄ equivalently) and ν1. In the (ν, ν̄, x, ν1) basis, it reaches

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 〈W1〉 〈k2〉√〈k4〉 〈J1〉

〈W1〉
〈
W 2

1

〉 〈k2W1〉√〈k4〉 〈W1J1〉
〈k2〉√〈k4〉

〈k2W1〉√〈k4〉 1 〈k2J1〉√〈k4〉
〈J1〉 〈W1J1〉 〈k2J1〉√〈k4〉

〈
J 2

1

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

where we used the following notation for the spherical Bessel func-
tions evaluated at R1.

W1 := 3
sin(kR1) − kR1 cos(kR1)

(kR1)3
(21)

J1 := sin(kR1)

kR1
(22)

We can now rewrite equation (12) as

d12P(ν, ν̄, x, ν1, y, z, η, ζ4, ζ5, ζ6) ∝ 1√
det Q

exp

[
−1

2
F
]
D

(23)

where the superscript 12 indicates that this is 12-dimensional quan-
tity with the measure D = dνdν̄dxdν1dydz

∏6
i=4 dζi

∏
l dηl with

ζ 4 = ζ 23, ζ 5 = ζ 13, and ζ 6 = ζ 12 BBKS.
We now neglect the numerical factors which do not depend ex-

plicitly on R1. The two form F reduces to

F = x2Cx + ν2Cν + ν2
1Cν1 + 2

(
xνCxν + xν1Cxν1 + ν1νCν1ν

)
�2(R1)

+15y2 + 5z2 (24)

where we have already imposed the condition ηi = 0 (see equa-
tion 14) and ν̄ = 0 (see equation 16). The Cα functions (with α = 0,
x, ν, ν1, xν, xν1, ν1ν) depend also on R1. Their explicit form is given
in Appendix A. �2(R1) takes the form

�2(R1) = C0 + Cx + Cν + 2

〈
k2
〉√〈

k4
〉Cxν (25)
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1916 J.-M. Alimi and P. de Fromont

Since we consider only spherical profiles, we marginalize over the
asymmetry parameters y and z. The integration of dP over y and z,
combined with the ordering condition |ζ 11| ≥ |ζ 22| ≥ |ζ 33| ≥ 0 then
leads to the four-dimensional joint probability for the spherically
compensated cosmic regions

d4P(ν, x, ν̄, ν1) ∝ f (x)

�(R1)
exp

[
−L(x, ν, ν1)

2

]
dνdxdν̄dν1 (26)

with BBKS

f (x) =
√

2

5π

[
e− 5x2

2

(
−8

5
+ x2

2

)
+ e− 5x2

8

(
8

5
+ 31x2

4

)]

+ x3 − 3x

2

[
Erf

(
x

√
5

8

)
+ Erf

(
x

√
5

2

)]

This function is not modified here because it results from the inte-
gration over the y and z variables which are not correlated to ν1 nor
ν̄. We define L as L := F − 15y2 − 5z2, i.e.

L(x, ν, ν1, R1) = x2Cx + ν2Cν + ν2
1Cν1

�2(R1)

+ 2
xνCxν + xν1Cxν1 + ν1νCν1ν

�2(R1)
(27)

Note that L depends on R1 through � and the various Cα functions.
When R1 becomes very large, we recover the BBKS limit (see below
Section 3.2.3) and L reduces to its expression as derived in BBKS.
Finally, we map ν̄ to the compensation radius as

dν̄ =
∣∣∣∣3ν1

R1

∣∣∣∣ dR1 (28)

and we get the full joint Gaussian probability distribution of Co-
Spheres

d4P(ν, x, ν1, R1) ∝ |ν1| f (x)

R1�(R1)
exp

[
−L(x, ν, ν1, R1)

2

]
× dνdxdν1dR1 (29)

where both �(R1) and L depend on R1.

3.2.2 The first crossing condition

Our definition of R1 (see equation 3) implicitly assumes that R1 is the
first crossing radius such as 	(R1) = 0. However, neither equation
(3) nor the definition of ν1 ensures it. For each R1, there is a sub-
domain for the shape parameters where the corresponding average
mass contrast profile vanishes at some effective radius R̃1 < R1.
This is typically the case for central peaks with high curvature
x. The true joint Gaussian probability must take this effect into
account. In Paper I, we show that the average mass contrast profile
corresponding to a set of shape parameters ν, x, and ν1 can be
expressed as

	(r) = σ0

[
ν	ν(r) + x	x(r) + ν1	ν1 (r)

]
(30)

where each 	α(r) function involves the compensation scale R1 and
the radius r. This set of shape parameters is safe if it satisfies

∀r ∈ [0, R1[,

{
	(r) > 0 if ν > 0

	(r) < 0 if ν < 0
(31)

This defines the safe domain D(R1) for {ν, x, ν1} where the first
radius where 	(r) vanishes is R1. If {ν, x, ν1} /∈ D(R1), there exist
an effective R̃1 < R1 satisfying

ν	ν(R̃1) + x	x(R̃1) + ν1	ν1 (R̃1) = 0 (32)

This effective compensation radius is associated with a compensa-
tion density ν̃1 defined a

ν̃1 = νδν(R̃1) + xδx(R̃1) + ν1δν1 (R̃1) (33)

such that both R̃1 and ν̃1 are functions of ν, x, ν1, and R1. The
condition equation (31) defining the safe domain D(R1) can be
translated to a simple restriction on the curvature x

|x| < xc(ν, ν1, R1) = min
(

− |ν| 	ν(r)

	x(r)
− |ν1| 	ν1 (r)

	x(r)
,

× ∀r < R1

)
(34)

At fixed R1, if |x| ≥ xc(ν, ν1, R1), then this set of parameters {R1,
ν, x, ν1} will contribute to {R̃1, ν, x, ν̃1}, where R̃1 and ν̃1 are the
effective parameters defined in equations (32) and (33).

In other words, for each R1, there is a fraction of its parameter’s
domain contributing to smaller R−

1 < R1, while a fraction of larger
compensation radii with R+

1 > R1 also contribute to this R1. The
full joint Gaussian probability can thus be formally decomposed in
two parts

d4Ptot(ν, x, ν1, R1) ∝ �(xc(ν, ν1, R1) − |x|)d4P(ν, x, ν1, R1)︸ ︷︷ ︸
direct contribution

+
∫ ∞

R1

dR+
1

∫ 0

−∞
dν+

1 d4P(ν, x, ν+
1 , R+

1 )δD(R̃1 − R1)δD(ν̃1 − ν1)︸ ︷︷ ︸
contribution from higher compensation radii

(35)

The first term accounts for peaks satisfying the first crossing condi-
tion (FCC), while the second one is the contribution from peaks with
higher compensation radii whose effective compensation radius R̃1

equals R1 and effective compensation density ν̃1 equals ν1. Note
that naturally, this indirect contribution term provides x satisfying
equation (34).

3.2.3 The large-scale limit and the BBKS distribution

In this section, we focus on the very large-scale behaviour of the
full joint Gaussian probability distribution, i.e. when R1 → +∞.

For clarity, let us assume a power-law matter power spectrum
smoothed with a Gaussian kernel, P (k) ∼ kn exp(−k2R2

f ), where
the power index n is the effective power index at very small k and
Rf the smoothing scale. In the limit R1 → +∞, the Cα parameters
(see Appendix A) reduce to simple power laws

Cx ∝
(

R1

Rf

)−5−n

(36)

Cν

Cx
= 1,

Cν1

Cx
∝
(

R1

Rf

)2

(37)

Cxv

Cx
= −γ,

Cν1x

Cx
∝
(

R1

Rf

)−1−n

,
Cν1ν

Cx
∝
(

R1

Rf

)−1−n

(38)

C0

Cx
→ γ 2 − 1 (39)

where γ := 〈
k2
〉
/
√〈

k4
〉
. Using these limits, the exponential term

L simplifies to

L∞(x, ν, ν1, R1) � x2 + ν2 − 2γ xν

1 − γ 2
+ 2εR2

1ν
2
1 + O (

R−1−n
1

)
(40)
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Statistical properties of CoSpheres 1917

where ε is a positive parameter independent from R1. We note
two features for L. The first concerns the (x, ν) dependence which
takes the same exact form than in BBKS. The second concerns the
term involving ν1. It depends explicitly on R1 and contributes to
an overall exp(−εν2

1R
2
1) factor in the full joint probability equation

(35). For R1 → +∞, combined with the |ν1| pre-factor appearing
in equation (35), it leads to a global δD(ν1) such that full joint
probability distribution reduces to

dP(ν, x, ν1, R1)R1 → +∞→dPbbks(x, ν) × δD(ν1)

R
(1−n)/2
1

dν1dR1 (41)

where dPbbks(ν, x) is the standard joint probability peak derived
in BBKS. This limit shows that a central peak with a very large
compensation radius is decorrelated from its cosmic environment.
As a matter of fact, the full joint probability distribution (see equa-
tion 41) is separated in two independent parts, one concerning the
local extrema (ν and x only) and the other involving R1 and ν1,
i.e. concerning its large-scale environment.

The FCC (see Section 3.2.2) condition constraining the value of x
(see equation 34) deeply simplifies in this large radii regime where
it reduces to

|x| ≤ ν

γ
(42)

This means that the statistical properties of the central extrema
involving x and ν reduce, for very large compensation radius, to
the standard ‘unconstrained’ peak statistic of BBKS with smaller
central curvature satisfying equation (42).

We emphasize that equation (41) illustrates the progressive de-
coupling between the central peak and its environment. Large R1

will be associated with universal central peaks whose local shape
and properties are similar to BBKS.

3.3 Statistical properties of the shape parameters in GRF

Large-scale density and mass profiles of CoSpheres are described
by four parameters within GRF (Paper I). These parameters are

(i) ν and x (defined, respectively, in equations 13 and 19) char-
acterizing the central extremum BBKS,

(ii) the compensation radius R1 itself (see equation 16) quanti-
fying the size of the over/under massive sphere surrounding the
central extremum,

(iii) the reduced compensation density ν1 (see equation 17) de-
fined on the compensation sphere by δ(R1) ≡ δ1 = ν1σ 0.

This section is devoted to the study of the statistical properties of
these shape parameters. First, we compute the probability distribu-
tion of the compensation radius R1 by marginalizing over the three
other shape parameters. It provides the probability to find a R1 what-
ever the central extrema and δ1. We then compute the marginalized
conditional probability dP(X|R1) for each shape parameter X = {ν,
x, ν1} at fixed compensation radius. We use this distribution to de-
duce their conditional moments 〈Xn|R1〉 within GRF. We finally
discuss the physical properties of the mean average radial matter
profile involving the mean value 〈X|R1〉 for each shape parameter
X.

In this whole section, we assume central maxima with ν > 0,
x > 0, and ν1 < 0. The treatment of the symmetric case (central
underdensity) is exactly symmetric and leads to the same results
with the following substitutions x → −x, ν → −ν, and ν1 → −ν1

and the appropriate integration domains.

Figure 2. Pdffor the compensation radius in GRF as computed in equation
(43). Each curve corresponds to a different threshold ν0 which defines the
minimal height of the central extremum, i.e. |ν| ≥ |ν0|. Higher thresholds
promote larger compensation radii. The most probable R1 thus increases
with ν0. For this figure, the R1 pdf is normalized such that

∫ 300
0 dP (R1) = 1

and the power spectrum has been smoothed with a Gaussian kernel on Rg = 5
h−1Mpc .

3.3.1 The compensation radius probability distribution

Each extremum can be associated with a unique R1 separating the
collapsing and the expanding shells. The probability dP(R1) to find
a local extremum with R1 and whatever the other shape parameters
is obtained by marginalizing equation (35) over the three shape
parameters ν, x, and ν1, leading to

dP (R1)

dR1
= α

∫ +∞

ν0

J0,0(ν, R1)dν (43)

with α a normalization factor, insuring that
∫ +∞

0 dP (R1) = 1

α−1 =
∫ +∞

0

∫ +∞

ν0

J0,0(ν, R1)dνdR1 (44)

and the function

J0,0(ν, R1) :=
∫ 0

−∞

∫ xc

0

d4Ptot(ν, x, ν1, R1)

dνdR1
(45)

where the integration on the local curvature x is done over [0, xc(ν,
ν1)] due to the FCC condition (see Section 3.2.2). Note that the
integration over ν1 goes from −∞ to 0, since we consider here a
central maxima.

In Fig. 2, we show this compensation radius probability dP(R1)
for �CDM cosmology in a GRF. We illustrate the effect of the cen-
tral threshold ν0 defining the height of the central extrema |ν| ≥ |ν0|.
Increasing the central threshold favours larger compensation radii.
This seems natural since higher central peaks are more likely com-
pensated on large regions than smaller ones. This figure also shows
typical wiggles in this distribution around R1 ∼ 100 h−1Mpc . This
feature is probably related to the BAO. The enhanced correlation on
this scale increases the probability to find CoSpheres compensated
around this particular radius.

3.3.2 The compensation density δ1

The density contrast δ = ν1σ 0 is measured on the compensation
sphere at r = R1. To get the joint probability for ν1 and R1, we
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1918 J.-M. Alimi and P. de Fromont

Figure 3. Probability density function dP(δ1|R1)/dδ1 computed from
equation (47) in the Gaussian field at z = 8.1. Curves are the theoreti-
cal expectations for the �CDM model, while the shaded regions are the
measured distributions in the reference simulation for two different com-
pensation radius in the case of a central maximum (thus negative values of
δ1).

marginalize the full joint probability distribution (see equation 35)
over the central height ν and the curvature x

d2P(ν1, R1)

dν1dR1
=
∫ ∞

ν0

∫ xc

0

d4Ptot(ν, x, ν1, R1)

dν1dR1
(46)

Note that ν is integrated from ν0 to +∞, where ν0 is the
lower threshold for the central height. The conditional probabil-
ity dP(ν1|R1) is deduced from Bayes theorem

dP(ν1|R1)

dν1
=
∫ ∞

ν0

∫ xc

0 d4 Ptot(ν,x,ν1,R1)
dν1dR1∫ +∞

ν0
J0,0(ν, R1)dν

(47)

which describes the probability to get a compensated region with
ν1 given R1 normalized such that

∫ 0
−∞ dP(ν1|R1) = 1.

InFig. 3, we plot the distribution of δ1 in a GRF with a compar-
ison to numerical simulation, illustrating the excellent agreement
between the theoretical expectation and the numerical results. As
an illustration, if we neglect the dependence of xc in term of ν1 and
the second term in equation (35), ν1 follows a distribution of the
form

dP(ν1|R1)

dν1
∝ |ν1| exp

[
− (ν1 − ν̄1)2

2σ 2

]
(48)

where ν̄1 and σ are, respectively, the mean and dispersion value of
the ν1 distribution and are both functions of R1.

From equation (47), we compute the moments of ν1 given R1,
defined by

〈
νn

1 |R1

〉 =
∫ +∞

ν0
Jn,0(ν, R1)dν∫ +∞

ν0
J0,0(ν)dν

(49)

where Jn,m generalizes the function defined in equation (45) as

Jn,m(ν, R1) :=
∫ 0

−∞
νn

1

∫ xc

0
xm d4Ptot(ν, x, ν1, R1)

dνdR1

For n = 1, we get the average value of ν1 given R1

〈ν1|R1〉 =
∫ +∞

ν0
J1,0(ν, R1)dν∫ +∞

ν0
J0,0(ν, R1)dν

(50)

Figure 4. Mean expected values 〈X|R1〉 for the shape parameters X = {ν,
x, ν1} computed from equations (50), (53), and (55) as a function of the
compensation radius. For illustration, the �CDM matter power spectrum
has been smoothed on a Gaussian scale Rf = 10 h−1Mpc . The dashed lines
are the expected values from BBKS with the condition equation (42) and
are recovered for R1 → ∞ as shown in Section 3.2.3. Note that 〈ν1|R1〉 →
0 in the R1 → ∞ limit.

In Fig. 4, we plot 〈ν1|R1〉 as a function of the compensation radius R1

in a GRF (red curve). It admits a maximum for small compensation
radius (here R1 ∼ 10 h−1Mpc as we used a Gaussian smoothing
scale Rf = 10 h−1Mpc for the matter power spectrum) and slowly
converges to 0.

3.3.3 The height of the central peak ν

The conditional probability distribution of the height ν of the cen-
tral extremum given R1 is obtained by integrating the full joint
probability (see equation 35) over x and ν1,

dP(ν|R1)

dν
= J0,0(ν, R1)∫ +∞

ν0
J0,0(ν, R1)dν

(51)

we deduce the moments of ν constrained by its cosmic environment
i.e. for a given compensation radius

〈νn|R1〉 =
∫ +∞

ν0
νnJ0,0(ν, R1)dν∫ +∞

ν0
J0,0(ν, R1)dν

(52)

and in particular the average value for ν obtained for n = 1

〈ν|R1〉 =
∫ +∞

ν0
νJ0,0(ν)dν∫ +∞

ν0
J0,0(ν)dν

(53)

As it can be seen in Fig. 4, 〈ν|R1〉 strongly depends on R1 for small
compensation radius while it progressively tends to its asymptotic
value. As shown in Section 3.2.3, it converges to the standard value
〈ν〉 computed by BBKS.

Small inhomogeneous regions (small R1) are associated with
lower central extremum, describing smoothed inhomogeneities,
while higher extremum (or deeper voids) are more likely to sit
in larger over massive (respectively, under massive) regions. As
discussed in Section 3.2.3, the convergence towards the standard
BBKS case illustrates the progressive decorrelation between the
central peak and its large-scale cosmic environment.
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3.3.4 The curvature distribution x

Finally, we evaluate the statistical properties of the local curvature
x around a central extremum. Following the same development as
before, we derive the various moments

〈xn|R1〉 =
∫ +∞

ν0
J0,n(ν, R1)dν∫ +∞

ν0
J0,0(ν, R1)dν

(54)

with the average of x given by

〈x|R1〉 =
∫ +∞

ν0
J0,1(ν, R1)dν∫ +∞

ν0
J0,0(ν, R1)dν

(55)

We show in Fig. 4, the behaviour of 〈x|R1〉 as a function of R1. For
large compensation radii, it converges to its modified BBKS value
(see Section 3.2.3) and remains almost constant for a wide range of
R1. Again we observe on BAO scale some wiggles for 〈ν|R1〉 and
〈x|R1〉 relating the peaks parameters and the compensation radius.

3.4 The mean average profile with a given compensation
radius R1 in GRF

3.4.1 The profile at fixed R1

In the primordial Gaussian field, average profiles of CoSpheres are
determined by four independent – but correlated – scalars; ν, x, ν1,
and R1. At fixed compensation radius R1, the other shape parameters
X = {x, ν, ν1} can be considered as stochastic variables with con-
strained probabilistic distributions dP(X|R1) as computed in the
previous sections. Since the average density and mass contrast pro-
files are linear in the shape parameters (see Paper I and equation 56),
one can define the mean average profile at a fixed compensation ra-
dius as the profile whose shape parameters are averaged over their
distribution, thus reaching

〈δ〉(r)

σ0
= 〈ν|R1〉 δν(r) + 〈x|R1〉 δx(r) + 〈ν1|R1〉 δν1 (r) (56)

where brackets mean an average on stochastic realization of the
field and bar means an average over the possible values for the free
shape parameters. The mass contrast profile reaches (Paper I)

〈	〉(r)

σ0
= 〈ν|R1〉	ν(r) + 〈x|R1〉 	x(r) + 〈ν1|R1〉	ν1 (r) (57)

This profile describes the spherically compensated matter distri-
bution resulting from stacking every possible realization at fixed
R1. In Fig. 5, we show the mass contrast profiles 〈	〉 for various
compensation radii in �CDM cosmology. We retrieve the various
properties of CoSpheres described before: (i) smaller central max-
ima (low ν) are associated with narrow compensation radius with
a deep compensation density δ1, (ii) higher central maxima (high
ν) are located in larger over massive regions with a high R1 and
smoother density contrast δ1 and (iii) when R1 increases, central
peaks become undistinguishable on small scales (r � R1) and tend
to the standard BBKS profiles. In other words, for large R1, differ-
ent environments with various compensation radii can be associated
with very similar central profiles.

The whole of the previous discussion can be directly transposed
to the symmetric case of a central minima, seeding cosmic void.

3.4.2 On the characteristic elbow

One particular feature of the mean average profile, besides the fact
that they are fully determined by one single parameter R1, is the

Figure 5. Mean average mass contrast profiles normalized to the fluctuation
rms σ 0 for various compensation radius R1 (from 10 to 40 h−1Mpc ) in a
GRF (see equation 57). The elbow appearing beyond r ∼ 10 h−1Mpc for
profiles with R1 > 30 h−1Mpc is not due to any dynamical feature, it is
already present in the GRF and results from the compensation constraint.
It illustrates that while the compensation radius R1 increases, the central
extrema is progressively isolated from its surrounding cosmic environment
and its shape tends to the universal BBKS profile.

existence of a characteristic elbow. This bend appears around r ∼ 10
h−1Mpc for profiles with R1 ≥ 25 h−1Mpc (red curves in Fig. 5), but
it also shows up in numerical profiles as can be seen in Fig. 1(b).
This elbow is a result of the progressive decorrelation between
the central peak and its surrounding environment as discussed in
Section 3.2.3.

While R1 increases, the central extremum tends to an universal
shape as expected from BBKS. This elbow appears as the transition
between small BBKS-like scales and larger ones involved with
the compensation property. This characteristic does not appears in
standard void profiles when build from their effective size Reff as in
Hamaus, Sutter & Wandelt (2014). This is likely due to the fact that
voids with the same Reff may have very different compensation radii.
Stacking together profiles with the same Reff may erase this feature.
On the other hand, this elbow does not appears in evolved profiles
build from central over densities as in Fig. 1(a) despite existing in
the primordial Universe (see Fig. 5). This vanishing follows from
the non-linear gravitational evolution of these profiles, altering their
shape on small scales.

4 N O N - L I N E A R G R AV I TAT I O NA L
E VO L U T I O N O F C O S P H E R E IN
�C D M C O S M O L O G Y

In the previous section, we discussed the statistical properties of the
shape parameters of CoSpheres within the primordial GRF. These
results stand under the Gaussian assumption which can be safely
assumed at high redshift. In this section, we study the dynamical
evolution of these quantities during the non-linear collapse of the
matter field. As shown in Paper I, the adapted formalism for the
gravitational collapse of these regions is the Lagrangian spherical
collapse model (Padmanabhan 1993; Peacock 1998). It describes
the Lagrangian evolution of concentric shells without shell-crossing
or caustics formation.
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1920 J.-M. Alimi and P. de Fromont

4.1 Spherical Lagrangian collapse in �CDM cosmology

We recall the dynamical equations for the Lagrangian collapse
suited for our study. In the following, a Greek letter χ will de-
note a comoving quantity, while a Latin character r designates a
physical length. These quantities are related by r = χ × a with a
the homogeneous scale factor normalized as a(t0) = 1 today. We
also denote every initial quantity by the ‘i’ label, e.g. χ i is the initial
comoving position of one shell. Initial conditions are taken deep in
the matter dominated era where the Gaussian assumption for δ(x)
stands. We define the dimensionless Lagrangian displacement for
each shell

R(χi, t) = χ (t)

χi
(58)

with χ (t) the comoving radius of the shell at some time t. The mass
conservation in the absence of shell crossing leads to the relation

1 + 	

1 + 	i
= R−3 (59)

where 	i is the initial mass contrast for this shell, i.e. 	i = 	(χ i)
and 	 its evolved mass contrast. In order to simplify the dynamical
equation, we introduce the affine parameter τ defined through

dτ

d log(a)
:=

√

m

2
(60)

which can be integrated to give τ (a) in the �CDM model, with the
definition τ (ai) = 0

τ (a) =
√

2

3

[
arctanh

(

−1/2

m,i

) − arctanh
(

−1/2

m

)]
(61)

With this new parametrization, the equation of motion driving the
evolution of each individual shell reaches (Paper I)

∂2R
∂τ 2

+ 1√
2
m

∂R
∂τ

= R − 1 + 	i

R2
(62)

To close our system, we need to specify the initial conditions at
τ = 0. They are fixed by assuming that the dynamics follows the
Zel’dovich evolution at very high redshift, leading to (Paper I)⎧⎨
⎩
R(ti) = 1

∂R
∂τ

(ti) = −
√

2

m,i

	i
3 f (ti)

(63)

where f is the linear growth rate (Peebles 1980) and f(ti) is evaluated
at the initial time defined by τ = 0⇔t = ti. Equation (62) is valid for
any cosmology with a quintessence field sourcing DE and possibly
a time-varying e.o.s. parameter w. The affine parameter τ is then
still defined by equation (60), but equation (61) is no longer true
(Alimi & de Fromont in preparation). We extend also equation (62)
for theories beyond GRF in de Fromont & Alimi (in preparation).

4.2 Dynamical evolution of the compensation radius
probability distribution

The particular scale R1 is by definition conserved in comoving
coordinates, i.e. R1(t) ∝ a(t). In other terms, since the mean density
enclosed in the sphere of radius R1 equals the background density,
this scale evolves as the scale factor of the Universe. Since R1 is
conserved, its probability distribution must also be conserved during
the gravitational evolution. In principle, merging or creation of local
extrema could modify this probability distribution. However, such
effects are expected to occur on small scales, and since we consider

Figure 6. The compensation radius probability distribution P (R1) for
�CDM cosmology computed from 10000 profiles build around haloes at
various redshift (z = 8 to 0) in the reference simulation (blue lines). This fig-
ure has been obtained from 10 000 haloes of mass Mh = 3.0 ± 0.075 × 1013

h−1 M	 . The shaded region around each curve is the Poisson noise com-
puted in radial bins of size dR1 = 3.5 h−1Mpc . The red line is the initial
Gaussian distribution given by equation (43). The conservation of R1 en-
sures the conservation of its probability distribution. The height of the central
threshold ν0 has been chosen in agreement with the halo masses (3.0 × 1013

h−1 M	 ) used to construct the compensated regions.

sufficiently large value for R1 (R1 � 5–7 h−1Mpc ), the probability
distribution dP(R1) will not be affected.

In Fig. 6, we show the measures of its probability distribution
function (pdf) dP(R1)/dR1 at various redshifts from z = 8 to 0 in
the numerical simulation. We also show the theoretical expectation
from equation (43) computed within GRF. This figure illustrates
two points. First, the compensation radius pdf does not evolve dur-
ing the cosmic evolution excepted on very small scales (R1 ≤ 5
h−1Mpc ) where our reconstruction procedure may be inaccurate
(see Section 2). On larger scales however, neither the shape nor the
amplitude are affected, confirming that this distribution is conserved
during cosmic history.

On the other hand, the GRF expectation (see equation 43) fits the
measured distribution with a very good agreement. This distribution
thus appears as a good way to probe the early universe. However,
since the initial power spectrum P(k) is independent from the e.o.s.
parameter for DE w, this probability distribution does not probe w
neither σ 8, the amplitude of the power spectrum, but may probe

m and the various quantities describing the primordial Universe
as the scalar index ns on very large scales. These cosmological
dependencies are discussed in Alimi & de Fromont (in preparation).

Note however that the wiggles predicted by theoretical prediction
around R1 � 100 h−1Mpc do not appears in numerical data. This
may be due to the finite volume of our simulation (Lbox = 2592
h−1Mpc ) and the fact that on such scale, we are dominated by the
cosmic variance (Rasera et al. 2014).

4.3 The evolution of the compensation density δ1

δ1 is defined on the sphere of radius R1. It is a fundamental Eu-
lerian quantity and its probability distribution can be computed
analytically in the primordial GRF (see Section 3.3.2). δ1 is di-
rectly measurable from the matter profile. In Paper I, we showed
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Figure 7. Evolved probability density function dP(δ1|R1)/dδ1 at z = 0 in
the �CDM cosmology from haloes. The full line curves correspond to the
exact evolution given by equation (67). The shaded regions are the measured
distributions for two different compensation radius in the reference simula-
tion. The dashed curves are the Gaussian prediction, i.e. the linear evolution
of the primordial distribution. This figure illustrates the non-linearity of the
local gravitational process but also the possibility to reproduce the evolved
distribution from the exact collapse.

that during the non-linear evolution, it follows a simple dynamics,
corresponding to a one-dimensional Zel’dovich collapse

δt
1 = δ1

D̃(t)

1 − δ1

(
D̃(t) − 1

) (64)

where D̃(t) is the normalized linear growth factor defined by D̃(t) =
D(t)/D(ti) and δt

1 = δ1(t), while δ1 = δ1(ti) is its corresponding
value in GRF. Equation (64) only holds at the particular point r = R1

and cannot be extended to other arbitrary scale where Zel’dovich
dynamics is, at best, an approximation. There is a bijective mapping
between δt

1 and δ1 insuring that equation (64) can be inverted

δ1 = δt
1

D̃(t) + δt
1

(
D̃(t) − 1

) (65)

The computation of the non-linearly evolved conditional probability
distribution dP (δt

1|R1) can be computed under the assumption that
R1 and the joint probability of δ1 and R1 are both conserved during
evolution. Since δ1 and δt

1 are connected with a one-to-one relation,
we have

dP (νt
1|R1) = dP (ν1|R1) (66)

with νt
1 = δt

1/σ0 and ν1 = δ1/σ 0, where σ 0 is computed in the
primordial GRF only (and is a constant). Using equation (64), we
get the conditional probability distribution at any time

dP (δt
1|R1) = D̃(t)[

D̃(t) + δt
1(D̃(t) − 1)

]2

dP (ν1|R1)

dν1

∣∣∣∣
ν1= δ1

σ0

dδt
1

σ0
(67)

where δ1 and δt
1 are linked by equation (65). In Fig. 7, we show the

distribution dP (δt
1|R1) measured today in the reference simulation.

Each curve corresponds to a compensation radius (here 20 and 40
h−1Mpc ). In each case, we show the non-linear prediction equa-
tion (67) in full line together with the linear evolution in dashed
lines. The full spherical prediction reproduces the measured dis-
tribution with a high accuracy, whereas linear prediction predicts

larger values of δ1 today, especially for small compensation radii.
It is interesting to note that the linear prediction also fails on large
scales usually considered as ‘linear’, e.g. R1 = 40 h−1Mpc . This dif-
ference come from the fact that despite being on ‘linear’ scales, this
distribution probes high-density contrasts (δ1 around −0.5) which
are in the non-linear dynamical regime.

From equation (67), we can derive the average moments3 of δt
1〈

δn
1 |R1

〉
(t) =

∫ 0

−1

(
δt

1

)n
dP (δt

1|R1) (68)

where the integration is done over δt
1. Mapping δt

1 to its correspond-
ing value in the initial conditions δ1 leads to

〈
δn

1 |R1

〉
(t) =

∫ 0

−1

(
D̃(t)δ1

1 − δ1(D̃(t) − 1)

)n

dP (δ1|R1) (69)

In Appendix B, we show that for both central minima and central
maxima, these moments can be simply rewritten in term of the
primordial moments in GRF〈
δn

1 |R1

〉
(t) =

∑
k≥0

D̃(t)n
(
1 − D̃(t)

)k

(−n

k

) 〈
δn+k

1 |R1

〉
(70)

In particular, for n = 1, we get

〈δ1|R1〉 (t) = D̃(t)
∑
k≥0

(
D̃(t) − 1

)k 〈
δ1+k

1 |R1

〉
(71)

At t = ti, since D̃(ti) = 1, the only non-zero contribution comes
from the k = 1 term leading to 〈δ1|R1〉. Expanding equation (71),
we have

〈δ1|R1〉 (t) � D̃ 〈δ1|R1〉 + D̃(D̃ − 1)
〈
δ2

1 |R1

〉 + · · · (72)

The first term is the linear evolution, while higher terms account for
the corrections to this simple dynamics. Note that equation (71) is
different from the evolution of the mean which would be

〈δ1|R1〉 (t) = 〈δ1|R1〉 D̃(t)

1 − 〈δ1|R1〉
(
D̃(t) − 1

) (73)

whose small D̃(t) expansion is

〈δ1|R1〉 (t) � D̃ 〈δ1|R1〉 + D̃(D̃ − 1) 〈δ1|R1〉2 + · · · (74)

The first linear term remains unchanged, while the second one dif-
fers by

〈
δ2

1 |R1

〉 − 〈δ1|R1〉2. In Fig. 8, we show the measure of
〈δ1|R1〉(t) in the numerical simulations together with the exact evo-
lution equation (71) and the various approximation equations (72)
and (74) for R1 = 20 h−1Mpc . We also show the linear prediction
〈δ1|R1〉 = D̃(t) 〈δ1|R1〉. It turns out that the non-linear prediction
fits very well the measured evolution on the whole range of reshifts.

The possibility to predict precisely the distribution of the com-
pensation density at any non-linear redshift opens again new
possibilities for cosmology and will be deeply studied in Al-
imi & de Fromont (in preparation) and de Fromont & Alimi
(in preparation).

5 D I S C U S S I O N A N D C O N C L U S I O N

In this paper, we derived the main statistical properties of CoSpheres
as introduced in Paper I both in the primordial GRF and in the
structured Universe until z = 0.

3 Despite being a mute parameter, we prefer to keep the notation δt
1 in the

integral to highlight the fact that this average is evaluated at any time and
not only in the initial conditions.
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Figure 8. Redshift evolution of the first conditional moment of δ1 at fixed
R1, 〈δ1|R1〉 for R1 = 20 h−1Mpc . Error bars are computed as the error on
the mean estimated from 5000 single profiles. The red curve is the non-
linear solution derived from Lagrangian spherical dynamics equation (71),
the dashed red curve is the linear solution 〈δ1|R1〉(t) = D(t)/D(ti)〈δ1|R1〉
and the numerical data are in blue (points with corresponding error bars).
The agreement between numerical and theoretical computations from equa-
tion (71) is very good for all redshift (here the x-axis is the scale factor
a = 1/(z + 1). The full blue line and the dashed line are the small δ1 ex-
pansion from equations (72) and (74). At low redshift, all the non-linear
terms beyond the second-order term 〈δ1|R1〉 have to be taken into account
to reproduce the numerical results.

Within the Gaussian field, CoSpheres are fully determined by
a unique compensation radius and a set of shape parameters ν,
x, and ν1. This formalism can be seen as a physical extension
of the original BBKS work by taking explicitly into account the
large-scale matter field around the local extremum. This extension
describes the correlation between local extremum and their large-
scale environment.

In the framework of GRF, we derive the full joint Gaussian prob-
ability for the four parameters R1, ν, x, and ν1 (see equation 35)
by taking into account the appropriate domain for the curvature
parameter x in order to ensure the correct definition of R1 (see Sec-
tion 3.2.2). Interestingly, as studied in Section 3.2.3, the very large-
scale limit R1 → +∞ reduces to the standard BBKS statistics for
the central extrema BBKS. Physically, it describes the limit where
the central extrema is completely decorrelated from its surrounding
cosmic environment. In other words, the statistical distribution of ν

or x are no more affected by R1 when R1 becomes very large.
Marginalizing the full joint probability over the shape parameters

ν, x, and ν1 leads to the distribution dP(R1) (see equation 43) which
gives the probability to find a CoSphere with a given R1. Since each
single R1 is a comoving quantity, its pdf dP(R1) is also expected
to be conserved in comoving coordinates during the whole cosmic
evolution. This is confirmed by Fig. 6, where we compare the R1

distribution around DM haloes (central extremum) at various red-
shifts with the Gaussian prediction (red curve). Since the Gaussian
field is exactly symmetric, this distribution can also be transposed
without any change to the complementary case of central mini-
mum, seeding cosmic voids. In Fig. 9, we show the compensation
radius distribution dP(R1) at various redshift for central minima.
This figure has been obtained by finding minimum in the den-
sity field smoothed with a Gaussian kernel on Rf = 5 h−1Mpc at
z = 0 and assuming that their position do not change with redshift

Figure 9. Probability distribution dP(R1)/dR1 of the compensation radius
R1 from z = 8 to 0 centred on local minima. For this plot, the density field
has been smoothed on a Gaussian scale Rf = 5 h−1Mpc . This figure has
been obtained from 10 000 voids without selection criteria except that the
central density contrast is negative. The shaded region around each curve is
the Poisson noise computed in radial bins of size dR1 = 3.5 h−1Mpc . The
red curve is the analytical prediction computed in the primordial Gaussian
conditions equation (43), where the power spectrum has been smoothed on
the equivalent Gaussian radius Rg = 5 h−1Mpc .

(profiles are computed around the same position for each z). Once
again, the Gaussian prediction (red curve) fits the measured distri-
bution on all available scales.

As in Fig. 6, the BAO-like wiggles around R1 ∼ 90
h−1Mpc expected from theory do not appears clearly on numerical
data. As previously discussed in Section 4.2, this slight discrepancy
between theoretical and numerical results may be due to the cos-
mic variance which dominates on this scales due to the size of our
simulation box (Rasera et al. 2014).

We emphasize that this distribution is suited to model the distri-
bution of cosmic void sizes once identified as spherically compen-
sated regions. This approach is fundamentally different from other
attempts to model void statistics such as in Sheth & van de Wey-
gaert (2004), Furlanetto & Piran (2006), and Achitouv et al. (2016).
These approach are based on the excursion set theory (Press &
Schechter 1974; Bond et al. 1991), while our formalism identifies
the size of a void to its compensation radius. The improvement of
our approach is the ability to define correctly the size of such cosmic
structure and to be able to model its properties from first principles.
However, our model assumes that we are indeed able to find this
radius in observable data, which is far from being obvious.

Apart from the compensation radius distribution, we derived the
statistical properties of the shape parameters of CoSpheres and par-
ticularly the conditional probability distribution of each shape pa-
rameter at fixed R1. We computed their conditional moment and
discussed the correlation between the central peak and its sur-
rounding cosmic environment. More precisely, we have shown that
whilst R1 increases, the peak parameters ν and x progressively
tend to their asymptotic BBKS value, while ν1 vanishes. Small
central extremum (small value of |ν|) are associated with narrow
compensation radii with a high compensation density ν1. On the
other hand, higher peaks are more likely to sit in large inhomoge-
neous regions with a small compensation density. Once again, this
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discussion is valid for both central maximum and minimum, de-
scribing cosmic voids.

Using the spherical collapse model and the conservation of R1, we
then derived the evolved conditional distribution for δ1 at fixed R1.
This leads to the evolved moments

〈
δn

1 |R1

〉
at z = 0 whose expres-

sion can be computed analytically. The comparison with numerical
simulation are in a very good agreement with the Lagrangian pre-
diction (see Figs 6 and 7). In the opposite, the Eulerian dynamical
evolution fails to reproduce these quantities, even on ‘large scales’,
e.g. R1 = 40 h−1Mpc .

The statistical properties of the compensation scalars R1 and δ1

are thus particularly interesting, since they can be directly measured
in numerical simulations or otherwise from observational data and
can be used as new cosmology probes. This is investigated in Al-
imi & de Fromont (in preparation) and de Fromont & Alimi (in
preparation).

The fundamental interest of CoSpheres for cosmology is thus
based on two main properties. The first one is the conservation of
the compensation radius R1 in comoving coordinates, i.e. the fact
that that R1(t) ∝ a(t). This fundamental feature implies the con-
servation of its probability distribution dP(R1) during the whole
cosmic history and allows in principle to probe directly the proper-
ties of the primordial Gaussian Universe. This property allows us
to evaluate at z = 0 the statistics of the shape parameters describ-
ing both the small-scale extremum and its large-scale environment.
The second fundamental property is the exact symmetric treatment
of CoSpheres defined from central maximum or minimum. This
formalism provides a physically motivated model for cosmic voids
and offers an alternative approach for describing their statistical
properties.
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Alimi J.-M., Füzfa A., Boucher V., Rasera Y., Courtin J., Corasaniti P.-S.,

2010, MNRAS, 401, 775
Alimi J.-M. et al., 2012, DEUS Full Observable LCDM Universe Simula-

tion: the numerical challenge, IEEE Computer Society Press, CA, USA
Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Bertschinger E., 1987, ApJ, 323, L103
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Cautun M., Cai Y.-C., Frenk C. S., 2016, MNRAS, 457, 2540
Courtin J., Rasera Y., Alimi J.-M., Corasaniti P.-S., Boucher V., Füzfa A.,
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APPENDI X A : C OEFFI CI ENTS Cα

In this appendix, we give the explicit expressions of the Cα coeffi-
cients appearing in equation (24)

Cx〈
k4
〉 = −〈J1〉2

〈
W 2

1

〉 + 2 〈J1〉 〈W1〉 〈W1J1〉 − 〈W1J1〉2

+ 〈
J 2

1

〉 [〈
W 2

1

〉 − 〈W1〉2
]

(A1)

Cν = − 〈
J 2

1

〉 〈
k2W1

〉2 − 〈
k4
〉 〈W1J1〉2

+ 2
〈
k2J1

〉 〈
k2W1

〉 〈W1J1〉
+ 〈

W 2
1

〉 [〈
J 2

1

〉 〈
k4
〉 − 〈

k2J1

〉2
]

(A2)

Cν1 = − 〈
k2W1

〉2 + 2
〈
k2
〉 〈

k2W1

〉 〈W1〉 − 〈
k2
〉2 〈

W 2
1

〉
+ 〈

k4
〉 [〈

W 2
1

〉 − 〈W1〉2
]

(A3)

Cxν√〈
k4
〉 = 〈

J 2
1

〉 〈
k2W1

〉 〈W1〉 − 〈
J 2

1

〉 〈
k2
〉 〈

W 2
1

〉
+ 〈J1〉

〈
k2J1

〉 〈
W 2

1

〉
+ 〈W1J1〉

[〈
k2
〉 〈W1J1〉 − 〈J1〉

〈
k2W1

〉
− 〈W1〉

〈
k2J1

〉]
(A4)

Cxν1√〈
k4
〉 = 〈

k2J1

〉 〈W1〉2 − 〈J1〉
〈
k2W1

〉 〈W1〉
+ 〈

W 2
1

〉 [〈J1〉
〈
k2
〉 − 〈

k2J1

〉]
+ 〈W1J1〉

[〈
k2W1

〉 − 〈W1〉
〈
k2
〉]

(A5)

Cν1ν = 〈
k2
〉 〈

k2J1

〉 〈
W 2

1

〉 − 〈
k2J1

〉 〈
k2W1

〉 〈W1〉
+ 〈J1〉

[〈
k2W1

〉2 − 〈
k4
〉 〈

W 2
1

〉]
+ 〈W1J1〉

[〈
k4
〉 〈W1〉 − 〈

k2
〉 〈

k2W1

〉]
(A6)

We also introduce C0 defined by

C0 = (〈J1〉
〈
k2W1

〉 − 〈
k2J1

〉 〈W1〉
)2

+
(〈

k2
〉2 − 〈

k4
〉) × (〈

J 2
1

〉 〈
W 2

1

〉 − 〈W1J1〉2
)

(A7)
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Linked to the determinant of the correlation sub-matrix Q̃

�2(R1) = C0 + Cx + Cν + 2

〈
k2
〉√〈

k4
〉Cxν (A8)

Note that all these coefficients are functions of R1.

A P P E N D I X B: C O M P U T I N G T H E EVO LV E D
M O M E N T S O F T H E C O M P E N S ATI O N D E N S I T Y

We now compute the evolved moments
〈
δn

1 |R1

〉
(t) for both central

minimum and maximum. We show that in both cases, it gives〈
δn

1 |R1

〉
(t) =

∑
k≥0

D̃(t)n
(
1 − D̃(t)

)k

(−n

k

) 〈
δn+k

1 |R1

〉
(B1)

where the various moments
〈
δm

1 |R1

〉
are computed within the Gaus-

sian field at some time ti and D̃(t) = D(t)/D(ti).

B1 Central minima, i.e. cosmic voids

For central minimum seeding cosmic voids, the compensation den-
sity δ1 is positive. Using the notations of Section 4.3, δt

1 is the
evolved compensation density and δ1 its corresponding value in
the primordial field. These quantities are linked through equa-
tions (64) and (65). Since we consider finite values of δt

1 today,
this implies that the corresponding primordial values must satisfy
δ1 ≤ δc

1(t) ≡ 1/(D̃(t) − 1) (see equation 64). The moments today
are given by

〈
δn

1 |R1

〉
(t) =

∫ +∞

0

(
δt

1

)n
dP (δt

1|R1) (B2)

Using the mapping equation (64), it leads to

〈
δn

1 |R1

〉
(t) =

∫ δc
1(t)

0

(
D̃(t)δ1

1 − δ1(D̃(t) − 1)

)n

dP (δ1|R1) (B3)

= (
σ0D̃(t)

)n
∫ 1/ε(t)

0

(
ν1

1 − ν1ε(t)

)n

dP (ν1|R1) (B4)

where δ1 = σ 0ν1 and ε(t) = σ0(D̃(t) − 1). Since ν ∈ [0, 1/ε(t)], we
can use a Maclaurin expansion of the 1/(1 − ν1ε(t)) term, leading
to〈
δn

1 |R1

〉
(t) = D̃(t)n

∑
k≥0

(−1)k
(
D̃(t) − 1

)k

(−n

k

)

×
∫ 1/ε(t)

0
(σ0ν1)n+k dP (ν1|R1) (B5)

Using the primordial moments
〈
δn

1 |R1

〉 = σn
0

〈
νn

1 |R1

〉
, we get the

final result as recalled in equation (B1).

B2 Central maximum

For central maximum, the computation necessitates a careful treat-
ment. We start from〈
δn

1 |R1

〉
(t) =

∫ 0

−1

(
D̃(t)δ1

1 − δ1(D̃(t) − 1)

)n

dP (δ1|R1) (B6)

Using equation (65), it is clear that if δ1 ≥ −1, then for any time t, we
have δt

1 ≥ −1. However, we cannot use here a Maclaurin expansion,
since the term ν1ε(t) = δ1(D̃(t) − 1)) is no more included in its
convergence radius, i.e. it can take values larger than 1 (|ν1ε(t)|> 1).
We thus introduce the new variables x = δ1 + 1 and η(t) = (D̃(t) −
1)/D̃(t), both included in [0, 1]. Equation (B6) transforms to

〈
δn

1 |R1

〉
(t) =

∫ 1

0

(
x − 1

1 − xη(t)

)n

dP (x − 1|R1) (B7)

after a Taylor expansion in term of η(t) and switching back to δ1,
we get〈
δn

1 |R1

〉
(t) =

∑
k≥0

(−η(t))k
(−n

k

) 〈
δn

1 (1 + δ1)k|R1

〉
(B8)

Since δ1 ∈ [ − 1, 0], we expand also the term (1 + δ1)k term,

〈
δn

1 |R1

〉
(t) =

∑
k≥0

(−η(t))k
(−n

k

) k∑
p=0

kp
〈
δ

n+p
1 |R1

〉
(B9)

We simplify this expression by re-ordering and collecting terms
with the same contribution,

〈
δn

1 |R1

〉
(t) =

∑
m≥0

[∑
k≥m

(−η(t))k
(−n

k

)(
k

m

)] 〈
δm+n

1 |R1

〉
(B10)

Using again η(t) = (D̃(t) − 1)/D̃(t) together with the relation

∀α ∈ [−1, 1],
∑
k≥m

αk

(−n

k

)(
k

m

)
= αm

(1 + α)m+n

(−n

m

)
(B11)

where α = (1 − 1/D̃(t)) = −η(t). We finally recover the same ex-
pression (B1), which holds for both central minima and central
maxima.
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