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Summary  This paper deals with bifurcation analysis methods based on the asymptotic-numerical 
method. It is used to investigate 3-dimensional (3D) instabilities in a sudden expansion. To do so, high-
performance computing is implemented in ELMER, ie, an open-source multiphysical software. In this work, 
velocity-pressure mixed vectors are used with asymptotic-numerical method–based methods, remarks are 
made for the branch-switching method in the case of symmetry-breaking bifurcation, and new 3D instability 
results are presented for the sudden expansion ratio, ie, E = 3. Critical Reynolds numbers for primary 
bifurcations are studied with the evolution of a geometric parame-ter. New values are computed, which reveal 
new trends that complete a previous work. Several kinds of bifurcation are depicted and tracked with the 
evolution of the spanwise aspect ratio. One of these relies on a fully 3D effect as it breaks both spanwise and 
top-bottom symmetries. This bifurcation is found for smaller aspect ratios than expected. Furthermore, a critical 
Reynolds number is found for the aspect ratio, ie, Ai = 1, which was not previously reported. Finally, pri-mary 

and secondary bifurcations are efficiently detected and all post-bifurcated branches are followed. This makes it 
possible to plot a complete bifurcation diagram for this 3D case.

Keywords  asymptotic-numerical method, branch switching, continuation, high-performance computing, Navier-Stokes, nonlinear solvers, 

numerical bifurcation analysis, sudden expansion, 3-dimensional flow

1 INTRODUCTION

Numerical bifurcation analysis of flow problems governed by the discretized Navier-Stokes equations with a large number
of degrees of freedom is still a challenging task. A review of the existing numerical bifurcation methods in fluid dynamics
was proposed in the work of Dijkstra et al.1 Toolbox exists for ordinary differential equations, such as MatCont2 and
AUTO-07p,3 hence with a small number of degrees of freedom.4 A large-scale toolbox for systems of discretized partial
differential equations is the library of continuation algorithms LOCA5 as part of the Trilinos framework.6

An alternative to the well-known incremental-iterative methods7-9 is the asymptotic-numerical method (ANM).10 This
ANM is the association of a perturbation technique and a spatial discretization method, in our case the finite element
method (FEM). It has been successfully applied in nonlinear solid mechanics11,12 or in fluid mechanics.13-15 The main
advantage of the ANM is its ability to determine analytical nonlinear solutions16,17 with computational CPU time lower
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than with that of the classical incremental-iterative method. On these nonlinear solutions, some bifurcation indicators
have been introduced.12,18-20 High-performance computation based on the ANM for flow problems was proposed in the
work of Medale and Cochelin21 as an in-house code.

Parametric studies were proposed for the 3-dimensional (3D) sudden expansion in other works.22-25 Numerical bifur-
cation analysis using the aspect ratio E = 3 is available in other works,26-29 but only the first primary bifurcation was
investigated. More recently, a new powerful feature of the ANM,12 which makes it possible to enhance the detection and
continuation in the vicinity of a simple bifurcation, has been applied to study additional primary bifurcation for several
spanwise aspect ratio.14

In this work, we propose to complete previous studies by tracking each kind of primary bifurcation when the aspect
ratio evolves. Moreover, secondary bifurcations are investigated to plot a complete bifurcation diagram. Furthermore, new
information are given for the spanwise symmetry-breaking bifurcation described in the works of Medale and Cochelin14

and Chiang et al.27 Regarding the ANM-based method, remarks are made for the branch-switching technique in the case
of symmetry-breaking bifurcation. Lastly, previous ANM-based methods applied to fluid dynamics problems12,14,15,17-21,30

made no use of pressure information because static condensation was used. In this work, full velocity-pressure mixed
vectors are used in the ANM-based methods, such that flows and specific vectors are evaluated with pressure information.

This paper is organized as follows. The numerical methods are described in the first part. Implementation of the ANM
in ELMER is briefly mentioned in the second part. In the third part, bifurcation analysis is proposed for 3D flow in
a sudden expansion. Within this part, information of interest are compared to the literature, the evolution of the first
primary bifurcation is investigated, and bifurcation modes are depicted with velocity and pressure components. Lastly, a
bifurcation diagram is proposed to study secondary bifurcations.

2 NUMERICAL METHODS

2.1 Governing equations
The steady Navier-Stokes equations for Newtonian and incompressible fluid in a domain (Ω) are as follows:

−2μ div D (u) + grad p + ρu · grad u = 0 in (Ω) (1)

div u = 0 in (Ω) (2)

u = λud on (Γ), (3)

with u and p being the velocity and pressure unknowns, respectively, and λ being a control parameter. A generic velocity
profile ud is prescribed on the boundary (Γ). D (u) is the symmetric part of the velocity gradient tensor. Both density ρ
and kinematic viscosity μ are constant in the fluid domain. The Reynolds number is defined as Re = λρumax

d h
μ

, with h being
a characteristic length of the model.

The weak form of the Navier-Stokes equations can be defined according to

L(U) + Q(U,U) = λF in (Ω), (4)

where the linear operator L (•) contains the diffusion, the pressure gradient, and the continuity terms. The nonlinear
operator Q (•, •) contains the convection terms. Dirichlet boundary condition Equation (3) produces the right-hand-side
(RHS) term, which is equivalent to a fictitious force.16,17

2.2 Continuation with perturbation method
Pseudo–arc-length path-following technique16 based on the ANM is used to perform the continuation of the steady flow
solutions. This has been successfully implemented for 2-dimensional (2D) flows in the case of steady incompressible
Navier-Stokes equations in other works12,17-19 and for non-Newtonian fluids in the work of Jawadi et al.20 Recently, 3D
flow study has been proposed in the work of Medale and Cochelin.14
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The ANM relies on a linearization technique where the unknowns of the nonlinear problem are sought as power series
as follows:

X(a) = X0 +
N∑

i=1
aiXi, (5)

where X0 = {U0 λ0}⊤ is a known regular solution with the mixed vector notation U0 = {u0 p0}⊤, a ∈ R is a perturbation
parameter, and N is the truncation order of this polynomial representation.

Although several definitions exist, the perturbation path parameter is chosen as follows:

a = ⟨u − u0⟩u1 + (λ − λ0)λ1, (6)

where ⟨•, •⟩ is the classic Euclidean dot product. Introducing Equation (5) in the nonlinear system Equation (1) and
equating like powers of a, a set of linear algebraic systems is obtained. The same tangent operator is used for each of those
linear systems and is defined as follows:

L0
t (•) = L (•) + Q (U0, •) + Q (•,U0). (7)

The first order reads

L0
t (U1) = λ1F (8a)

⟨u1,u1⟩ + λ2
1 = 1, (8b)

and the recurrence relation for k ∈ [2,N] is

L0
t (Uk) = λkF −

k−1∑
i=1

Q(Ui,Uk−i) (9a)

⟨uk,u1⟩ + λkλ1 = 0. (9b)

Once the series {Ui, λi}i=1,N are computed using Equation (8)-(9), small part of the steady flow solution branch is
approximated continuously with the polynomial representation Equation (5).

The range of validity of this approximation is defined as follows:

amaxpoly =
(
η ||U1||||UN ||

)1∕(N−1)

, (10)

with η being a user-defined tolerance. Other definitions may be used.16

Finally, the ANM requires 2 user parameters, ie, the first one being the truncation order N and the second one is the tol-
erance parameter η. The latter governs the accuracy of the computed nonlinear predictions. Lastly, new regular solution
X0 = X(amax) is evaluated with Equation (5) and new continuation step might be performed. We recall that the approxi-
mation of the flow solution is continuous in a path-following continuation step. This makes it possible to evaluate steady
flow solutions at an exact Reynolds number.

Usually, the ANM nonlinear prediction does not need correction at the end of a step. Nevertheless, for some values of
the chosen parameter η, the accuracy of the solution obtained with the ANM cannot be satisfactory. It means that the
computed residual is greater than a given accuracy. In such a case, very efficient and cheaper correctors can be used at
the end of the continuation step to improve the quality of the ANM solution (see, for example, the work of Cadou and
Potier-Ferry31).

2.3 Steady bifurcation detection
Once steady nonlinear solution branch has been computed, it is worth determining the critical Reynolds numbers for
which a steady bifurcation appears. These singularities often characterize the loss of uniqueness of the flow solution.
In this study, only simple symmetry-breaking bifurcations of steady flow are considered. Nevertheless, these techniques
might be applied for other kinds of bifurcation analysis.11,21

Van Dyke32 showed that power series analysis may reveal some features about singularity in its range of validity. Thus,
the ANM series analysis has been proposed for steady bifurcation detection in the work of Cochelin and Medale.12 It has
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been applied to Newtonian incompressible fluid flows in the works of Cochelin and Medale12,14 and for non-Newtonian
fluids in the work of Jawadi et al.20 It is demonstrated in the work of Cochelin and Medale12 that the pseudo–arc-length
continuation is perturbed in the neighborhood of a singularity. Geometric progression appears in the ANM series in the
vicinity of a steady bifurcation point. The power series {Xi} computed in the singularity vicinity using Equation (8)-(9)
is, in fact, a linear combination of a geometric progression series with a nearly flawless ones as follows:

{Xi} = {X̂i}flawless + {Xi}geometric, for i = 1,N. (11)

Determining a steady bifurcation consists in finding a geometric progression into the polynomial representation
Equation (5). This is numerically detected via collinearity condition and relative error test applied to the last terms of the
series as follows:

N−2∑
p=N−3

(|αp|1∕(N−p)|αn−1| − 1

)2

< ϵgp1, with αp =
⟨

Xp,XN
⟩

⟨XN ,XN⟩ (12)

N−1∑
p=N−3

(‖‖X⟂
p ‖‖ ∕ ‖‖Xp‖‖) < ϵgp2, with X⟂

p = Xp − αpXN . (13)

The parameters ϵgp1 = 10−6 and ϵgp2 = 10−3 gave satisfactory results for steady bifurcation detection in this study. It
should be noted that a large truncation order, around N = 30 in this study, is required to accurately detect the geometric
progression. Once the common ratio 1∕αc = 1∕αN−1 and the associated scale factor αN

c XN are determined, a nearly flawless
enhanced series is computed as follows:

X̂i = Xi − αN−i
c XN , for i = 1,N. (14)

In the work of Cochelin and Medale,12 it is demonstrated that αc is exactly the arc-length distance to the critical point.
Thus, the flow solution at this singular point is computed using the flawless enhanced series as follows:

Xc = X(a = αc) = X0 +
N−1∑
i=1

αi
c X̂i. (15)

This constitutes an easy method to detect accurately critical solution because it is done while performing continuation
steps with no additional computational effort.

2.4 Branch switching at simple bifurcation point
At simple steady bifurcation point, families of flow solution branches might be found using the classical ANM
path-following technique by varying the ANM user parameters N and η.17 It requires a lot of computations with no pos-
sible guess of which parameters lead to a specific branch. Guevel et al19 proposed a branch-switching method for the
Navier-Stokes equations resolution. Then, approximations of nonlinear post-bifurcated branches emanating from the sin-
gular solution at a simple bifurcation point are computed using an adapted ANM continuation. This branch-switching
technique relies on the traditional bifurcation theory.8,9,33,34 It has been successfully coupled with the ANM in other
works11,12,35,36 in the solid mechanics framework. Because FEM operators in fluid mechanics problems are unsymmetric,
an adaptation is proposed in the works of Medale and Cochelin14 and Guevel et al.19

First, tangents of the 2 intersecting branches at a simple bifurcation point are determined. By choosing one of those
tangents, it makes it possible to switch from a branch to another. Those nonlinear post-bifurcated branches are com-
puted with a modified ANM path-following technique as presented in the work of Guevel et al.19 Hence, the nonlinear
post-bifurcated branches are sought as a power series representation as follows:

Xbi(a) = Xc +
N∑

j=1
a jXbi

j , for i = 1, 2. (16)

The starting point is the singular solution Xc computed as in Equation (15). Injecting the polynomial representation
Equation (16) in the nonlinear system Equation (1), a set of linear algebraic systems is obtained equating like powers
of a. The tangent operator denoted as Lc

t is assembled as in Equation (7) with the solution at the bifurcation point. As it
is singular, a special care is required to compute the post-bifurcated polynomial representation using this operator. Thus,
tangents at the bifurcation point are the first term of this representation.
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At a simple bifurcation point, the tangent operator has the following properties:

Ker
(
Lc

t
)
= {𝚽} , 𝚽 ∈ Ω, ⟨𝚽,𝚽⟩ = 1 (17)

Ker
(
Lc⊤

t
)
= {𝚿} , 𝚿 ∈ Ω, ⟨𝚿,𝚽⟩ = 1, (18)

with Φ being the so-called bifurcation mode and 𝚿 being the associated left bifurcation mode. Moreover, there exists a
unique particular solution vector W such that

Lc
t (W) = F, W ∈ Ω, < W,𝚽 >= 0. (19)

Different strategies are available to determine those vectors.33 A way to compute those vectors is described in the following.
Additionally, all those specific vectors are computed in this work as full velocity-pressure mixed vectors.

2.4.1 Tangents determination

At first order of the path parameter a, the tangents Xbi
1 =

{
Ubi

1
λbi

1

}
i=1,2

are solutions of the following linear system:

Lc
t
(
Ubi

1
)
= λ1F (20a)⟨

Ubi
1 ,U

bi
1
⟩
+

(
λbi

1
)2 = 1. (20b)

The singularity at the bifurcation point is treated classically with the help of the Lyapunov-Schmidt reduction.19,33,37,38 The
2 tangents are written as follows:

Ubi
1 = λbi

1 W + ηbi
1 𝚽, (21)

with λbi
1 , η

bi
1 ∈ R being 2 scalars to be determined. To do so, solve the following linear system defined at the second order:

Lc
t
(
Ubi

2
)
= λ2F − Q

(
Ubi

1 ,U
bi
1
)

(22a)⟨
Ubi

2 ,U
bi
1
⟩
+ λbi

2 λ
bi
1 = 0. (22b)

Projecting Equation (22a) on the left bifurcation mode 𝚿, Equation (18) leads to the well-known Algebraic Bifurcation
Equation (ABE) as follows: ⟨

𝚿,Q
(
Ubi

1 ,U
bi
1
)⟩

= 0. (23)

Using the Lyapunov-Schmidt reduction Equation (21), the following quadratic ABE is obtained:

ab
(
λbi

1
)2 + bbλbi

1 η
bi
1 + cb

(
ηbi

1
)2 = 0. (24)

This quadratic equation may be easily solved using Equation (20b), with the following coefficients:

ab = ⟨𝚿,Q (W,W)⟩ (25a)

bb =
⟨
𝚿, Q̃ (Φ,W)

⟩
(25b)

cb = ⟨𝚿,Q (Φ,Φ)⟩ . (25c)

In Equation (25b), the operator Q̃(a, b) is defined according to the expression Q̃(a, b) = Q(a, b) + Q(b, a).
The general case with restriction to ηbi

1 ≠ 0 and ab ≠ 0 gives

tbi =
λbi

1

ηbi
1

=
−bb + (−1)i

√
b2

b − 4abcb

2ab
. (26)

Using the norm condition Equation (20b) and the property ⟨W,𝚽⟩ = 0, it is obtained:

ηbi
1 = 1√

(tbi)2⟨W,W⟩ + ⟨𝚽,𝚽⟩ + (tbi)2
, (27)

where λbi
1 is automatically deduced using Equation (26).

5



Remark on symmetry-breaking bifurcation case
Pitchfork bifurcation occurs at simple bifurcation point if flow symmetry is broken for one of the post-bifurcated family

branch. Therefore, the coefficients defined in Equation (25a) are checked numerically. If ab = cb = 0 and bb ≠ 0, it
implies that pitchfork bifurcation occurs at the detected critical point.39 One is easily convinced that the condition cb = 0
is equivalent to the fact that the bifurcation mode 𝚽 is the solution of the ABE proposed in Equation (23) and that it is one
of the sought tangents.9,39 Moreover, ab = 0 implies that the other tangent is then collinear to the particular solution W.

Finally, in the case of pitchfork bifurcation, the 2 tangents are as follows:

Xba
1 =

{
Uba

1
λba

1

}
=

{
𝚽
0

}
(28)

Xbs
1 =

{
Ubs

1
λbs

1

}
=

{
λbs

1 W
λbs

1

}
(29)

with

λbs
1 = 1√⟨W,W⟩ + 1

. (30)

2.4.2 Specific vectors computation
In order to evaluate the coefficients in Equation (25) or directly the pitchfork bifurcation tangents as in Equation (29)-(28),
the specific vectors 𝚽,W, and 𝚿 are required.

In other works,18,19,35 the bifurcation modeΦ is computed using a classic ANM linear stability analysis technique known
as the “bifurcation indicator”. It should be noted that this requires some computational efforts. Then, only W and Ψ
remain to be computed using the definitions Equation (18)-(19) by the mean of augmented systems presented in the
following. This is done with no assumption of the symmetry-breaking simple bifurcation case.

The recent development proposed in the works of Cochelin and Medale12,14 does not use the same Lyapunov-Schmidt
reduction. Nevertheless, in the case of the symmetry-breaking bifurcations, vectors 𝚽 and W can be computed. The first
tangent at the bifurcation point is obtained by differentiating the actual flawless enhanced power series Equation (16) at
the critical point as follows:

Xb1
1 = dX(a)

da
||||a=αc

=
N−1∑
i=1

iαi−1
c X̂i. (31)

A Gram-Schmidt technique is used to extract the orthogonal vector from the last term of the series as follows:

Xb1⟂
1 = XN −

⟨
XN ,Xb1

1
⟩⟨

Xb1
1 ,Xb1

1
⟩Xb1

1 . (32)

In the case of symmetric branch, the following equality holds: 𝚽 = Xb1⟂
1 . Contrariwise, if the continuation is performed

on a post-bifurcated solution, from an antisymmetric state, then the bifurcation mode is the tangent computed as𝚽 = Xb1
1 .

Moreover, the particular solution W might be computed using Equation (31) or Equation (32) because of the orthog-
onality relation. Instead, it is used as an augmented system, which makes it possible to compute W and is reused in the
following to circumvent the singularity of the tangent operator. This does not require more computational effort. The vec-
tor W, which is the solution of the linear equation in Equation (19), is orthogonal to the bifurcation mode 𝚽 so that the
augmented system to be solved is written as follows:[

Lc
t 𝚽

𝚽⊤ 0

]{
W
κ

}
=

{
F
0

}
, (33)

where κ acts as a Lagrangian multiplier, which would be as small as possible.
In the case of the Navier-Stokes equations, the left mode remains to be computed using either an augmented system,19

or with iterative techniques such as bordering technique as presented in the work of Cochelin and Medale,12 or with
an inverse power method.14 Then, using the same consideration for the left bifurcation mode 𝚿 (see Equation (18)), the
augmented system is written as follows: [

Lc⊤
t 𝚽

𝚽⊤ 0

]{
𝚿
κ

}
=

{
0
1

}
. (34)
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It is noticed that this augmented matrix is the transpose of the precedent one in Equation (33). Specific options might be
used in linear solvers to reuse the already factorized matrix Equation (33). In this way, only one factorization is required
to compute the specific vectors and for every linear system required for the post-bifurcated branches as described in the
following.

2.4.3 Post-bifurcated branch continuation
Once tangents are determined as solutions of Equation (20), high-order terms of the power series Equation (16) are
determined for each of the post-bifurcated branches as solution of

Lc
t
(
Ubi

k

)
= λbi

k F −
k−1∑
j=1

Q
(

Ubi
j ,U

bi
k−j

)
(35a)⟨

Ubi
k ,U

bi
1
⟩
+ λbi

k λ
bi
1 = 0. (35b)

The following Lyapunov-Schmidt reduction12,19 is used:

Ubi
k = λbi

k W + ηbi
k 𝚽 + Vbi

k . (36)

Injecting Equation (36) in Equation (35), the new vector Vbi
k is solution of

Lc
t
(
Vbi

k

)
= −

k−1∑
j=1

Q
(

Ubi
j ,U

bi
k−j

)
(37a)⟨

Vbi
k ,𝚽

⟩
= 0. (37b)

This system of equations is exactly the linear augmented system described in Equation (33), with different RHS vector. It
makes it possible to compute Vbi

k in an efficient way because only a new RHS needs to be assembled.
The coefficients λbi

k and ηbi
k are determined with the same procedure used for the tangents. Injecting the

Lyapunov-Schmidt reduction in the order k+1 system Equation (35a) projected on the left bifurcation mode 𝚿 and using
the condition Equation (35b), the following system is obtained:[ ⟨

𝚿, Q̃
(
W,Ubi

1
)⟩ ⟨

𝚿, Q̃
(
𝚽,Ubi

1
)⟩⟨

W,Ubi
1
⟩
+ λbi

1
⟨
𝚽,Ubi

1
⟩ ]{

λbi
k

ηbi
k

}
=

{
−gk

−
⟨

Vbi
k ,U

bi
1
⟩}

(38)

with the coefficient definition
g2 =

⟨
𝚿,Q

(
Vbi

2 ,U
bi
1
)⟩

(39)
and, for k > 2,

gk =
⟨
𝚿,Q

(
Vbi

k ,U
bi
1
)⟩

+
k−1∑
j=2

⟨
𝚿,Q

(
Ubi

j ,U
bi
k−j+1

)⟩
. (40)

When a complete power-series is obtained, the range of validity is evaluated. Then, for a chosen tangent, the associated
post-bifurcated branches emanating from the bifurcation points are approximated using Equation (16), with amax or−amax
in 2 directions. This procedure is repeated at wish for each of the computed tangents. Each new starting point on the
post-bifurcated branches is either saved for a restart procedure or used directly for new continuation steps.

It should be noted that, in the case of simple steady bifurcation, 4 branches are approximated using 2 tangents and new
regular solutions are saved for next restart.

Remark on symmetry-breaking bifurcation case for high-order terms
For the symmetric post-bifurcated branch, the tangent Xbs

1 is orthogonal to the bifurcation mode, which leads to the
following simplification:

λbs
k = −

⟨
Vbs

k ,W
⟩

⟨W,W⟩ + 1
(41a)

ηbs
k = −

gbs
k

bb
. (41b)
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Then, using the tangent of the antisymmetric branch Xba
1 , which is exactly the bifurcation mode, the sought coeffi-

cients are

λba
k = −

gba
k

bb
(42a)

ηba
k = 0, (42b)

leading to the following expression of the high-order terms:

Uba
k = λba

k W + Vba
k . (43)

In this particular case, each high-order term of the series is orthogonal to the bifurcation mode according to the
pseudo–arc-length condition Equation (35b).

3 NUMERICAL IMPLEMENTATION

All the previous numerical methods were implemented in the open-source software ELMER,40 which is a generic and
multiphysics finite element code. Several tests were run with the UMFPACK linear direct solver, which is the default direct
solver. For problems requiring memory space greater than 4 GB, the use of an alternative direct solver was mandatory.
In this study, the solver MUMPS41 was chosen. Accordingly, it was compiled with the OpenBLAS linear algebra library42

to get multithreaded operations. Finally, ELMER was compiled to work with MUMPS. All the ANM-based methods and
algorithms were implemented in ELMER as new modules and user-defined solvers.*

Additional features are available with the solver MUMPS that makes it possible to compute both Equation (33) and
Equation (34) using only one factorization of the augmented tangent operator.

4 NUMERICAL RESULTS

Bifurcation analysis is performed for the case of symmetry-breaking steady bifurcation. The critical Reynolds numbers
are investigated for the 3D sudden expansion.

The ANM continuation of steady flow solution is performed. Then, the geometric progression criteria Equation (12)
and Equation (13) are checked during the continuation. Possibly, steady bifurcations are detected. The critical Reynolds
numbers and bifurcation modes are reported. Results obtained with the ANM methods in ELMER are compared with the
bifurcation information of the literature.

Computations presented in this paper were performed on a DELL Precision T7500 using 2 Intel(R) Xeon(R) X5677 @
3.47 GHz (16 threads) with 96 GB of memory or on a Dell PowerEdge R930 using 2 Intel(R) Xeon(R) CPU E7-8860 v4 @
2.20 GHz (72 threads) with 1 TB of memory.

This section is organized as follows. Firstly, the 3D sudden expansion case is described. Secondly, the first primary bifur-
cation is described for several geometric ratios. Then, the other primary bifurcations are investigated. Finally, secondary
bifurcations are presented for one geometric ratio.

4.1 Test case description
The 3D sudden expansion test case is well documented in other works.22-25 Bifurcation analysis using the aspect ratio E = 3
was proposed numerically in other works26-29 and, more recently, in the work of Medale and Cochelin14 using ANM-based
methods. The fluid domain and the boundary conditions are reported in Figure 1. The length L is chosen long enough
to capture the steady bifurcation phenomenon. Mesh features with several geometric ratios Ai = W∕h and length L are
presented in Table 1.

Linear interpolation H8/8C stabilized finite elements are used.43

*https://github.com/YGuevel/ElmerMAN
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FIGURE 1 Sudden expansion. h = 10,H = 3h, l = 3h,L,W = Aih

TABLE 1 Meshes for the case E = 3, l = 3h, and ratios Ai = W∕h. Length L, number of H8 elements for entrance
(Nh×NW×Nl) and body (NH×NW×NL), half-bandwidth (HBW), memory space, and CPU factorization time
required by MUMPS are given. (v4) stands for mono-threaded computation using the MUMPS V4 library, otherwise
the MUMPS V5 and OpenBlas libraries are used

Number of H8 Elements Number of Number of
Ai L Entrance Body Nodes DOF HBW RAM LU Thread

1 30h 12×12×36 36×12×360 179 725 718 900 1131 14 GB 330 s 8T
1 60h 22×22×66 66×22×1320 2 070 575 8 282 300 3611 368 GB 1550 s 36T
1.25 30h 16×20×48 48×20×480 512 085 2 048 340 2415 75 GB 940 s 8T
1.5 60h 12×18×36 36×18×720 515 755 2 063 020 1653 58 GB 1800 s 1T (v4)
2 30h 12×24×36 36×24×360 345 625 1 382 500 2534 45 GB 1800 s 1T (v4)
2 50h 16×32×48 48×32×800 1 322 145 5 288 580 4466 256 GB 1100 s 36T
2.5 30h 12×30×36 36×30×360 428575 1 714 300 3416 68 GB 1000 s 8T
3 30h 8×24×24 24×24×240 156 025 624 100 2162 17 GB 550 s 1T (v4)
3 50h 14×42×42 42×42×700 1 323 239 5 292 956 6470 235 GB 1300 s 36T
3.5 30h 8×28×24 24×28×240 180 989 723 956 2220 22 GB 860 s 1T (v4)
3.75 30h 10×37×30 30×37×300 367 118 1 468 472 3414 59 GB 855 s 8T
4 30h 10×40×30 30×40×300 396 101 1 584 404 3414 66 GB 1000 s 8T
4 40h 14×56×42 42×56×560 1 757 463 5 643 684 6570 340 GB 1700 s 36T
5 30h 10×50×30 30×50×300 492 711 1 970 844 3493 91 GB 1500 s 8T
5 40h 14×70×42 42×70×560 1 757 463 7 029 852 6737 476 GB 2900 s 36T
6 30h 8×48×24 24×48×240 305 809 1 223 236 2667 48 GB 3000 s 1T (v4)
6 30h 15×90×45 45×90×450 1 953 406 7 813 624 9093 604 GB 3600 s 36T
7 30h 9×63×27 27×63×270 502 912 2 011 648 3855 96 GB 1800 s 8T
7 30h 15×105×45 45×105×450 2 275 396 9 101 584 10 473 749 GB 4900 s 48T
8 30h 8×70×24 24×70×240 486 989 1 947 956 3785 89 GB 1500 s 8T
8 55h 12×96×36 36×96×714 2 417 725 9 670 900 7647 563 GB 4300 s 48T
9 30h 8×72×24 24×72×240 455 593 1 822 372 3867 83 GB 1500 s 8T
9 40h 12×108×36 36×108×360 1 990 885 3 981 770 8535 592 GB 3300 s 36T
10 30h 8×80×24 24×80×240 505 521 2 022 084 4267 96 GB 1800 s 8T
10 40h 12×120×36 36×120×480 2 210 065 8 840 260 9423 662 GB 4300 s 36T

An established velocity profile is prescribed on the inlet. Many formulations can be found in the literature. The best-fit
profile compared to a gravitational driven flow has been used in this study.

Firstly, Shah and London44(eq. 332) and Titarev and Shakhov45(eq. 3.3) proposed similar analytical formulation based
on infinite sums of hyperbolic terms. Secondly, in the works of Baloch et al,24(eq. 18) Theofilis et al,46(eq. 2.3) and
Nicolas et al,47(eq. 7) another formulation is obtained. Moreover, in the work of Spiga and Morino,48(eq. 7) only trigonometric
functions are used.

Finally, the analytic formulation used in this work is based on the work of Tanyeri et al.49(S1) It uses infinite sum of
hyperbolic terms in z for the spanwise direction multiplied with a classic parabolic profile for y, the height. It has been
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decided to modulate this latter parabolic profile as proposed in the work of Shah and London44(eqs. 334-337) using a power
exponent n. The inlet velocity profile that best fits a gravitational driven flow using ELMER is

udx(𝑦, z) = C

(
1 −

(
2𝑦
h

)2
)n ∞∑

k=1,3,..

1
k3

⎛⎜⎜⎜⎝1 −
cosh

(
kπz
h

)
cosh

(
kπW

2h

)⎞⎟⎟⎟⎠ , (44)

where C is a normalization coefficient. Several tests were performed such that the values k ∈ [1, 15] and n = 0.95 have
been used in this work.

4.2 Primary bifurcation
The ANM continuation is performed to follow the steady solution branches. The ANM parameters are N = 30 and η =
10−16. Steady bifurcation detection is performed with ϵgp1 = 10−6 and ϵgp2 = 10−3. Using these parameters, the ANM
method requires from 10 to 14 steps to detect the first bifurcation. Other parameters, for example, η = 10−8, allow to
detect accurately the first primary critical values with less steps (around 5 to 7 step). However, it leads to degraded quality
of solutions.

Some computational cost information are given. The CPU factorization time presented in Table 1 is highly decreased
because a multithreaded library has been used. Usually, in ANM, the tangent operator factorization represents the main
part of the computational time. In this work, when using fine meshes with long bodies, it requires 3 “multithreaded LU”
CPU time to perform one ANM step. The geometric progression detection is based on vector manipulations, which is
negligible. Then, some specific vectors need to be computed. Due to MUMPS V5, it is possible to factorize only one aug-
mented system to get all the specific vectors and to compute the post-bifurcated branches. Finally, the branch-switching
technique allows to compute 4 parts of the post-bifurcated branches using only 1.66 ANM step. This represents half of a
working day for standard meshes to a day or two for meshes with almost 107 degrees of freedom using 36 threads for the
factorization step.

Readers may get further details of the ANM computational cost from other works.12-15,17-20

FIGURE 2 Bifurcation diagram for Ai = 8. FB1 and FB2 denote fundamental branches, PB1 denotes the first primary bifurcation point,
and BBr1n and BBr1p denote the post-critical unsymmetric nonlinear branches. Blue: fully symmetric solutions. Red: one ANM step using
the singular initial solution. Orange: bifurcated branches with a broken symmetry but still not unsymmetrical
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4.2.1 Bifurcation diagram
A velocity probe is used at coordinates (100,0,0) at the intersection of the vertical and horizontal symmetry planes. A 2D
bifurcation diagram may be plotted using either uy or uz versus the Reynolds number. This choice depends on which
symmetry breaking is investigated.

A bifurcation diagram is proposed for the first primary bifurcation in Figure 2. From the fundamental branch
FB1, a pitchfork bifurcation is detected. Then, the singular solution Uc and the 3 specific vectors required by the
branch-switching technique are computed. The red curve depicted one ANM step starting with a singular solution. A new
regular point is chosen to follow an other branch.

4.2.2 Flow topology descriptions
Illustration of the 3D flow is depicted in Figure 3. Two Reynolds numbers are considered, ie, the critical value Rec = 103
and a higher value Re = 174 for which 3 solutions exist (see dashed line in Figure 2). The streamlines of the flow solutions
allow us to identify recirculation zones and vortex lines.

The first primary bifurcation breaks the horizontal plane, and the vertical symmetry plane being still present.
In order to validate the flow topology, features are determined using skin friction lines.50 It is depicted in skin friction

lines on the floor, roof, and lateral wall in Figure 4 for the flow solution on the BBr1n branch. The kind of singularities
and their positions are in good agreement with the pattern depicted in the work of Chiang et al.27

4.2.3 Evolution of Rec vs Ai
Critical Reynolds numbers for the first primary bifurcation are reported in Table 2 for several geometric aspect ratios Ai.
Values from the literature are also reported. Moreover, a transition from a symmetrical state for Ai = 1.5 at Re = 314 to
an unsymmetrical one for Ai = 2 at Re = 297 was presented in the work of Tsui and Wang.29 In the work of Chiang et al,27

FIGURE 3 Streamlines for 3-dimensional steady flows, Ai = 8, L = 30h. uc at Rec = 103, uFB2 and uBBr1n are both evaluated at Re = 174
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Skin friction for the postcritical BBr1n branch of the sudden expansion with Ai = 6 at Re = 135. (Left) our study, made with
ParaView with line integral convolution; (Right) extracted from the work of Chiang et al,27 half-domain for roof and floor plane [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Critical Reynolds number associated to the first primary
steady bifurcation for several Ai. “FL” stands for finer mesh or longer
body, “NS” stands for not searched

This Study
Ai = W∕h RecPB1 RecPB1 (FL) Literature Rec

1 (> 450) 734.7 Tsui and Wang29 > 300
1.25 438.7 NS
1.5 333.3 NS
2 241.7 241.7
2.5 196.1 NS
3 170.6 170.2 Tsui and Wang29 171
3.5 149.9 NS Chiang et al27 145
3.75 142.5 NS
4 136.7 136.2
5 121.2 120.7
6 112.7 111.5 Schreck and Schäfer26 113
7 106.9 106.0
8 103.1 102.4
9 100.5 99.4
10 98.3 97.3 Medale and Cochelin14 98.3

a transition was noted from a symmetrical state for Ai = 3.5 at Re = 145 to unsymmetrical one for Ai = 3.75 at Re = 143.
Those transitions are reported respectively in orange and red in Figure 5.

Additional information is given regarding critical Reynolds numbers found in the literature. In the work of
Tsui and Wang,29 inlet flow is uniform and mean velocity is used for the Reynolds number definition, so that coefficients
are applied to match our definition. In Table 3, some ratios umax∕ 3

2
umean are given. Coefficient for aspect ratios Ai = 1.5

and Ai = 2 are numerically evaluated using simulation of a flow in a rectangular duct. For higher aspect ratios, values are
extracted from table 4 in the work of Chiang et al.27
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FIGURE 5 Critical Reynolds number associated to the first primary steady bifurcation for several Ai using the asymptotic-numerical
method (ANM)-based method. In black circles, the value from literature. In red and orange, the transition from symmetric flow (S) to
antisymmetric flow (A) found in the literature

TABLE 3 Correspondence between umax and
3
2

umeanfor a uniform velocity inlet in a rectangular
duct. Values higher than Ai = 3 are extracted from
table 4 in the work of Chiang et al27

Ai Ratio Umax∕ 𝟑
𝟐Umean

1.5 1.576
2 1.488
3 1.242
3.5 1.209
3.75 1.195
6 1.117

Firstly, it can be observed that our results are in very good agreement with the literature. Secondly, between standard
mesh and finer and/or longer mesh (see Table 1), critical values are very similar. This indicates that standard mesh with
L = 30 is sufficient to accurately compute critical values for the first primary bifurcation.

To the best knowledge of the authors, no result was found in the literature for the ratio Ai = 1. In the work of
Tsui and Wang,29 no primary bifurcation was found for Reynolds number lower than Re = 300. Using standard mesh, we
were not able to compute accurately fundamental solutions for Reynolds number higher than Re = 450. However, with a
finer and longer mesh, the first primary bifurcation was detected at RecPB1 = 734.7.

These values are plotted in Figure 5. The trend for high values of aspect ratio is to converge slowly toward the critical
Reynolds number Rec = 80.4 obtained for the 2D flow.15 This is in perfect agreement with critical values for higher ratios
computed in the work of Medale and Cochelin.14 Finally, it is observed that the first primary bifurcation occurs for higher
Reynolds number as the aspect ratio is decreasing.

4.2.4 Bifurcation vectors description
A spatial representation of the bifurcation modes 𝚽 and 𝚿 and of the particular solution W is depicted in Figure 6. In the
same way, the pressure and the velocity parts of these 2 bifurcation modes are depicted in Figures 7 and 8, respectively.

The velocity part of the bifurcation mode 𝚽 is in agreement with the work of Medale and Cochelin.14 Moreover, the
vertical middle cut plane for the pressure part is similar to the 2D case.51

It is observed that the left bifurcation mode 𝚿 drives the inlet flow. This behavior is in agreement with the work of
Battaglia et al.51
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FIGURE 6 Slice and streamlines for the singular tangent operator specific vectors at first steady primary bifurcation (PB1). Bifurcation
mode 𝚽, left bifurcation mode 𝚿, and specific solution W. Case of Ai = 5

FIGURE 7 Left bifurcation mode 𝚿PB1 (Left) and bifurcation mode 𝚽PB1 (right). Velocity components and pressure for E = 3Ai = 5L = 30.
Contours for 𝚿u are 10−2, 2 · 10−3, 2 · 10−3. Contours for 𝚽u are 10−3, 5 · 10−4, 10−4. Red: positive; blue: negative; green: 10−6
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FIGURE 8 Particular solution WPB1. Velocity components and pressure for E = 3Ai = 5L = 30. Contours for Wu are 5 · 10−4, 7 · 10−5, and
5 · 10−5. Red: positive; blue: negative

TABLE 4 Critical Reynolds numbers and bifurcation type of second and
third primary bifurcation for several geometric ratios. “Std” stands for
standard mesh, "F/L" for finer or longer mesh, “NS” for not searched.

RecPB2 RecPB3
Ai = W∕h Std type F/L type Std type F/L type

2 NS 778.6 ▴ NS NS
3 NS 541.5 ▴ NS 881.1 ⧫
4 NS 427.9 ▴ NS 734.7 ⧫
5 NS 372.7 ▴ NS 664.1 ⧫
6 337.8 ▴ 338.2 ▴ NS 614.4 ⧫
7 313.3 ▴ 308.3 □ 313.8 □ 314.8 ▴

8 204.7 □ 203.9 □ 296.4 ▴ 294.6 ▴

9 161.3 □ 159.2 □ 283.5 ▴ 283.5 ▴

10 138.2 □ 136.9 □ 273.6 ▴ 274.4 ▴

4.2.5 Evolution of additional primary bifurcations
Beyond the first primary bifurcation, fundamental branches are computed for various geometric ratios. Then, additional
primary bifurcations are found. For each primary bifurcation, it was observed that bifurcation mode topologies were very
closed to each others. Moreover, it is reported in Tables 4 and 5 the values of the critical Reynolds number for the primary
bifurcation with respect to the aspect ratio Ai. Accordingly, it was proposed to track the evolution of the critical Reynolds
numbers for each primary bifurcation with respect to the aspect ratio Ai (see Figure 10). Whatever the rank of the primary
bifurcation, it was observed that the greater the aspect ratio is, the lower the critical Reynolds numbers are. The different
kinds of bifurcation modes for the primary bifurcation noted as ▴,□, and ⧫ are depicted in Figures 11 and 12 for the case
of Ai = 8.
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TABLE 5 Critical Reynolds numbers and bifurcation type for the fourth and fifth
primary bifurcations versus the aspect ratio Ai. “Std” stands for standard mesh,
“F/L” for finer or longer mesh, “NS” for not searched, and “NF” for not found

RecPB4 RecPB5
Ai = W∕h Std type F/L type Std type F/L type

8 557.5 ⧫ 568.8 ⧫ NS NS
9 NF 545.0 (Padé) NS NS

10 441.0 ⊕ 432.9 ⊕ 518.7 ⧫ 526.6 ⧫

FIGURE 9 Velocity comparison of flows on the post-bifurcated branches BBr1n (post ◦ at Re = 444) and BBr2n (post □ at Re = 315) for
the case E = 3, Ai = 8, L = 55h. Up: crop of 3 planar slices, at z− = −25, z0 = 0, and z+ = 25, of velocity magnitude at different spanwise
coordinates. Middle: front view of the ux velocity component signed contours: 0.2 (red) and −0.2 (blue). Down: overview of those contours
with transparency for the positive value

In Table 4, the critical Reynolds numbers are similar for standard and finer or longer meshes. Some bifurcations were
not searched using standard meshes. The recirculation zones were not correctly captured with L = 30 because it was
necessary to refine the mesh for higher Reynolds number. However, the recirculation zones were correctly computed
using finer or longer meshes.

For the ratio Ai = 10, critical values issued from the work of Medale and Cochelin14 are RecPB2 = 137.60, RecPB3 = 210.86,
and RecPB4 = 280.05. Firstly, only two of these 3 additional bifurcations are detected. Even with a Newton corrector using
a residual norm criterion prescribed at 10−6 and a finer mesh, we were not able to detect the bifurcation at Rec = 210.86.
However, the critical values and kinds of bifurcation are in agreement with the literature.

The primary bifurcation, noted as □, breaks both planar symmetries. The spanwise symmetry is broken. The flow is in
the symmetry group Z2(y)⊕ Z2(z) as described in the work of Chiang et al.28 More precisely, this is an X-axis symmetry.
In Figure 9, a visual comparison between flows on post-bifurcated branches BBr1 (post ◦) and BBr2 (post □) is proposed.
Firstly, in the case of the spanwise bifurcation, planes z = −25 and z = 25 are antisymmetric. Moreover, slice at middle
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plane shows a symmetric pattern. Whereas, the topology of the BBr1 flow for the 3 slices is in the same top-bottom direc-
tion. Secondly, contours make it possible to see differences between the BBr1 branch flow, which breaks the top-bottom
symmetry and is in the planar symmetry group Z2(z), and the BBr2 branch flow, which breaks both plane of symmetry
and is in the Z2(y) ⊕ Z2(z) group. The latter flow is clearly symmetric according to the X-axis. This spanwise symmetry
breaking was not found below Ai = 30 in the work of Chiang et al.28 In the work of Medale and Cochelin,14 this bifurca-
tion was still present for ratios Ai ≥ 10. In the present study, this spanwise bifurcation persists from Ai = 7 to Ai = 10. It
is not found for smaller ratios. Another interesting behavior with Ai = 7, is the permutation in the order of primary bifur-
cation. Using standard mesh, the spanwise bifurcation is found at Rec = 313.8 whereas the other bifurcation is found at
Rec = 313.3. These 2 critical values are really closed to each other, but modes and flows on post-bifurcated branches are
clearly different (see next subsection). Using a finer mesh, the spanwise bifurcation is found early at Rec = 308.3 against
Rec = 314.8 for the other one.

In Table 5, the fourth and fifth primary bifurcations are reported. The critical values found differ about 2% depending
of the meshes used. ⧫ bifurcation type is found at Rec = 568.8 for Ai = 8 and Rec = 518.7 for Ai = 10. However, for
Ai = 9, the detection of the ⧫ bifurcation type failed with the criterion proposed in the work of Cochelin and Medale12

and retained for this study. Nevertheless a pole appears in the rational representation of the series (as used in the work
of Guevel et al19) indicating a bifurcation for Rec = 545. In this case, we were not able to determine the bifurcation type.
Finer spatial discretization or finite element of higher degree might be needed to ensure a perfect detection.

Evolution of critical Reynolds number against the spanwise aspect ratio is plotted in Figure 10. The trend of the ▴ and ⧫
bifurcation type is similar to that of the first primary bifurcation described in Section 4.2.3. As the body is narrow, which
corresponds to small geometric ratio Ai, there is a stabilization effect on the bifurcation phenomenon. In the case of the
spanwise breaking primary bifurcation □, this stabilization effect occurs for higher ratio. The trend is not the same for
this □ primary bifurcation type. It might be explained by the fact that these kinds of bifurcation are comparable to a 2D
bifurcation, whereas the spanwise symmetry-breaking primary bifurcation is a real 3D effect.

4.2.6 Primary bifurcation modes
The bifurcation types □,▴, and ⧫ are now described for the ratio Ai = 8 (see Figures 11 and 12). Velocity components
and pressure of bifurcation modes are proposed for the case Ai = 8 using L = 55h.

The bifurcation modes 𝚽PB3 (▴) and 𝚽PB4 (⧫) are both similar in their topology with the first primary bifurcation 𝚽PB1
seen in Figure 7. The bifurcation mode 𝚽PB2 (□), which breaks the spanwise symmetry, has a different structure. The
latter is in perfect agreement with the mode described in the work of Medale and Cochelin.14

4.3 Case with secondary bifurcation for Ai = 8
In previous subsections, only primary bifurcations were discussed. Now, results for the ratio Ai = 8 with secondary
bifurcation (SB) are presented. A secondary bifurcation appears on a nonfundamental post-bifurcated branch where a
symmetry remains.

FIGURE 10 Critical Reynolds number associated to primary bifurcation for several Ai using ELMER coupled with the
asymptotic-numerical method. In black circles, values from the literature [Colour figure can be viewed at wileyonlinelibrary.com]

17



FIGURE 11 Bifurcation modes 𝚽PB2□ (Left) and 𝚽PB3▴ (right). Velocity components and pressure for E = 3, Ai = 8, L = 55h. Contours
for 𝚽u are 10−3 · 10−4, 10−4. Red: positive; blue: negative

FIGURE 12 Bifurcation modes 𝚽PB4 noted as ⧫. Velocity components and pressure for E = 3, Ai = 8, L = 55h. Contours for 𝚽u are
10−3 · 10−4, 10−4. Red: positive; blue: negative
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TABLE 6 Critical Reynolds numbers for
the steady bifurcations using finer or longer
mesh with the ratio Ai = 8. NS stands for
not searched

FB1 FB2 FB3 FB4

PB 102.36 203.87 297.59 569.01
SB1 442.06 315.08 653.05 NS
SB2 602.93 602.20 NS NS

FIGURE 13 Three-dimensional bifurcation diagram obtained using the asymptotic-numerical method for the ratio Ai = 8 using a fine and
long mesh. Two distinct 2D bifurcation diagrams are also plotted as projections on the considered plane [Colour figure can be viewed at
wileyonlinelibrary.com]

4.3.1 Critical Reynolds numbers
In Table 6, the critical Reynolds number of primary and secondary bifurcations depending on the initial fundamental
branch part as presented in Figure 2 is reported.

4.3.2 Bifurcation diagram
A 3D bifurcation diagram is presented in Figure 13, where solution branches rely on uy and uz at probe as in Section
4.2.1. The first part of this diagram has been presented in Figure 2. The complexity of this diagram is clearly seen. Thus,
a synthetic diagram is presented in Figure 14 with information on the state of symmetry of the branches. Nevertheless,
the ANM-based method makes it possible to monitor the branch solutions and to perform branch switching very easily.

A remark is made for the second primary bifurcation, which breaks the spanwise symmetry,14,28 but does not appear on
this diagram. This is due to the choice of the probe on the X-axis. The flow is symmetric only with respect to the X-axis
so that both velocity components uy and uz at probe stay null.

This diagram is proposed in a synthetic version as presented in the work of Golubitsky and Schaeffer.38 It gathered both
antisymmetric solutions (such as BBr1n and BBr1p) into one family branch. Moreover, the symmetry group remaining to
be broken is recalled. For example, Z2(z) is the planar symmetry regarding the vertical plane. In this case, the spanwise
symmetry is still present. The double plane or X-axis symmetry is classically noted as Z2(𝑦)⊕ Z2(z).
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FIGURE 14 Synthetic bifurcation diagram. Critical Reynolds numbers are respected. Primary bifurcation type and symmetry state are
given for each concerned branch

FIGURE 15 Secondary bifurcation modes 𝚽PB1SB1 (left) and 𝚽PB1SB2 (right). Velocity components and pressure for E = 3Ai = 8L = 55h.
Contours for 𝚽u are 10−3 · 10−4, 10−4. Red: positive; blue: negative

4.3.3 Secondary bifurcation modes
The secondary bifurcation modes are now described. Velocity components and pressure are proposed for the case Ai = 8
using L = 55h. Those bifurcations lead to either a fully nonsymmetric flow, or let the previous symmetry unchanged after
the bifurcation point.

In the case of the first primary bifurcation, the nontrivial post-bifurcated branch still conserves the spanwise symmetry.
Both 𝚽PB1SB1 and 𝚽PB1SB2 in Figure 15 are similar in topology.

In the case of the second primary bifurcation, the nontrivial post-bifurcated branch still has a symmetry to be broken, ie,
Z2(𝑦)⊕Z2(z). Here, 𝚽PB2SB1 and 𝚽PB2SB2 in Figure 16 are not similar in topology. 𝚽PB2SB1 looks like 𝚽PB3 as a top-bottom
symmetry-breaking bifurcation mode.

The last secondary bifurcation mode 𝚽PB3SB1 in Figure 17 has a complex structure without well-defined features.
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FIGURE 16 Secondary bifurcation modes 𝚽PB2SB1 (left) and 𝚽PB2SB2 (right). Velocity components and pressure for E = 3Ai = 8L = 55h.
Contours for 𝚽u are 10−3 · 10−4, 10−4. Red: positive; blue: negative

FIGURE 17 Secondary bifurcation mode 𝚽PB3SB1. Velocity components and pressure for E = 3Ai = 8L = 55h. Contours for 𝚽u are
10−3 · 10−4, 10−4. Red: positive; blue: negative
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5 CONCLUSIONS

A numerical bifurcation analysis for the 3D sudden expansion has been proposed. Continuation of steady flow solutions,
bifurcation detection, and branch-switching techniques are implemented using the ANM. Power series analysis makes it
possible to accurately detect bifurcation points. Specific continuation technique is used in the case of the path following of
postcritical branch of steady flow solutions. These techniques are implemented as new modules and user-defined solver
in ELMER. Implementation of MUMPS as serial direct linear solver using the multithread features of OpenBlas allows us
to perform 3D flow simulation up to 9.7 million degrees of freedom in this present study. Large-scale problems are now
possibly studied, either only for steady flow continuation or for a detailed bifurcation analysis.

Three-dimensional sudden expansion critical values and flow topologies are correctly reproduced. The critical Reynolds
numbers and modes for bifurcation are in good agreement with the literature. The proposed simplified branch-switching
method at a pitchfork bifurcation is efficient. The stabilized FEM used in ELMER does not perturb the bifurcation anal-
ysis. Furthermore, while previous ANM studies12,14,15,17-21,30 did not use pressure information because static condensation
was used, pressure component is successfully used in this work within the ANM bifurcation analysis framework. As full
velocity-pressure mixed vectors are used, flows and specific vectors are presented in this study with pressure information.

New results are obtained. Firstly, evolution of the critical Reynolds number for several primary bifurcations has been
determined for aspect ratio Ai from 1 to 10. Those primary bifurcations are strongly stabilized with small spanwise
aspect ratios. Different kinds of bifurcation were tracked and depicted. Secondly, we determined that the spanwise bifur-
cation described in the works of Medale and Cochelin14 and Chiang et al28 exists for ratios Ai ≥ 7. Thirdly, a critical
Reynolds number is found at RecPB1 = 734 for the aspect ratio Ai = 1. This was not found in the work of Tsui and
Wang29 for Re ≤ 300. To the best knowledge of the authors, this critical value was not previously reported in the litera-
ture. Finally, a bifurcation diagram and description of the primary and secondary bifurcation modes were proposed for
the case Ai = 8.

A generic tool is available for large-scale bifurcation analysis of the 3D Navier-Stokes equations. Eigensolver might
be used in ELMER to determine the stability of flow solutions. Additional techniques based on the ANM may now be
implemented, such as parametric analysis of steady bifurcation using homotopy,15 bifurcation analysis of non-Newtonian
fluids,20 Hopf bifurcation detection,18,52-55 and transient nonlinear solvers.13,56 It is also challenging to study multiple
bifurcations or to couple the reduced-order model techniques with the ANM-based methods for 3D flows.

Lastly, the series analysis detection method is based on the properties of singular tangent operators during a continua-
tion procedure. Then, it is expected to be able to detect Hopf bifurcation using a specific continuation technique.
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APPENDIX A : LINEAR SOLVERS COMPARISONS

In a context of large-scale problems analysis, question arises to use the most appropriate solver. It is known that iterative
solvers are very efficient and computationally cheap compared with direct solvers. Nevertheless, it is briefly shown that
ANM-based methods are tailored for direct solver because a sequence of algebraic systems is solved using the same matrix
operator. Thus, a short comparison of direct and iterative linear solvers is proposed in this section. In the software ELMER
FEM, the following linear solvers have been tested:

• Direct: UMFPACK57 and MUMPS41
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• Iterative: GMRES,58 CGS,59 BiCGStab,60 TFQMR,61 GCR,62 using the following iterative preconditioners: ILU(n) with
n ∈ [0, 9] and ILUt.63

A.1 Linear solvers' behavior
Firstly, comparisons have been performed using a 2D sudden expansion. Same definitions of the geometric parameters
presented for the 3D test case have been used. Hence, the following geometric features are: h = 10, E = 3, l = 3h, L = 30h
(see also the work of Guevel et al19). A Q4/4C mixed finite element43 has been used in ELMER. The ANM parameters are
N = 30 and η = 10−14. The same trivial initial solution at Re = 0 has been used. The ANM continuation procedure was
stopped at Re ≈ 81.

A.1.1 Direct linear solvers
A simple continuation test has been performed to compare 2 direct linear solvers available in ELMER. The number of
ANM steps and total CPU time are recalled in Table A1. In our study, MUMPS is faster than UMFPACK.

A.1.2 Iterative linear solvers
All combinations between the 5 iterative linear solvers, ie, GMRES, CGS, BiCGStab, TFQMR, GCR, and 11 precondi-
tioners, ie, ILUn with n ∈ [0, 9] / ILUt, have been tested for one ANM step with a linear iteration tolerance parameter
TOL = 10−8. The following conclusions have been reached: BiCGStab and CGS using either ILU(5) or ILUt were the most
efficient in term of computational time.

Then, a simple ANM continuation procedure has been performed to compare those 2 iterative linear solvers using either
ILU(5) or ILUt. Results are recalled in Table A2.

Using ILU(5) the number of linear iteration per ANM step grows from 3 iterations, for the first step, to 14 iterations
when reaching Re > 70. Twelve ANM steps are necessary to reach Re ≈ 81 with a time per step between 20 to 60 seconds.
In this case, BiCGStab+ILU(5) was the most efficient combination.

When using ILUt, only one linear iteration per ANM step is performed for both BiCGStab and CGS linear solvers. Seven
ANM steps are performed to reach the Reynolds number Re ≈ 81 with approximately 16.5 seconds per ANM step. In this
case, results are comparable for both combinations.

TABLE A1 Direct linear solvers
comparison using the
asymptotic-numerical method
(ANM) continuation procedure
between
Re = 0 and Re ≈ 81 in the case of a
2-dimensional sudden expansion

Package ANM steps Time

MUMPS 7 65.7 s
UMFPACK 7 90.2 s

TABLE A2 Iterative linear solvers comparison using the
asymptotic-numerical method (ANM) continuation procedure
between Re = 0 and Re ≈ 81 in the case of a 2-dimensional sudden
expansion using 2 types of preconditioner

Linear Solver linear Iteration ANM steps Time
BiCGStab+ILU(5) [3,13] 12 400.5 s
CGS+ILU(5) [3,14] 12 452.6 s
BiCGStab+ILUt 1 7 114.6 s
CGS+ILUt 1 7 115.4 s
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TABLE A3 CPU time in seconds and memory usage to perform one
ANM step using truncation order N = 20 for a 2-dimensional test case.
Direct solver is MUMPS v4 with one thread. Iterative solver is BiCGStab
with ILUt preconditioner with the notation [min, max] for memory usage

MUMPS BiCGStab+ILUt
Mesh DOF Time RAM Time RAM

2D-Q4-M1 73 155 1.4 s 1.04 GB 5.3 s [0.21, 0.97 GB]
2D-Q4-M2 289 155 6.9 s 3.69 GB 56.8 s [1.77, 5.13 GB]
2D-Q4-M3 1 149 699 36.1 s 14.62 GB 721.1 s [12.89, 26.42 GB]

TABLE A4 CPU time in seconds to perform one ANM step using
truncation order N = 20 for a 3-dimensional test case. Direct solver
is MUMPS v4 with one thread. Iterative solver is BiCGStab(l) using
polynomial parameter l = 4 with no preconditioner

MUMPS BiCGStab(l = 4)
Mesh DOF Time RAM Time RAM

3D-H8-M4 624 100 524.7 s 18.0 GB 1865.8 s 4.3 GB
3D-H8-M5 1 197 964 1673.9 s 40.0 GB 4716.2 s 8.4 GB
3D-H8-M6 1 584 400 2979.5 s 58.9 GB 7305.7 s 10.9 GB

A.2 Comparisons for 2D and 3D sudden expansions
Combination of the iterative linear solver BiCGStab with precondtioner ILUt has been compared with the direct linear
solver MUMPS. In the following, ANM truncation order has been set to N = 20. Only one ANM step is under study.

Firstly, the same 2D geometry has been used with 3 mesh refinements. The CPU time and memory consumption
are recalled in Table A3. The following 2 conclusions are made. MUMPS is faster. Moreover, the iterative process
BiCGStab+ILUt uses approximately the same amount of memory than MUMPS.

Secondly, the flow in a 3D sudden expansion test case with the features E = 3, Ai = 3, l = 3h, L = 30h has been studied
with 3 mesh refinements. The H8/8C mixed finite element43 has been used. An important remark is made regarding ILUt.
It was not possible to perform all calculations with the combination BiCGStab+ILUt, whereas too much memory was
required in ELMER. Thanks to the ELMER development team who advised us to use BiCGStab(l) with the parameter
l = 4. The CPU time and memory usage are recalled in Table A4. In conclusion, MUMPS is faster than BiCGStab(l = 4)
with no preconditioner, but more memory is required.

Some remarks are made regarding the choice of a linear solver for the ANM. The choice of the correct iterative linear
solver and the corresponding best preconditioner or other parameters might depend on the part of the branch that is
evaluated. A more precise study has to be performed in the future to give more detailed explanations on those peculiar
behaviors. Lastly, it appeared that the multithreaded MUMPS direct linear solver used in this study made it possible to
largely decrease the computational time regarding the iterative solvers available in ELMER. On the other side, a large
amount of memory was required.
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