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The retina: a fascinating object of study for a
physicist

Bruno Cessac

Abstract I briefly present joint research works where ideas and methods from
theoretical physics can be applied to better understand the behaviour of the
retina in normal, developmental and pharmacologically controlled conditions.

1 Introduction

Our visual system has astonishing capacities, from the rapid extraction of the
main features of a visual scene, to higher level tasks like reading or face recog-
nition. Our vision starts from the retina. This tiny membrane of a few hun-
dreds of microns thickness covering 75% of the internal ocular globe performs
fundamental, yet complex, tasks. Although its prior function is to convert the
photons from the outer world into sequences of action potentials (spike trains),
encoding the visual scene and conveyed to the visual cortex where they will
be ”decoded”, the retina is not a mere camera. In recent years, researchers has
indeed discovered that the retina ”is smarter than scientists believed” [1].

In this paper, I would like to share with the reader the fascination for the
retina of a physicist, working since years in the field of dynamical systems the-
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Université Côte dAzur, Biovision research project, Inria, 2004 route des Lucioles, 06902
Sophia-Antipolis e-mail: bruno.cessac@inria.fr

1



2 Bruno Cessac

ory and statistical physics applied to ”complex systems” - especially neuronal
models. Working with biologists specialists of the retina I have discovered a
beautiful object of studies both from the applied and theoretical physics point
of view. The retina machinery (neurons, synapses, ions transport, light con-
version from photoreceptors...) is governed by physics. Yet the extrapolation
of physical methods from theoretical physics (mean-field methods, transport
equations, Gibbs distributions, . . .) raises several interesting questions I have
been confronted with during my research, and that I want to briefly present in
this paper.

2 The retina structure

In all this paper, I will use a ”computer-oriented” language to deal with the
retina: ”information, circuits, code, decode, computation,” . . .. This is a con-
temporary view, largely influenced by our computer-based society. Although
this analogy is useful - it eases explanations and provides fruitful paradigms -
it has its limitations stressed throughout this paper.

The retina, as the rest of our body, especially the brain, has an evident prob-
lem: it can’t afford large variations of temperature. Especially, the Joule effect
has to be strongly limited. As a consequence, neurons, which are cells pro-
ducing electric currents, do not use electrons, they use ions transfer (sodium,
potassium, calcium, chloride, . . .). The currents produced this way are small
(of order 1 − 100 pA), as well as voltage variations (∼ 100 mV) thus with
an electric power of order pW. Even if there are many neurons of different
types in the retina (of order 108, including photo-receptors), the total heat
production is quite small, compared to a computer that would perform the
same tasks. However, ions are quite slow, and the corollary is that the retina
has to use massive parallel computations to perform complex tasks in a short
time. This computation is achieved via neurons, but also by synapses: the
synaptic organization of the retina plays a central role in its abilities (see eg.
http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-
retina/).

The retina converts photons into variations of electric potential (phototrans-
duction) via photoreceptor cells: rods (about 130 million) ensure eyesight in
poor illumination; cones (about 7 million) ensure central vision and colour per-
ception. Phototransduction is a very efficient mechanism as a single photon can



Retina and physics 3

produce a visual effect. This is due to a complex cascade of molecular mecha-
nisms with a huge multiplicative effect. At the other side of the retina one finds
retinal ganglion cells (RGCs), the final stage of retina encoding, as these are
the ones that emit action potential (spikes) via their axons (which constitute the
optic nerve), to the visual cortex, via the thalamus. There are about 1.2 to 1.5
million RGCs in the human retina. On average each RGC receives inputs from
about 100 rods and cones. These numbers vary greatly among individuals and
as a function of retinal location. In between, one finds 3 cells types: horizontal,
bipolar and amacrine cells. Unlike most neurons, these cells communicate via
graded potentials, rather than action potentials. Horizontal cells are laterally
interconnecting neurons, helping integrate and regulate the input from multiple
photoreceptors. Bipolar cells transmit the signals from the photoreceptors or
the horizontal cells, and pass it on to the ganglion cells directly or indirectly
(via amacrine cells).

The retina has therefore both a feedforward structure (from photoreceptors
to ganglion cells) and a lateral structure (due to horizontal and amacrine cells).
This generates different types of neural circuits enabling the RGCs to effi-
ciently process local visual information such as dim light small responses to
single photon absorption, segregating moving objects, filtering the movement
of body, head, or eye, motion extrapolation, detection of approaching motion,
surprise at the missing element in the sequence. Many of these computations
match to the evident challenge of animals: to detect moving objects and lo-
cate them correctly; the struggles with a constantly moving image sensor; and
the need to predict the future and adapt to changing conditions [1]. Thus, the
thalamus and visual cortex receive not a computer-like pixel representation of
the image, but a set of features processed via nonlinear mechanisms that re-
searchers try to identify [1].

The optic nerve is therefore like an optical fiber with several millions of
channels - the axon of each RGCs - conveying a local spatio-temporal infor-
mation encoded by sequences of spikes, decoded by the brain. However, in
contrast to computers, the code has variability and, nevertheless, robustness.
First, several presentations of the same visual stimulus do not trigger the same
sequence of spikes although some statistical regularity is observed (typically, a
given RGC type fires more intensively when a specific stimulus is presented).
Second, there is not a unique coding strategy. RGCs convey part of the in-
formation independently from each other through their firing rates, or spikes
timing. But they share information because the spatial region they scan have
overlaps (a photoreceptor contributes the activity of several RGCs) inducing
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stimuli-induced correlations in their response. In addition, the lateral connec-
tions from horizontal and amacrine cells induces indirect interactions between
RGCs. Therefore, also RGCs presumably encode information at a population
level. This ”population coding” presents several advantages: redundancy, re-
duction of uncertainty, simultaneous coding of different stimulus attributes,
fast response, . . .. It is however a contemporay challenge to understand it.

3 Population coding and statistical physics

Current acquisition technologies (Multi-Electrodes Array, MEA) allow to record
simultaneously several thousands of RGCs in response to a visual scene, pro-
viding a contemporay challenge: try and decipher the visual scene from the
RGCs spikes, and thereby infer coding strategies of the visual system. Part of
this information can be recovered by assuming that cells encode information
independently. This allows to design ”decoders” based on firing rate, spike
latency, rank order, . . .. Yet, the decoders built this way have many fitting pa-
rameters and their efficiency may vary with the visual stimulus. In addition,
it has been shown [2] that a part of the information is carried by the (weak)
correlations between RGCs suggesting that population coding takes place.

For a modeller, it seems clear that a population of connected neurons sub-
mitted to an external stimulus will produce a correlated response at the pop-
ulation levels. We have made a mathematical analysis of this aspect in [3, 4],
using Integrate and Fire models. We have shown that the population statistics is
described by a variable length Markov chain where transition probabilities can
be explicitely written: they depend on neurons connectivity, on the stimulus
and on spikes history in a similar fashion as the so-called Generalized Linear
Models [5].

Such Markov chains are closely related to what physicists call ”Gibbs dis-
tributions”, initially introduced by Boltzmann and Gibbs to establish a link
between microscopic dynamics of particles and thermodynamics. Gibbs distri-
butions are probabilities of exponential form where the term in the exponential
is, in physics, proportional to the energy; the form of the energy is constrained
by the forces involved in the problem and defines a statistical model or an ”en-
semble”. More generally, in the correspondance with Markov chain, the term in
the exponential has not the interpretation of a physical energy, but we will call
it ”energy” as well, for simplicity. When dynamics is time-translation invariant
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(”stationarity”) Gibbs distributions are obtained by maximizing the statistical
entropy under the constraint that the average of the observables defining the
energy is fixed (Maximum Entropy Principle, MEP), but their definition via
the equivalence with variable length Markov chains allows to handle non sta-
tionary situations.

Using Gibbs distributions to analyze retina data and population coding has
known a great success within the last decade. In particular, several important
results have been obtained by using the MEP for an energy having the form
of an Ising model, i.e. taking into account instantaneous pairwise interactions
between neurons [2]. Extensions to more general energy forms have been con-
sidered too (triplets interactions [6], time delayed interactions [7]). Especially,
we have developed efficient algorithms and a software, PRANAS, [8] allowing
to fit the parameters of a Gibbs distribution (whose energy form is given) from
MEA data.

This ”Gibbs” approach is appealing for a physicist. It would allow to apply
the powerful techniques and concepts from statistical physics to the analysis
of the neural code. In addition, exhibiting a canonical form of energy well
fitting retina data could be a step towards a ”thermodynamics” of the retina: to
explain the dynamics of a large population of RGCs by a combination of a few
canonical observables. This approach raises however several deep questions.

• Which energy form ? In contrast to statistical physics/ thermodynamics
the energy form for the retina cannot be inferred from first principles, so
researchers are reduced to guess the form. Unfortunately, a mathematical
analysis based on the mapping between Markov chains describing the neu-
ronal dynamics and Gibbs distribution shows that the corresponding energy
has generically a plethora of highly redundant observables [4]. We have pro-
posed a method to eliminate these redundant terms from data analysis using
information geometry, and we have shown experimentally that the degree of
redundancy depends on the visual stimulus correlations [9].

• Non stationarity. Most Gibbs approaches, based on MEP, use the assump-
tion of stationarity. On the opposite, the retina mainly responds to changes
in a visual scene, that is transient, non stationary stimuli. The MEP does
not extend to this case. We have developed an approach, based on linear
response theory, where a time- dependent stimulus is viewed as a perturba-
tion of a stationary state (spontaneous activity) that can be characterized,
from data, using MEP. In this case, the response to the stimulus can be writ-
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ten in terms of correlations of the stationary case (this an extension of the
fluctuation-dissipation theorem of physics) [10].

• Decoding. Assume we are able to characterize the population statistics of
RGC with a Gibbs distribution, how can we use it to decode the visual stim-
ulus from it ? Although some promising approaches have been proposed
this question seems far from being solved.

4 Retinal waves, retinal development and non linear
dynamics

Right after birth the visual system of vertebrates is not yet effective. A com-
plex, transient sequence of dynamical processes takes place starting a few days
before birth, progressively enabling ”the eyes to see” and stopping when vision
is functional. A large part of this processing is due to waves of electric activity
(”retinal waves”) spreading through the retina with a characteristic periodic-
ity. This macroscopic phenomenon (i.e. occurring at the scale of the whole
retina) originates from microscopic processes starting at the molecular level
(ionic channels), inducing bursts of activity of specific cells, spreading through
the retina thanks to cells connectivity. Retinal waves are classified into 3 con-
secutive stages each having a specific role in visual system development. The
transition between stages results from morphological changes genetically pro-
grammed. However, a part of this spatio-temporal activity and its transforma-
tion during development can be explained by generic mechanisms in nonlinear
dynamics, as we sketch here, focusing on stage II. This section is a summary
of D. Karvouniari thesis [11, 12], work done in collaboration with Institut de
la Vision and InPhyNi (L. Gil).

Stage II retinal waves are due to spontaneous and periodic bursts of activity
of specific retinal cells, the starburst amacrine cells (SACs) coupled via the ex-
citatory neurotransmitter acetylcholine (Ach). When a SAC is active (bursting)
it releases acetylcholine; this can trigger the activation of post-synaptic cells.
The membrane potential V of SAC i can be modeled as:

C
dVi

dt
= Iion(Vi,•)+ IsAHP(Vi,Ri)+ IAch(Vi,A j), (1)
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where C is the membrane capacitance. The term Iion(V,•) represents the sum of
ionic currents involved in SACs bursting (mainly calcium and potassium), and
depending on additional dynamical variables represented, for simplicity by the
symbol • (see [11] for detail); IsAHP(Vi,Ri) is a slow hyperpolarization potas-
sium current, depending on a refractory variable Ri controlled by a cascade
of kinetic processes; finally, IAch(V,A j) is the sum of excitatory acetylcholine
currents due to active pre-synaptic cells j connected to i.

A bifurcation analysis of the model (1) shows that a SACs can switch, by a
saddle-node bifurcation, from a rest state to fast oscillations of order millisec-
ond (bursting). This arises when the current Itot = IsAHP+ IAch crosses from be-
low a threshold value ISN depending on biophysical parameters (conductances,
reversal potentials, ... ). Reciprocally, when the cell is bursting it can go back to
a rest state, by a homoclinic bifurcation, if Itot crosses from above a threshold
value IHc . In general, IHc < ISN but they differ from a few pA, so, for simplicity,
we identify them from now. Thus, in short:

if Itot = IsAHP + IAch,

{
< θ ,SAC is at rest,
> θ ,SAC is active. (2)

The transition from rest to active is due to excitation from pre-synaptic ac-
tive cells, via the excitatory current IAch(V,A j). The transition from active to
rest is due to the slow hyperpolarization current IsAHP(Vi,Ri) (having a neg-
ative sign). Indeed, when the cell is active a complex mechanism, involving
calcium takes place, IsAHP(Vi,Ri) becomes more and more negative, leading
the cell, after a few seconds and via a bifurcation, to an hyperpolarized rest
state where it can not be excited during a long period (of order one minute),
independently of the excitatory current IAch provided by the other cells.

Thus, waves propagation is due to a transition from rest to active state of
SACs transmitted via Ach interactions. Waves are stopped by hyperpolarized
regions corresponding to cells which have burst in a former wave. Therefore,
each wave has to propagate into a landscape, imprinted by previous waves, with
refractory regions and excitable regions. This lanscape evolves slowly in time,
on time scales which are longer than the refractory period of a SACs. This
generates a spatial anisotropy where some cells are more active (”leaders”)
and some others more refractory. In this way, the mere dynamics generate a
huge spatio-temporal variability, even if the cells are initially identical. This
(biologically observed) variability is purely dynamical and does need to add
extra mechanisms to be explained.
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A nonlinear wave propagation equation can be obtained, upon several ap-
proximation, considering SACs are located on a d-dimensional regular lattice,
with spacing a, and nearest-neighbours interactions. The Ach conductance, Γ ,
considered now as a field in a d-dimensional continuum, obeys:

∂Γ

∂ t
=−µ Γ +2dΩH [Γ −Γc(R) ]+a2

Ω∆H [Γ −Γc(R) ] , (3)

where µ is the Ach degradation rate, Ω the Ach production rate; ∆ is the Lapla-
cian operator; H is the Heaviside function, mimicking the threshold effect (2),
and Γc(R) is the critical threshold, derived from the bifurcation condition (2)
in a refractory landscape characterized by the variable (field) R and depending
upon the network history. This is a singular equation because one applies a
Laplacian to a Heaviside function. It is however possible to smooth the Heav-
iside function to get rid of this singularity. This equation can be solved for
simple refractory landscapes, but the general situation, where R is a random
landscape imprinted by waves history is still under investigation.

The process of wave generation and propagation bares some analogy with
forest fires introduced in the context of Self-Organized Criticality (SOC). SOC
systems have the property to self-organize into a state where characteris-
tic events (avalanches) have power law distributions. This has lead some re-
searchers to hypothetize that the retinal waves distribution (size or duration)
could follow a power law [13]. Experimental evidences are not convincing
though and would deserve a more elaborate analysis. Interestingly, eq. (3)
corresponds to a continuum limit of a SOC model (a sandpile) if the term
−µΓ + 2dΩH [Γ −Γc(R) ] = 0. This is very specific and non generic situa-
tion. As a consequence, in our model, waves distribution are exponentials, ex-
cept at a specific curve in the parameters space, given by this specific relation
and related to the bifurcation condition (2); there the distribution is a power
law. This suggests that SACs do not organize in a critical state unless some
additional mechanisms is added (like homeostasy), driving them towards the
critical curve.

This model provides an example where one can construct the path from
molecular scales to neurons scale, to macroscopic scale. The mathematical
analysis allows us to explain bursting of SACs and wave propagation with sim-
ple mechanisms in nonlinear dynamics. In addition it allows us to compute
explicitely several important quantities such as the wave speed.
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But the main interest is the closeness to experiments. The model does not
only reproduce experimental facts, it also lead us to experimental predictions,
some of them on the way to be experimentally confirmed (see [11, 12] on
the role of kV3 channels on bursting of SACs during stage II). Especially, we
are able to characterize how retinal waves structure is evolving during develop-
ment, when synaptic connections are modified. Likewise, the model is accurate
enough to explain pharmacological manipulations (e.g. channels or synaptic
terminal blocking).

5 Conclusion and perspectives

In this paper, I have given examples of research where concepts and methods
from theoretical physics are used to understand the retina dynamics and how
it encodes information. I would like new to briefly present further ongoing de-
velopments.

Amacrine cells and motion processing. When an object moves accross the
visual field our visual system is able to interpolate its trajectory and to filter
many spurious information: eyes-head-body movements, motion of the back-
ground. Especially, anticipation is absolutely essential to compensate the time
lag of 30− 100 ms between the reception of photons in the retina and the vi-
sual cortex response. Part of the anticipation process starts in the retina and
is explained by the non linear response (gain control mechanism) of bipolar
and ganglion cells [14]. This does not take into account the lateral connectivity
of amacrine cells, which play an important role in motion processing (differ-
ential motion, approaching motion, . . .). We want to understand the possible
role of amacrine cells lateral connectivity in the retina in processing complex
motion. Especially, we are seeking a specific transient signature in RGCs cor-
relations, in response to a moving object. We believe that correlated response
could provide a more efficient processing of the object motion, especially tra-
jectory anticipation and interpolation. We want to validate this hypothesis at
the modelling level (PhD thesis of Selma Souihel) and experimental level, in
collaboration with Institut de la Vision and Institut des Neurosciences de la Ti-
mone, in the context of the ANR Trajectory.
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Effect of switching pharmacologically a population of RGCs. At present,
over 30 RGC sub-types have been identified, typically on the basis of common
anatomical features or basic functions (e.g. sensitivity to motion, orientation,
motion direction etc.). In collaboration with the University of Newcastle, in
the context of E. Kartsaki thesis, we want to investigate how different groups
of RGCs contribute to the encoding of visual scenes. The project is using a
pharmacogenetics approach (combined with MEA physiology, anatomy, com-
putational modelling and behaviour) to reversibly silence subgroups of RGCs
sharing gene expression through specific drugs (DREADD) activation. Remov-
ing an entire functional RGC group from the population response will shed
light about the role these same cells play in population encoding of complex
visual scenes and which information is lost, locally and globally.
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