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Advanced Sensors Placement for Accurate 3D Needle Shape
Reconstruction

Pierre-Loup Schaefer!, Grégory Chagnon' and Alexandre Moreau-Gaudry'

Abstract— Needles are tools widely used in minimally invasive
surgery. During such procedure the localization of the needle
and its tip is a challenging situation because of the needle
deformations due to the interactions with tissues. To tackle
this problem, instrumented needles with sensors are currently
developed to allow needle reconstruction and tip localization.
In conventional surgery this difficulty is overcome by medical
imaging. The interest of using an instrumented needle resides in
the possible dispense of medical imaging. This papers develops
new methods to reconstruct needles in three dimensions and
to find the locations of sensors which minimizes the error of
reconstruction of the needle. A notable feature of our method
is that input data are based on real needle data, that should
assure a better representativity of our results. Reconstructions
simulated with 22 gauges 200mm long needles data show that
the localization of the needle tip is more accurate by 18% to
529% with optimal sensors positions compared to equidistant
sensors positions.

I. INTRODUCTION

Needles are more and more used in percutaneous medical
procedures, such as, for instance, during interventional Ra-
diology Procedures. During these procedures, the knowledge
of the needle location is of primary importance with stakes
being no others than the success or the failure of the
procedures. Nevertheless, accurate location of the needle may
be challenging because of the bending phenomenon which
might appear when the needle is inserted. This phenomenon
is caused by interactions between needle and tissue. It is also
influenced by a lot of factors such as the size of the needle,
its length or the type of tissues. Insertions in phantom using
18 gauges 20 cm have shown that tip deflection can be up
to 2.8mm for a 6cm insertion [16] and up to 12 mm for a
10 cm insertion [12]. Furthermore deflections of 22 gauges
20 cm needles used for insertions in pig tissues can be as
high as 25 mm [14]. As a matter of fact, while using needles
during minimally-invasive medical procedures, with no as-
sisting tools, incertainty on the position remains. Furthermore
current computer assisted interventional radiology systems
make the assumption of non-deformability of the needle [3],
[9] and then don’t provide direct access to the real shape of
the needle, still needing additional medical imaging.

This article presents a method to reconstruct the 3D shape
of a needle from the data retrieved from its sensors and a pro-
cedure to find the best locations of the sensors to minimize
the tip localization error. The paper is organized as follows:
Section II explains the three-dimensional reconstruction of
the needle shape from sensors data. Section III describes the
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method for evaluating best sensors position by processing
real needle data. Section IV present and analyze the results,
and is followed by Section V on future improvements.

II. 3D NEEDLE SHAPE RECONSTRUCTION
A. Sensors informations

This section presents the process to obtain geometrical
informations of the needle from the sensors. The purpose of
the sensors is to measure the strain applied on the needle
during the insertion. Differents types of sensors include
optical fiber Bragg gratings [1], [11] and strain gauges [18],
[19]. From a sensor triplet it is possible to obtain two
geometrical parameters at the sensor location: the curvature
x and the bending angle 6 [1], [15]. Let (s;)i=1,.. » the value
such as (M(s;))i=1,.» are points of the needle where the
triplets are located. Then for the triplet located at s; we
can retrieve the curvature k; = k(s;) and the bending angle
0; = O(s;). The set (k(s;))i=1,..» and (6(s;))i=1,.. » constitutes
a discretization of the function k¥ and 6. The interpolations
of both sets gives us K,y and 6,4, the estimate of curvature
and bending angle from the sensors data.

B. Shape reconstruction

This section presents the method to obtain 3D needle shape
estimation from the curvature and bending angle estimate
Kest and O,5. Due to the geometry of the needles and the
mechanical interactions with the tissues we make the widely
accepted hypothesis that the mechanical torsion of needles
is negligible [1], [11], [20]. Given this assumption our
reconstruction will be based on Rotation Minimizing Frame.
Rotation Minimizing Frame (RMF) belongs to the family of
3D moving frame. A 3D moving frame is a frame composed
of an orthonormal ordered basis vector defined along a space
curve. In the rest of the study we use the notation (T,Ny,N3)
to refer to the RMF. We have T,Ny,N; € R? and T is tangent
to the curve. Differents moving frames can be defined for
the same curve [2] and RMF has the property of minimizing
its twisting motion when framing a curve [17]. Combined
with the negligible torsion hypothesis this property results
in the RMF being a materially fixed basis of the beam [5].
Calculus of the Cartan matrix under such assumptions give
the following relationship:

d |: T(s) |: 0 cosB(s)  —sinB(s) :| |: T(s }
=K(s) | —cosB(s) 0 0 Ni(s) (1
Nz(S)

N1 (A)
Na(s) sinB(s) 0 0

ds

The signification of Eq.l is that for every point of the
needle M(s) with s € [0,L], where L is the length of the



needle, there is a relation at this point between the material
frame (T(s),Ny(s),Na(s)) and its derivative involving x(s)
and O(s). Assuming known K,y and O,, the estimate of
curvature and bending angle from the sensors, and under ap-
propriate boundaries conditions, the resolution of differential
equation system Eq.1 gives the estimate of the RMF of the
needle (Test, Nlest, N2est). Finally the estimate of the needle
shape Mg is obtained by integrating Teg:

Mewt(s) = Mo+ / Tet(x)dx, s€[0,] @)
50
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Fig. 1. Flowchart indicating the steps of the 3D Needle Shape Reconstruc-
tion using the sensors measures.

III. SENSORS PLACEMENT

A. Method

Sensor placement is a relatively few documented subject
with [11] and [14] being the main articles on the subject.
Approches made in both articles are to consider the optimal
sensor location problem as a minimization one. The opti-
mal sensor location is then defined as the location which
minimizes the error made when reconstructing shapes with
sensors at a certain location. Process used for evaluating the
error of reconstruction on a needle for a given sensor location
has the following steps. Firstly is defined a set of reference
needles as input data. In both cases, these needles are cal-
culated with 2D beam theory using force loads. Loads used
by Park and al. [11] are constitued of equidistantly reparted
2D forces over the needle with arbitrary amplitudes, while
loads used by Robert and al. [14] are more representative as
the 2x2D forces comes from a preliminary study conducted
on real needles. Then a calculation is made for given sensors
locations, representing what the sensors output would be if
they were really present at that place on each of the needle of
the reference set. Under the 2D assumption the output of the
sensors take the form of simple curvature. Eventually these
values are used to reconstruct a needle shape which is then
compared to the reference needle. Quality measurement of
the reconstruction is made by using the tip deflection error,
a widely used medical criteria for needle precision when
performing a surgical act.

The method of sensor location optimization presented in
this article differs from these previous methods by the use
of a reference set based on real needle data and by the
three-dimensional procedures, resulting in a more exhaustive
approach. Fig.2 presents an overview of the differents steps
of our method.

Real 3D
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Fig. 2.  Flowchart illustrating the evaluation of the reconstruction error

from sensors location over a set of real needles

B. Study of a set of needle

The aim of this section is to generate the reference set of
needles which will be used in sensor location optimization
process. We retrieve the needle shape from real needle data
by B-Spline smoothing and then we compute the RMF of
the B-Spline. The RMF will be used to simulate the data of
the sensors (Fig.2: Real 3D needle RMF).

1) Data: The study was carried out on a set of 54 CT
scans of needle insertion into pig shoulder [14]. Experiments
involved standart 200 mm long stainless steel 22 gauges
needles, which are often used in interventional radiology
procedures. Choice of pig tissues is due to its similar
biomechanical properties with human tissues [7].

2) Segmentation: In order to retrieve the voxels repre-
senting the needle we performed a segmentation on each
of the scan. The aim is to separate the needle from the
surrounding tissues, bones, etc... A region growing algorithm
is particularly indicated in that case because of the difference
of density of the needle and the density of the organs
and tissues. We implemented the algorithm in a plug-in of
the medical visualisation software CamiTK [6]. Once the
segmentation is processed stays only the voxels of the needle.
We then have 54 data sets of voxels.

3) Smoothing: The main objective of this part is to
reconstruct the shape of the needle from its voxels. The math-
ematical representation of the shape is the three-dimensional
univariate mathematical function which maps the length
between the proximal extremity and one point of the needle
to the three-dimensional coordinates of this point. Needle
voxels are the results of a noisy spatial discretization of that
function, consequently it is possible to approximate the shape
function by performing smoothing on needle voxels [13]. The
smoothing used here will be B-Spline smoothing, one of the
most commonly used methods to smooth data. It consists to
perform a regularized regression on a B-Spline basis. 3D B-
Splines are piecewise polynomials defined by their order n,
their knots (¢;);1 ... » and their control points (B;);—1.. . € R?
[4]. Let S(¢) be the B-Spline which is defined by:

S(t) = Y. Bin(t)P; 3)
=1



with the following recursive definition:
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Let the data points (¥;),_, , be the voxels coordinates
and (w;);_, ., be their values. Let (fi)i=1,...n, be the pa-
rameterization associed with the data points. The smoothing
system then takes the following form:
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The smoothing B-Spline estimate is defined to be the min-
imizer of the Eq.6 over the control points (B)i=1,. ... The
left part of Eq. 6 reflects accuracy to the data points while
the right part express the roughness of the estimate. The
trade-off between these two parts is the variable A, called
the smoothing parameter. Because the problem of smoothing
noisy data with a spline is well posed, the system admits one
and only one solution. Thus, as a result, we have a set of 54
3D B-Spline.

4) Rotation Minimizing Frame: Each B-Spline estimate
is then processed to determine its RMF. Method used to
compute the RMF is called Double reflection method [17].
Choice of this method in particular is justified by its stability
and its global approximation error of high order. Finally we
obtain a set of 54 RMF corresponding to the material frames
of the needles scanned in the input data.

C. Minimization

Finding optimal sensors positions is a n-dimensional prob-
lem, with n being the number of sensors. It belongs to the
Mixed Integer Nonlinear Programming (MINLP) family as
it is a problem with a nonlinear objective function (the re-
construction error) and that we restrain the sensors positions
to integer (precision on the positions of the sensors doesn’t
need to be submilimeter). As the convexity of our problem is
undetermined we used global optimization solvers (Genetic
Algorithm [10] and NOMAD [8]).

IV. RESULTS

This section presents results from our study on optimal
sensor locations on 22 gauges 200 mm long needles set.

Sensors locations (mm)

Number of Sensors i 5 3 7 5 5 =

81
25 1 99
23 | 74 | 139

18 | 57 | 103 | 150
16 | 40 | 73 118 | 157
17 | 37 67 107 | 146 | 174
17 | 37 67 104 | 128 | 150 | 174

TABLE I
TIP DEFLECTION ERROR DEPENDING TO THE NUMBER OF SENSORS

N N | B W ] =

Table I presents the result of the minimization problem
presented in Section III. It shows the optimal location of the
sensors for a number of sensor going from one to seven. The
optimization solvers didn’t converge for a number of sensors
superior to seven.
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Fig. 3. Cumulated squared tip deflection error of reconstruction on our set
of needles depending on differents sensors locations (logarithmic scale).

Fig.3 shows the cumulated tip deflection error from the
reconstruction of our set of needles with two sensors. The
optimal sensors position is the one for which the minimum
reconstruction error is obtained. We see that for two sen-
sors the reconstruction error function is smooth and almost
convex.
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Fig. 4. Left: Tip deflection error for equidistant and optimal sensors
positions depending to the number of sensors. Right: Percentage of precision
gained by using optimal sensors positions instead of equidistant sensors
position

Fig.4 compares the mean tip error of reconstruction of our
set with optimal sensors placement sensors versus equidistant
sensors placement. It indicates also the percentage of pre-
cision gain by using needle with optimal sensors placement
instead of equidistant sensors placement. We can see that the
percentage of precision gained is comprised between 18% (2
sensors) to 52% (5 sensors).

Fig.5 presents an exemple of reconstrusction of a needle of
our data set with differents number of sensors and differents
placement.

V. DISCUSSIONS AND CONCLUSION

Fig.I presents the positions for which the solvers con-
verged towards the same solution for a number of sensors
comprised between one and seven. As these sensors positions
minimize the reconstruction error of our set of needles we
can assert that we found the optimal sensors locations for



Sensors locations Number - of Tip error

. Sensors
Top left Equidistant 2 9.6 mm
Top right Equidistant 5 3.9 mm
Bottom left Optimal 2 4.8 mm
Bottom right Optimal 5 1.3 mm

Fig. 5. Comparaison of a needle reconstruction for different number of
sensors and differents sensors placement. Shapes in green is the reference
needle and shapes in red are reconstruction of the reference needle given
data sensors.

this range of number of sensors. The question of optimal
locations for a higher number of sensors is not relevant as the
number of sensors on a needle is limited. Moreover we see
on Fig.4 that the gain between optimal sensor location and
equidistant sensor location starts to decrease for a number of
sensor superior to five. The reason is that when the number
of sensors increase they tend to be placed in an equidistant
way.

Fig.4 presents the mean tip deflection error after re-
construction of our reference set of needle. Comparison
with other works shows that our mean tip error is correct
compared to the length of our needles: for a 4 sensors needle
we have a mean tip error of 3.2 mm for 200mm long needles
while Abayazid et al. have 1.8 mm for 120mm needles [1].
Here the ratio of mean tip error over the length of the needle
is approximately the same. The improvement of the quality
of the reconstruction evaluated in the Fig.4 indicates that the
reconstruction error falls from 18% (2 sensors) to 52% (5
sensors) when optimal sensors locations are used compared
to equidistant sensors locations. This results exhibits that the
gain of precision coming from an optimal sensors placement
is not negligible. It confirms also that for a number of sensors
going from one to seven our method gives better locations
than a standart equidistant placement.

Fig.5 expose the concrete case of one of the needle of our
reference set which has a huge deformation (tip deflection
superior to 20 mm). Thus the reconstruction with only two
sensors placed equidistantly gives a tip error of 9.6 mm.
Keeping the same number of sensors but with optimized
locations divide the tip error by 2 (4.8 mm) which is a little
bigger than the the tip error with five sensors (3.9 mm). This
example shows here that placing optimally the sensors can
be a relevant solution to increase accuracy and should be
considered before adding new sensors.

The use of real needle data combined with three dimen-
sional processing contributes to the relevancy of our method
by using less restrictive hypothesis. We believe that these
choices improved the accuracy of reconstruction and the

reliability of the sensors positions results.
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