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1 INTRODUCTION 

 
The Quartz Crystal Microbalance (QCM) is a versa-

tile tool, first described in the founder paper work of 

(Sauerbrey 1959). Because it is a rather simple sen-

sor, it has since then been widely used in sensing ap-

plications in various domains, allowing us to deter-

mine with precision measurands such as mass density 

(Stockbridge 1966b), viscosity (Kanazawa and Gor-

don 1985) and pressure (Stockbridge 1966a), in a 

continuous and non-destructive manner, with sample 

as small as a microliter. In mechanics, for instance, it 

is used for measuring complex shear modulus 𝐺̃ in or-

der to characterize a polymer (Holt, Gouws, and Zhen 

2006) or follow its evolution during a specific pro-

cess, such as dissolution (Hinsberg, Willson, and 

Kanazawa 1986). In biology, where its use continues 

to increase (Becker and Cooper 2011), the function-

alization of the QCM surface with a definite sub-

stance allows to measure active species absorption or 

deposition, and then to recognize specific pathologies 

like schistosomiasis (Wang et al. 2006) or Ebola fever 

(Yu et al. 2006). In chemistry, with a similar method, 

the sensor can detect presence of harmful molecules 

in the air, acting as an electronic nose (Si et al. 2007). 
 

’ 
Figure 1. Top and side views of a quartz crystal microbalance 

(Martin et al. 1993). 

 
The QCM, as shown in figure 1, consists in a circular 

thin disk of piezoelectric AT-cut quartz, with metallic 

electrodes on both sides. The application of a voltage 

between them generates a shear deformation of the 
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ABSTRACT: Characterizing the effects of cross-linking level and kinetics on the mechanical properties of 
rubber, especially viscoelasticity, provides information of importance to better understand and predict its final 
mechanical properties. Classically, the effects of cross-linking on the mechanical properties are investigated 
with a rheometer. Typical results give the evolution of elastic properties of rubber in the solid state with respect 
to time or to the cross-linking level. The frequency of the mechanical loading applied is generally a few Hertz. 
In the case where the rubber is initially in the liquid state, such as some silicone rubbers, this type of character-
ization is not suitable anymore. In this study, a new characterization technique based on the Quartz Crystal 
Microbalance (QCM) principle has been developed in order to characterize the viscoelastic properties (elastic 
and viscous moduli) of a silicone rubber during cross-linking, i.e. from the liquid (uncross-linked) to the solid 
(final cross-linked) state. The device consists in a Thickness-Shear Mode (TSM) resonator generating ultrasonic 
waves, which provides viscoelastic properties of a material in contact with its surface from an electrical imped-
ance analysis. In contrast to other characterization tools, it makes possible the continuous and non-destructive 
characterization of viscoelastic properties from a small material volume, under 1mL. Moreover, frequencies at 
which these properties are characterized are of the order of magnitude of the megahertz, which provides very 
complementary results to classical characterization, rather in the order of the hertz. 



 

 

crystal, which can then be excited into resonance 

when its thickness is near an odd multiple of half the 

acoustic wavelength. The deposit of a material sam-

ple on the crystal changes the resonance properties, 

and it appears that they are fundamentally dependent 

on the characteristics, either mechanical or electrical, 

of the sample. 

 

For all these applications, the QCM needs an electri-

cal interface able to apply a sinusoidal voltage be-

tween its electrodes and to measure the resonance 

conditions. Among all the methods of read-out, the 

most used is the impedance analysis (Arnau 2008), 

which maps the electrical admittance of the QCM as 

a function of the frequency, giving access to a greater 

number of parameters than simpler methods such as 

the use of an oscillator circuitry. However, it requires 

an impedance analyzer, which is typically relatively 

expensive and hardly mobile. A portable and low-cost 

solution would therefore be particularly useful, espe-

cially in biology, where in situ assays would help pa-

tients at home and doctors on the spot, ensure the 

safety in the entire chain of the food industry or im-

prove the security against biological agents (Nayak et 

al. 2009). A cheap, simple and robust device is also 

critical for the commercialization of the whole sys-

tem, opening the door to the democratization of the 

associated analysis. 

 

The present paper aims at validating the use of a com-

pact and comparatively cheap network analyzer, the 

“miniVNA  PRO”, as a read-out instrument for the 

QCM for the characterization of the cross-linking of 

rubbers. It is organized as follows. Section 2 de-

scribes briefly the theory governing the behavior of 

the QCM and the measurement principle. Section 3 

presents the experimental dispositive and the protocol 

established in order to reduce the influence of exter-

nal factors. Finally, section 4 analyses the results in 

light of the aforementioned objectives. 
 
2 THEORETICAL FRAMEWORK 

 
On a fundamental point of view, the QCM is simply 
a transducer, linking its load impedance with its elec-
trical impedance. The fundamental relations govern-
ing its behavior are briefly recalled hereafter. The 
reader can refer to (Johannsmann 2015) for further in-
formation. 

2.1 Acoustic parameterization 

In a first approximation, when its diameter is large 

compared to its thickness, the QCM can essentially be 

seen as a unidimensional device, a succession of ho-

mogeneous layers in which acoustic shear waves 

propagate along the 𝑧 axis. Inside a layer, the ampli-

tude 𝑢(𝑡, 𝑧) of the displacement due to the wave is 

described by the well-known wave equation, which 

writes: 

 
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑧2                (1) 

 

This can be expressed in the frequency domain by: 

 

−𝜔2𝑢̂ = 𝑐̃2 𝑑2𝑢

𝑑𝑢2
               (2)  

 

Here, 𝜔 is the angular frequency, 𝑢̂(𝑧) is the complex 

amplitude of the displacement, 𝑐̃ = √𝜌 𝐺̃⁄  is the 

speed of sound, 𝜌 the density and 𝐺̃ the shear modu-

lus. Introducing the wavenumber 𝑘̃ = √𝜔 𝑐̃⁄ , solu-

tions of the wave equation write in the form of: 

 

𝑢̂(𝑧) = 𝑢̂+ exp(+𝑖𝑘̃𝑧) + 𝑢̂− exp(−𝑖𝑘̃𝑧)    (3) 

 

𝑢̂+ and 𝑢̂− are the amplitude of a wave traveling re-

spectively to the left and to the right. It is therefore 

possible to express the velocity 𝑣(𝑧) and the shear 

stress 𝜎̂(𝑧): 

 

𝑣(𝑧) = 𝑖𝜔𝑢̂(𝑧)               (4) 

          = 𝑖𝜔𝑢̂+ exp(+𝑖𝑘̃𝑧) + 𝑖𝜔𝑢̂− exp(−𝑖𝑘̃𝑧) 

 

𝜎̂(𝑧) = 𝐺̃
𝑑𝑢

𝑑𝑧
                (5) 

          = 𝑖𝑘̃𝐺̃𝑢̂+ exp(+𝑖𝑘̃𝑧) − 𝑖𝑘̃𝐺̃𝑢̂− exp(−𝑖𝑘̃𝑧) 

         = 𝑖𝜔𝑍̃𝑢̂+ exp(+𝑖𝑘̃𝑧) − 𝑖𝜔𝑍̃𝑢̂− exp(−𝑖𝑘̃𝑧) 

2.2 Mason circuit 

The acoustic shear wave is very similar to an electro-

magnetic wave in its behavior (Mason 1941). Estab-

lishing an analogy between electrical circuits and me-

chanical systems, it is therefore possible to represent 

a layer of the QCM as a distributed-element network. 

Such a representation is perfectly suitable to this de-

vice, because our goal is to link a mechanical quantity 

with an electrical one. 

 

To go further, since only the quantities at the inter-

faces between two layers are of interest, the QCM can 

even be represented as a two-port network, one for 

each interface. This paragraph shows that the Mason 

circuit is a compatible representation. 



 

 

 
Figure 2. Two-port network representation of a layer in which 

propagate a shear-wave (Johannsmann 2015). 

 

In figure 2, 𝐴 is the area of the device in the plane 

orthogonal to the direction of propagation, and ℎ is 

half the thickness of the considered layer. Using the 

Kirchhoff rules, it appears that forces 𝐹̂ and velocities 

𝑣 are linked by the following expressions that should 

be validated: 

 

𝐹̂1 = 𝑖𝐴𝑍̃ tan(𝑘̃ℎ) 𝑣1 −
𝑖𝐴𝑍̃

sin(2𝑘̃ℎ)
∙ (𝑣1 + 𝑣2)   (6) 

 

𝐹̂2 =
𝑖𝐴𝑍̃

sin(2𝑘̃ℎ)
∙ 𝑣1 − 𝑖𝐴𝑍̃ tan(𝑘̃ℎ) ∙ (𝑣1 + 𝑣2)   (7) 

 

The displacement and the shear stress can be written 

as: 

 

𝑢̂(𝑧) = 𝑢̂𝛼 sin(𝑘̃𝑧) + 𝑢̂𝛽 cos(𝑘̃𝑧)       (8) 

 

𝜎̂(𝑧) = 𝜔𝑍̃(𝑢̂𝛼 cos(𝑘̃𝑧) − 𝑢̂𝛽 sin(𝑘̃𝑧))     (9) 

 

Hence, being careful about the sign of the relations: 

 

𝐹̂1 = −𝐴𝜎̂(−ℎ) 𝑣1 = +𝑖𝜔𝑢̂(−ℎ)

𝐹̂2 =   −𝐴𝜎̂(ℎ) 𝑣2 = −𝑖𝜔𝑢̂(ℎ)
      (10) 

 

This yields to the set of equations 6-7 after some 

mathematical manipulations, confirming the correct-

ness of the circuit used. However, as such, the circuit 

is still incomplete: the quartz being piezoelectric, a 

third port electrical in nature should be added, as 

shown in figure 3. Across a transformer, an electrical 

source connected to this port will be able to generate 

an acoustic wave and to be influenced by the mechan-

ical properties of the device, with a conversion factor 

𝜙 = 𝐴 ∙ 𝑒26 (2ℎ)⁄ , where 𝑒26 is the relevant compo-

nent of the piezoelectric coupling tensor. 

 

It can be shown that this three-port network satisfies 

the constitutive relations of piezoelectricity, namely: 

 

𝜎̂ = 𝐺̃
𝑑𝑢

𝑑𝑧
−

𝑒26

𝜀̃𝜀0
𝐷̂             (11) 

 

𝐸̂ = −
𝑒̃26

𝜀̃𝜀0

𝑑𝑢

𝑑𝑧
+

1

𝜀̃𝜀0
𝐷̂            (12) 

Finally, in practice and on one side, the QCM is in 

contact with the air, which has acoustic wave imped-

ance negligible compared with the one of the quartz. 

Therefore 𝐹̂1 = 0, and the equivalent circuit is short-

circuited on the left. On the other side, the QCM is in 

contact with the material to characterize, with acous-

tic impedance at the interface 𝑍̃𝐿. Therefore 𝐹̂2 𝑣2⁄ =
𝐴𝑍̃𝐿, and the equivalent circuit is closed with a re-

sistance having this value. It remains in the circuit 

only the electrical port, as illustrated in figure 3, 

which corresponds to the fact that the QCM can only 

be interrogated electrically through its electrodes, and 

not by any acoustic or mechanical ways. 

 
Figure 3. One-port network representation of a quartz crystal mi-

crobalance in contact with the air on one side and a specific sam-

ple on the other (Johannsmann 2015). 

2.3 Resonance condition 

 
Let us now use the Mason circuit to calculate the 

equivalent impedance of the circuit coming after the 

transformer, the motional impedance 𝑍̃𝑚𝑜𝑡. Using the 

Kirchhoff rules, it follows: 

 

𝑍̃𝑚𝑜𝑡 = −
𝜙2

𝑖𝜔𝐶0
−

𝑖𝑍̃𝑞

sin(2𝑘̃𝑞ℎ𝑞)
         (13) 

             + ((𝑖𝑍𝑞 tan(𝑘̃𝑞ℎ𝑞))
−1

+ (𝑖𝑍𝑞 tan(𝑘̃𝑞ℎ𝑞) + 𝑍𝐿)
−1

)
−1

  

This relation can be simplified by assuming that the 

wavenumber 𝑘̃𝑞 is close to the ideal open-circuit 

wavenumber 𝑘̃𝑞,𝑂𝐶 = 𝑛𝜋 2ℎ𝑞⁄ , solution of the equa-

tion 𝑍̃𝑚𝑜𝑡 = 0 when the QCM is fully immerged in 

the air without influence of the piezoelectric effect. 

Using a Taylor expansion of the previous relation 

yields: 

 

𝑍̃𝑚𝑜𝑡 ≈
1

4
(−

4𝜙2

𝑖𝜔𝐶0
+ 𝑖𝑛𝜋𝑍̃𝑞

𝜔̃−𝜔̃𝑂𝐶

𝜔̃𝑂𝐶
+ 𝑍̃𝐿)    (14) 

This relation can then be applied twice: first, in the 

unloaded reference state (the resonant angular fre-

quency being called 𝜔̃𝑟𝑒𝑓) with 𝑍𝐿 = 0; secondly, in 

charge (the resonant angular frequency being called 

𝜔̃𝑠𝑎𝑚𝑝𝑙𝑒). Calculating the frequency shift by using the 

resulting equations brings the so-called Gordon–Kan-

azawa–Mason result: 

 



 

 

Δ𝑓̃

𝑓0
=

𝜔̃𝑟𝑒𝑓−𝜔̃𝑠𝑎𝑚𝑝𝑙𝑒
𝜔̃𝑂𝐶

𝑛

=
𝑖

𝜋𝑍̃𝑞
𝑍̃𝐿         (15) 

 

This is a direct relation between frequencies measure-

ment and the load impedance of the tested sample. To 

go further, it is assumed that the sample is a semi-in-

finite medium and equations 4 and 5 yield: 

 
𝜎̂(𝑧)

𝑣̂(𝑧)
=

𝑖𝜔𝑍̃𝑠𝑎𝑚𝑝𝑙𝑒𝑢+ exp(+𝑖𝑘̃𝑠𝑎𝑚𝑝𝑙𝑒𝑧)

𝑖𝜔𝑢+ exp(+𝑖𝑘̃𝑠𝑎𝑚𝑝𝑙𝑒𝑧)
= 𝑍̃𝑠𝑎𝑚𝑝𝑙𝑒  (16)  

 

Hence: 

 

𝑍̃𝐿 =
𝜎̂(ℎ𝑞)

𝑣̂(ℎ𝑞)
= 𝑍̃𝑠𝑎𝑚𝑝𝑙𝑒 = √𝜌𝑠𝑎𝑚𝑝𝑙𝑒𝐺̃𝑠𝑎𝑚𝑝𝑙𝑒  (17) 

Given that the density of the sample is already known, 

the shear modulus can be deduced. Of course, the 

quantities characterizing the quartz in the previous re-

lation (𝑍̃𝑞 and 𝑓0) are not known a priori. However, 

they can be evaluated by making an additional meas-

urement with a sample in a well-known material, for 

instance water. 

2.4 Extraction of the resonance properties 

The impedance analyzer used in these experiments 

measures the electrical admittance 𝑌̃𝑒𝑙,𝑚𝑒𝑎𝑠𝑢𝑟𝑒 as a 

function of the frequency. This paragraph explains 

how the complex resonance frequency can be de-

duced from this measurement. It can be shown that 

the linearization around the open-circuit frequency 

used previously allows getting a simpler representa-

tion of the equivalent circuit, using only standard 

electrical elements (resistance, inductance and con-

ductance). That is the well-known Butterworth-Van-

Dyke model, shown in figure 4. 

 
Figure 4. Electrical circuit associated with Butterworth-Van-

Dyre model (Johannsmann 2015). 

 
The Kirchhoff rules yield the electrical admittance of 

this circuit: 

 

𝑌̃𝑒𝑙 = 𝑖𝜔𝐶0 + (𝑖𝜔𝐿1 +
1

𝑖𝜔𝐶1
+ 𝑅1)

−1

     (18) 

 

It is possible to fit the measurement 𝑌̃𝑒𝑙,𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝜔) 

with this theoretical 𝑌̃𝑒𝑙(𝜔) and deduce the complex 

resonance frequency from the values of the four ele-

ments, but it is helpful to use directly the following 

expanded Lorentzian functions, that reduce the scatter 

in the fit parameters: 

 

ℜ(𝑌̃𝑒𝑙) = 𝐺𝑒𝑙,𝑚𝑎𝑥Γ
𝑓

𝑓𝑟
(

Γ

(𝑓𝑟−𝑓)2+Γ2
cos(𝜃) +

𝑓𝑟−𝑓

(𝑓𝑟−𝑓)2+Γ2
sin(𝜃)) (19) 

            +𝐺𝑒𝑙,𝑜𝑓𝑓 

 

ℑ(𝑌̃𝑒𝑙) = 𝐺𝑒𝑙,𝑚𝑎𝑥Γ
𝑓

𝑓𝑟
(

Γ

(𝑓𝑟−𝑓)2+Γ2 cos(𝜃) −
𝑓𝑟−𝑓

(𝑓𝑟−𝑓)2+Γ2 sin(𝜃)) (20) 

           +𝐵𝑒𝑙,𝑜𝑓𝑓 

 

The complex resonant frequency is then simply de-

duced from these parameters: 

 

𝑓𝑟 = 𝑓𝑟 + 𝑖Γ               (21) 

3 MATERIALS AND METHODS 

The quartz crystal and its holder used in the experi-

ments are the commercially available QCM200 

(Stanford Research Systems, CA, USA). The crystal 

has a resonance frequency near 5 𝑀ℎ𝑧 and a diameter 

of 2.54 𝑐𝑚. It is covered with circular electrodes of 

titanium and gold. It is physically maintained with 

one O-ring on both side and connected with the elec-

trical interface via BNC connectors, which are then 

adapted to an SMA connection. The portable network 

analyzer is the miniVNA PRO (mini Radio Solutions, 

Germany), shown in figure 5.  

 
Figure 5. Photograph of the network analyzers used in the ex-

periment: the mini-VNA PRO. 
 

The QCM is placed inside a thermostatic chamber at 

a given controlled temperature. The network analyzer 

is initially calibrated by the short-open-load method. 

The quartz crystal is washed with acetone, rinsed with 

water and dry with nitrogen before being placed in-

side its holder.Once the resonance frequency is stabi-

lized, the crystal is loaded with a volume of 900 𝜇𝐿 

of distilled water as the reference material, creating a 

layer thick enough to be considered semi-infinite. Fi-

nally, after stabilization of the resonance frequency, 

the water is removed and replaced by the same vol-

ume of 900 𝜇𝐿 of PDMS rubber RTV615 (Mo-

mentive) in the liquid state, i.e. non cross-linked. 

Thus, the evolution of the viscoelastic properties will 

be measured continuously from the liquid (uncross-

linked) state to the solid (cross-linked) state. 



 

 

4 RESULTS 

Figure 6 gives the evolution of the viscoelastic prop-

erties in terms of shear modulus 𝑮′ (a) and loss factor 

𝐭𝐚𝐧 𝜹 (b) at different ambient temperatures, respec-

tively 𝟐𝟓 °𝑪, 𝟓𝟎 °𝑪 and 𝟖𝟎 °𝑪. At 𝟐𝟓 °𝑪, the value of 

the shear modulus is stabilized from 35 hours on. Its 

evolution is strongly nonlinear from 4 MPa for the 

liquid state (only slightly cross-linked) to the stabi-

lized value of 12 MPa for the solid state. These values 

are high compared to values obtained under classical 

mechanical spectroscopy characterization, which is 

consistent with the fact that the frequency we applied 

is in the MHz domain, i.e. much higher that classical 

characterization tests. Moreover, three regimes of 

evolution of the elastic modulus are observed, as il-

lustrated by the dotted line in figure 6, which can be 

associated with variation in the cross-linking kinetics. 

The loss factor decreases in a same nonlinear way 

from 1.6 to 0.8. 

While illustrating a similar behavior, the curves ob-

tained at 𝟓𝟎 °𝑪 and 𝟖𝟎 °𝑪 highlight that the higher 

the temperature, the faster the evolution of viscoelas-

tic properties. Such results are no more discussed in 

the present paper, which only aims at presenting 

QCM technology as a new way of investigation of the 

cross-linking from liquid to solid state and at different 

temperatures. 

 

 
Figure 6. Evolution of the shear modulus (a) and the loss factor 

(b) of PDMS from the liquid to the solid state. 

5 CONCLUSION AND PERSPECTIVES 

The paper aims at presenting the QCM as a relevant 
tool for measuring the viscoelastic properties of rub-
bers in the MHz domain. The advantage of such a 
technique is the fact that the measurement can be car-
ried out for liquids as well for solids, i.e. for rubbers 
from the uncross-linked to the cross-linked state, with 
a small material volume. 
 
The kinetics of cross-linking and the nonlinear rela-
tionship between the number of cross-links and the 
mechanical properties can therefore be quantified and 
investigated through the variation in the viscoelastic 
response. 
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