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Abstract—Recently, we introduced a parallel-beam two-pass
analytical reconstruction that allows truncation to be accounted
for in the image domain rather than the projection domain. In
particular, we showed that backprojection of a vastly angularly
undersampled sinogram of un-truncated data could be used
to extrapolate the backprojection of a finely sampled, fully
truncated sinogram of the same object to perform more accurate
region-of-interest (ROI) imaging. The same extrapolation idea
can be performed using differentiated backprojection (DBP). The
goal of this study is to give a general DBP-based formula when
reconstructing a finite set of projections in parallel geometry. We
discuss the discretization of this formula, in particular when the
image grid size is large with respect to the number of projections,
and we show how it can be applied to our extrapolation problem.

I. INTRODUCTION

We address the classic case of interior tomography, when
truncation due to the limited size of the detector defines a
centered region-of-interest (ROI) of an object for which no
complete projection is available. Without additional a priori
knowledge, exact reconstruction of this ROI is not possible
from the truncated data. Even though the amount of required
a priori data may be considered tiny [1], it is still usually
unavailable. A second approach is to complement the truncated
data with a second acquisition. In the context of very high-
resolution imaging, only the ROI is scanned at very high
resolution, because the cost of scanning the entire object
is prohibitive either in terms of scanning time, dose, or
both. A second acquisition encompassing the full object at
standard resolution removes the truncation artifacts through
extrapolation of the truncated high-resolution data with the
lower-resolution complete data. In the context of C-arm CBCT,
we proposed a dual-rotation scheme, where a complementary
acquisition of un-truncated data at same resolution but angu-
larly vastly undersampled removes truncation artifacts using a
standard least-square iterative reconstruction [2]. The iterative
approach makes full use of the two sets of data without any
explicit data extrapolation. For an analytical alternative, the
extrapolation must be explicit and we showed that it is most
conveniently achieved in the image space after backprojection
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(a) Reference image (b) With 45 un-truncated projections

Fig. 1: Dual-rotation reconstruction with a two-pass Hilbert-
transformed DBP (DBP-HT-2) [3]. Window width: 50 HU.

of both data sets [3] (Fig. 1). Here, we look at the specific case
of extrapolating the differentiated backprojection (DBP) within
the context of a general DBP-based reconstruction formula for
parallel-beam geometry.

The general DBP formula is presented in Section II, along
with the DBP-based extrapolation for ROI imaging. The
specific case of using standard DBP images is studied in
Section III. Simulations on forward projections of a clinical
head CT slice are described in Section IV. The results are
shown in Section V.

II. GENERAL DBP RECONSTRUCTION FORMULA

A. Notations
We parametrize the orientation of a parallel beam by its

direction θ = (cos θ, sin θ)T , where θ ∈ [0, π]. The de-
tector is orthogonal to the beam and oriented along θ⊥ =
(− sin θ, cos θ)T . Any point x is thus related to its detector
coordinate uθ(x) by equation uθ(x) = x · θ⊥. The Hilbert
transform of a 1D signal is denoted H, and we denote Hα,
the 2D filter that applies H over all the lines colinear to
α⊥. We denote pθ, the projection available at angle θ, and
p′θ the differentiation of pθ along θ⊥. We denote Bθ the
backprojection operator from angle θ, defined as: Bθ [q] (x) =
q(uθ(x)) for any projection q. For a set of angular positions
Θ, we define p′Θ as the collection {p′θ}θ∈Θ. We further write
σαΘ⊗p′Θ = {sgn(α ·θ) ·p′θ}θ∈Θ, and BΘ [p′Θ] =

∫
Θ
Bθ [p′θ] dθ.

We consider a finite set of projections over interval [0, π].
The interval is split into N angular sectors of aperture ∆θ =
π
N . We denote Θ =

{
θn =

(
n− 1

2

)
∆θ, n = 1, · · · , N

}
the

set of acquired angular positions.



B. Splitted DBP formula

Given a partition {Θk}k=1,··· ,K of Θ, one can reconstruct
image f through:

f =
1

2π

K∑
k=1

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=

1

2π

N∑
n=1

BθnH [pθn ] ,

(1)

where αk ∈ [0, π] is such that αk · θ = cos(θ − αk) 6= 0 for
all θ ∈ Θk. The most right handside is the standard filtered
backprojection (FBP) and the result holds because one can
replace Hilbert transform H prior to backprojection by Hαk
after backprojection (see Appendix). If all partition sets Θk

are singletons (K = N ), we have one filtering direction per
projection, typically θ⊥k , as in standard FBP. On the other
hand, if K = 1, the only admissible filtering direction is
given by α1 = π

2 , resulting in a filtering step along the x-axis,
as in the single-pass Hilbert-transformed DBP (DBP-HT-1)
algorithm [4].

For K = 2, we divide Θ into frontal views and lateral
views. Frontal views correspond to ΘFRT = Θ ∩

[
π
4 ,

3π
4

]
.

We select αFRT = π
2 , yielding a horizontal filtering along

the y-axis. Lateral views correspond to ΘLAT = Θ \ ΘFRT.
We select αLAT = 0, yielding a vertical filtering along the y-
axis. We call this reconstruction method the two-pass Hilbert-
transformed DBP (DBP-HT-2). This common formula proves
that DBT-HT-2, DBP-HT-1, and FBP, applied to a finite set of
projections, yield the same reconstruction.

C. DBP extrapolation for ROI imaging

When considering two acquisitions from the same detector
with different angular sampling but equal detector resolution,
the complete data cannot be used to directly extrapolate the
truncated ones because such data are not available for all
angles. Alternatively, the DBP of each sinogram correspond
to two images: one that is uniformly sampled but at a low
rate, and one that is finely sampled but not uniformly over the
image space due to truncation of the projections. In Fig. 2,
we illustrate the merge of both DBP images. The central
field of view (FOV) corresponds to the ROI (area inside the
orange circle); it is made of the finely sampled DBP where
the sampling is also uniform. Outside the ROI, the coarsely
sampled DBP is used instead because it is uniformly sampled.
At the edges of the ROI, a smooth transition is ensured using
the radial weighting function:

η(r) =
1

2

(
1− cos

(
π · r − rΩ

∆r

))
, (2)

where rΩ denotes the radius of the ROI, and ∆r is the
transition zone radial width. The DBP extrapolation actually
consists of K extrapolations, one per partition subset. Fig. 2a
illustrates such extrapolation for the frontal views of DBP-HT-
2. Hilbert-filtering for all rows crossing the ROI will not be
truncated in this case, since these rows have a finite support.
In contrast, when using K = 1 and DBP-HT-1 (Fig. 2b), all
Hilbert lines are truncated.

(a) DBP-HT-2, Θ2 =
[
π
4
, 3π

4

]

(b) DBP-HT-1, Θ1 = [0, π]

Fig. 2: Dual-rotation DBP extrapolation for ROI imaging.
(a) The Hilbert transform can be computed for all horizontal
lines crossing the circular ROI (orange circle). (b) The Hilbert
transform is truncated for all horizontal lines crossing the ROI.

(a) N = 22, M = 32 (b) N = 22, M = 1024

Fig. 3: Angular sampling, resolution and image support.

III. ROI IMAGING WITH DBP-HT-1

A. Discretization

Reconstruction from a finite set of projections means esti-
mating the image from a finite set of angular samples in the
Fourier space according to the central-slice theorem. Because
the images have a finite support, the finite Fourier sampling
leads to sampling artifacts, which depends on the defined
sampling of the images themselves, typically two-dimensional
grids of size M ×M . This point is illustrated in Fig. 3 where
the image is reconstructed from a set of N = 22 projections
using Eq. (1) with K = N over two different grids (M = 32
and M = 1024).

When comparing both images, we note the classical streak
artifacts on the right high-resolution image that are not visible
on the left. A second consideration needs to be mentioned:
the sampling artifacts cover the whole grid beyond the object
and are actually truncated by the finite size of the image grid.
In reality, the issue is the same on both images, but with a
different intensity.



B. Undersampling

The general formula in Eq. (1) does not lead to equivalent
results for any image f because the computation of the Hilbert
transform is sensitive to truncation. When using K > 1,
it is always possible to define filtering directions α⊥k such
that the Hilbert transform Hαk is applied to non-truncated
signals if the original projections are not truncated. For the
case K = 1, this is not true anymore, but if one assumes
that the result of the Hilbert transform has a finite support,
then the truncated Hilbert transform can be applied [4]. Since,
as already mentioned, the reconstruction of an image from
a finite set of projections has an infinite support, DBP-HT-1
cannot be computed. In practice, there exists a large enough
number of projections such that the sampling artifacts can be
neglected and the support considered finite. In the case of
significant under-sampling (N � M ), the sampling artifacts
are significant over the whole reconstruction grid and beyond.
However, one solution lies in Fig. 3 itself: there exists a coarser
reconstruction grid of sampling M ′ ≈ N , or equivalently,
there exists a low-pass version of the DBP that can be used
to reconstruct a low-pass version of f .

IV. SIMULATIONS

A diagnostic CT slice of a brain (Fig. 1a) was forward-
projected to simulate 720 noise-free parallel-beam projections
of 576 bins, sampling uniformly [0, π]. Truncated data pT

consist of the 720 projections with a centered digital truncation
corresponding to a centered, circular 2D region-of-interest Ω
of diameter 256 pixels. Full-FOV projections pF,s consist of
NF samples of the 720 original projections, again uniformly
distributed over [0, π]. We write NF = 720/s, where s is
the down-sampling factor; we used s = 2q with q integer
varying from 0 (s = 1) to 7 (s = 128). The images are
sampled on a 512×512 square grid. In order to use DBP-HT-
1, the DBP of each sinogram is computed, that of pF,s being
further filtered by 2D Gaussian filtering parameterized by its
standard deviation σ, that is varied from 0 (no smoothing) to
40 pixels by steps of 5 pixels. The DBP are merged using the
weighting function of Eq. (2) with ∆r = 15 pixels. All Hilbert
transforms are computed as proposed in [5]. The image quality
was assessed by the mean relative error (MRE) between each
reconstructed image fσ,s with respect to the reference image
fref = f0,1, computed over Ω, as:

MREσ,s =
1

Card(Ω)

∑
x∈Ω

|fσ,s(x)− fref(x)|
|fref(x)|

. (3)

V. RESULTS

The mean relative errors are shown in Fig. 4. For each
value of s, the optimal smoothing parameter σ∗ achieving the
minimum MRE is indicated with a green dot. These values are
also recalled in Table I. Although for NF ≥ 90 (s ≤ 16) the
minimum MRE values seem to follow a smooth curve on the
plane (σ, s), they are significantly higher and towards much
higher σ values when NF drops to as few as 22 (s ≥ 32).
This shows that filtering is not sufficient when s is too high.
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Fig. 4: MRE inside the ROI as a function of angular sampling
and of the Gaussian smoothing filter.

s NF σ∗ MREσ∗,s (%)

1 720 0 0.00
2 360 0 8 · 10−3

4 180 1 0.04
8 90 3 0.10

16 45 6 0.30
32 22 31 1.10
64 11 27 1.11
128 5 30 3.72

Table I: Optimal smoothing parameter σ and corresponding
MRE for each angular subsampling ratio s.

Reconstructed images with the optimal values σ∗ according
to the MRE criterion are shown in Fig. 5, that compares recon-
struction f0,s, that is, without Gaussian smoothing, to fσ∗,s.
For all values of s > 2, the absence of Gaussian smoothing
resulted in reconstructed ROI suffering from horizontal streaks
due to the invalid inversion of the Hilbert transform, even with
90 full-FOV projections. For s < 32, the optimal smoothing
strongly reduced the impact of horizontal streaks in the ROI,
resulting in values of the MRE of 0.30% for s = 16 (Fig. 5e)
and 0.10% for s = 8 (Fig. 5f). For s = 32 (Fig. 5d), the
strong Gaussian smoothing is shown to reduce the effect of
the horizontal streaks, but the reconstructed image suffers from
residual low-frequency non-uniformities. For higher values of
s this issue worsened (images not shown).

VI. DISCUSSION

In this study, we introduced a general formula for DBP-
based reconstruction in parallel-beam geometry and applied
it to solve the interior problem with a few extra full-FOV
projections. This led us to investigate the case of reconstruct-
ing vastly angularly subsampled acquisitions with DBP-HT-1.
Our study shows that because the key requirement of a finite
support is not met, this algorithm cannot be used “as is”. An
alternative two-pass method (DBP-HT-2) does not suffer from
this issue. However, we showed that subsampling could be
mitigated by Gaussian smoothing of the areas outside the ROI.
This is important because DBP-HT-1 is the only algorithm
covered by our formula that allows for DBP extrapolation
when reconstructing a single line, whereas DBP-HT-2 is
applicable to reconstructing the full ROI only.



(a) σ = 0, s = 32 (NF = 22) (b) σ = 0, s = 16 (NF = 45) (c) σ = 0, s = 8 (NF = 90)

(d) σ = 31, s = 32 (NF = 22) (e) σ = 6, s = 16 (NF = 45) (f) σ = 3, s = 8 (NF = 90)

Fig. 5: Dual-rotation reconstruction with DBP extrapolation, K = 1, no smoothing (top) and optimal smoothing (bottom) of
the full-FOV projections. Window width: 50 HU.

APPENDIX
PROOF OF EQ. (1)

Let θ ∈ [0, π] and bθ = Bθ [p′θ]. Let x ∈ R2, and α ∈ [0, π]
such that θ ·α 6= 0. We write:

bθ(x) = p′θ(x · θ⊥) = p′θ
(
A(x ·α⊥) +B

)
, (4)

where A = θ · α 6= 0 and B = (−x · α)θ · α⊥. The Fourier
transform of AA,B [p′θ] : u 7→ p′θ(Au + B) is related to the
Fourier transform of p′θ through:

F [AA,B [p′θ]] (ρ) =
1

|A|
F [p′θ]

( ρ
A

)
e2iπ ρAB . (5)

Hence, applying Hα to bθ is equivalent to multiplying the
right-hand side of Eq. (5) by −i sgn(ρ) = −i sgn(A) sgn

(
ρ
A

)
,

prior to taking the inverse Fourier transform:

Hα [bθ] (x) =

1

A

+∞∫
−∞

−i sgn
( ρ
A

)
F [p′θ]

( ρ
A

)
e2iπ ρA (Ax·α⊥+B)dρ.

(6)

Taking the change of variables ρ′ = ρ
A yields:

Hα [bθ] (x) =

sgn(A)

+∞∫
−∞

−i sgn (ρ′)F [p′θ] (ρ′) e2iπρ′(Ax·α⊥+B)dρ′.
(7)

The right-hand side of Eq. (7) is equal to sgn(A)BθH [p′θ]. In
other words:

HαBθ [sgn(θ ·α) · p′θ] = BθH [p′θ] . (8)

If Θk = {θk,1, · · · , θk,Card(Θk)} is a partition subset of Θ,
where θk,1 < · · · < θk,Card(Θk), we can choose a common
admissible angle α such that α · θ 6= 0 and Eq. (8) holds for
all θ ∈ Θk. We denote αk this common value, so that:

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=
∑
θ∈Θk

BθH [p′θ] . (9)

Summing the contributions of all the partition subsets yields:
K∑
k=1

HαkBΘk

[
σαkΘk
⊗ p′Θk

]
=
∑
θ∈Θ

BθH [p′θ] , (10)

which concludes the proof.
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