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Revisiting the pressure-area relation for the flow in elastic tubes: Application to arterial vessels
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For the description of the flow behaviour in elastic tubes as arterial vessels, we need a relationship between the transmural (internal minus external) pressure and the variation in the cross-sectional area A (or diameter), i.e., the pressure-areaconstitutive relation. However, a literature review shows different relations. In this study, the method based on the linear theory of elasticity is revisited. A new pressure-arearelation is proposed.

Results for the variation of cross-sectional area, arterial compliance and distensibility are presented. To define a unique threshold value for the applicability of the former equations, all results are presented in dimensionless form using the parameter = ℎ / (where E is Young's Modulus, ℎ and are respectively the vessel wall thickness and the internal radius at =0). Comparisons with the so-called linear and non-linearequations show that all results are similar for / < 0.05. Our results indicate that the former equations could be used with an accepted gap until / =0.1. However, the inaccuracy increases with and at / =0.2, the difference is of 26.7% and 24.6% respectively for the linear and non-linear relations. Proposed equations were applied to arterial vessels with =150mmHg for radius from 0.8 to 6 mm. Results show an increase in the diameter of 4% for =0.8mm while it is of 30% for =6mm.

Introduction

Physiological and cardiovascular fluid mechanics provide an understanding of advanced concepts in fluid mechanics to study blood flow in the cardiovascular system. The knowledge of the fluid mechanics of the circulatory system is indispensable for well understanding of many cardiovascular diseases [START_REF] Korsakova | Model of blood circulation in the cerebral cortex on the theory of fluid flow in heterogeneous medium[END_REF][START_REF] Liepsch | Study of wall shear stress in an idealized 90-bifurcation with Newtonian and non-Newtonian fluid models[END_REF]. Principles of conservation of mass and momentum provide the main equations of fluid flow which are non-linear, partial differential equations and need numerical solutions. For some cases, simplification of these equations allows analytical solutions [START_REF] Wang | Exact solution for laminar flow in partially collapsed tubes[END_REF][START_REF] Absi | Analytical solutions for the modeled k equation[END_REF]. Computational fluid dynamics (CFD) modelling provides detailed pressure and flow fields [START_REF] El Gharbi | An improved near-wall treatment for turbulent channel flows[END_REF] and the quantification of some parameters which cannot be obtained experimentally as wall shear stress [START_REF] Morris | Computational fluid dynamics modelling in cardiovascular medicine[END_REF][START_REF] Antonova | Numerical analysis of 3D blood flow and common carotid artery hemodynamics in the carotid artery bifurcation without stenoses[END_REF]. Fluid dynamics in elastic tubes is of high interest in different industrial and biological applications [START_REF] Hoekstra | Unsteady flow in a 2D elastic tube with the LBGK method[END_REF][START_REF] Riahi | Modeling unsteady two-phase blood flow in catheterized elastic artery with stenosis[END_REF][START_REF] Ghigo | A 2D nonlinear multiring model for blood flow in large elastic arteries[END_REF]. The description of the flow behaviour in elastic tubes as arterial vessels needs three independent variables namely the pressure ( , ), the fluid velocity ( , ) (or equivalently the flow rate ( , )) and the crosssectional area ( , ). The main governing equations are the conservation of mass and momentum (i.e. the continuity and the momentum equations). In this problem, we only have two equations and three variables, namely, , , and . Therefore, we need a third relation which describes the deformation of the vessel walls due to a variation in the pressure. A third equation could be obtained from the energy conservation which is related to the interaction between the fluid and the tube wall or by analytical equations which provide a relationship between the transmural (internal minus external) pressure and the variation in the crosssectional area (or diameter), i.e., the so-called state equation or pressure-areaconstitutive relations.

A literature review shows different pressure-area relations [START_REF] Rammos | A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting[END_REF][START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF][START_REF] Formaggia | A. One-dimensional models for blood flow in arteries[END_REF][START_REF] Sherwin | One-dimensional modelling of a vascular network in spacetime variables[END_REF][START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF][START_REF] Canic | Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties[END_REF][START_REF] Smith | An anatomically based model of transient coronary blood flow in the heart[END_REF][START_REF] Mynard | A numerical model of neonatal pulmonary atresia with intact ventricular septum and RV-dependent coronary flow[END_REF][START_REF] Valdez-Jasso | Modeling and Identification of Vascular Biomechanical Properties in Large Arteries[END_REF][START_REF] Mynard | A simple versatile valve model for use in lumped parameter and one-dimensional cardiovascular models[END_REF][START_REF] Sochi | The flow of Newtonian and power law fluids inelastic tubes[END_REF]. In this study, we will consider the relations which are derived from the linear theory of elasticity without considering the viscoelastic behaviour. The more used equations which show interest in practical purposes are the so-called linear and [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF]). The aim of this study is to provide an answer about these different pressure-area relations. It is important to understand why there are different relations, and which one should be used. To provide an appropriate answer to these questions, it is important to re-examine the method which provides these relations.

In the following sections we will first review the linear and non-linearrelations, then present the main assumptions of the study. The method of obtaining arelation will be revisited and finally our results will be compared to former relations and we will discuss the implications for arterial vessels.

Review of pressure-area relations

The vessel is represented as a cylindrical tube (Fig. 1) of length , wall thickness ℎ, inner (or internal) radius = , outer (or external) radius and circular cross-sectional area ( , ) =

. Pressurearea equations provide relation between the transmural pressure and the variation in the cross-sectional area (or the diameter). The transmural pressure is defined as

= -

, where = is the internal fluid (blood) pressure and is the external pressure (from surrounding tissue). The variation in the area is between the tube section = (at internal fluid pressure p) and the area 0 = 0 2 when there is zero transmural pressure (i.e. =

), where is the radius at =0.

In this study, we will consider the more usedrelations, i.e., linear and non-linear equations (presented in Table 1).

Fig. 1: A diagram of a vessel represented as a cylindrical tube, = is the internal radius; h is the wall thickness; L is the length of the tube; and σ is the circumferential stress.

The linear pressure-area relation

We write the linearrelation in the following form

(1)

= ( -)

where is the proportionality factor which is a measure for the stiffness of the tube wall, the value from Rammos equation is therefore =

, where the coefficient of proportionality is related to Young's Modulus , the vessel wall thickness ℎ, = 2

the diameter and the cross-sectional area when =0. = + ℎ -1

= + √ ℎ (1 -) (√ -√ )

Non-linear pressure-area relations

We write the non-linearrelation in a single general form as

= (√ -√ ) [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF] ℎ 1

4 3 ℎ 1 √ Sherwin et al. (2003) [14] √ ℎ (1 -) Urquiza et al. (2006)
In the two first non-linear relations of [START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] [START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] and [START_REF] Sherwin | One-dimensional modelling of a vascular network in spacetime variables[END_REF] [START_REF] Sherwin | One-dimensional modelling of a vascular network in spacetime variables[END_REF] (Table 2) the variation of the thickness ℎ (equal to ℎ at =0) due to the deformation is introduced through the Poisson ratio . In Olufsen's relation =0.5 and therefore 1 -2 = 3/4 and it contains ℎ instead of ℎ .

In the last nonlinear elastic relation of Table [START_REF] Liepsch | Study of wall shear stress in an idealized 90-bifurcation with Newtonian and non-Newtonian fluid models[END_REF], [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF] [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF] didn't consider the Poisson ratio. It is important to understand why there are linear and non-linear relations and why different relations for β, and which relation should be used? An answer requires a re-examination of the method related to these relations.

Pressure-area relation revisited

Main assumptions of flow in elastic tubes (arterial vessels)

Several approaches can be taken to write the relation between the pressure and the cross-sectional area. The arterial wall shows a time-delay in the response from a change in pressure to the corresponding change in cross-sectional area i.e., the viscoelastic behaviour [START_REF] Caro | The Mechanics of the Circulation[END_REF][START_REF] Mcdonald | Blood Flow in Arteries[END_REF][START_REF] Rockwell | Model studies of the pressure and flow pulses in a viscoelastic arterial conduit[END_REF]. However, these viscoelastic effects seem to be small within the physiological range of the flow and pressure [START_REF] Tardy | Non-invasive estimates of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements[END_REF]. Therefore, many studies use relations derived from the linear theory of elasticity and disregard the viscoelastic behaviour [START_REF] Rammos | A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting[END_REF][START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF][START_REF] Formaggia | A. One-dimensional models for blood flow in arteries[END_REF][START_REF] Sherwin | One-dimensional modelling of a vascular network in spacetime variables[END_REF][START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF][START_REF] Canic | Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties[END_REF][START_REF] Smith | An anatomically based model of transient coronary blood flow in the heart[END_REF][START_REF] Mynard | A numerical model of neonatal pulmonary atresia with intact ventricular septum and RV-dependent coronary flow[END_REF][START_REF] Valdez-Jasso | Modeling and Identification of Vascular Biomechanical Properties in Large Arteries[END_REF][START_REF] Mynard | A simple versatile valve model for use in lumped parameter and one-dimensional cardiovascular models[END_REF][START_REF] Sochi | The flow of Newtonian and power law fluids inelastic tubes[END_REF][START_REF] Caro | The Mechanics of the Circulation[END_REF]. Our study is based therefore on the following assumptions: • the flow is axisymmetric • the arterial vessels walls are thin, i.e., ℎ<< , that the loading and deformation are axisymmetric • the structural arterial properties are constant • the vessel is tethered in the longitudinal direction To obtain the relationship between the pressure and the cross-sectional area, we need to examine the equilibrium of the internal and external forces acting on a unit element of the wall.

Pressure force

The elementary force due to the pressure differences is given by

(3) = - = ( - )
For the half cylinder (Figure 1), the vertical component is

= ( -) sin

After integrating from 0 to π, we obtain the vertical force due to the pressure differences

(5) = 2 ( - )
If the vessel is thin-walled (ℎ ≪ ), then ≈ = and

(6) = 2 ( - ) = 2 3.3. LaPlace'ś Law
The aim is to link the transmural pressure to the tension in the walls related to the wall stress (force per unit area) σ. The force pulling the half cylinder down is

(7) = 2 ℎ
In equilibrium, Fσ is balanced by the vertical force due to the transmural pressure (Eq. 6)

ℎ =

Equation ( 8) is an expression of LaPlace'ś law for a thin-walled cylinder. Note that for a given transmural pressure, the wall tension ( = ℎ) per unit length increases as the radius increases and vice-versa. The elasticity of the tube involves a relation between stress and strain (proportional deformation) as = ∆ / . By considering the variation of the wall thickness through the Poisson ratio and Eq. ( 8), we write

(9) = = ( ) ∆
If the radius varies from the initial value related to =0 (zero transmural pressure) to a given value , the strain is equal to ( -)/ , Eq. ( 9) becomes [START_REF] Ghigo | A 2D nonlinear multiring model for blood flow in large elastic arteries[END_REF] = ( ) -1

The former linearrelation (Eq. 1) is based therefore on the assumption / = / which is not realistic and could be valid only for small deformations. The accurate relation is / = √ / and therefore involves a non-linearrelation.

(

) = ( ) √ (√ -√ ) 11 
With Eq. ( 2), the coefficient is therefore equal to

= (

) √ With = 0.5 in Eq. ( 12), we obtain the same coefficient of Olufsen et al. (1999) [START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] (Table 2). However, in Eq. ( 12), ℎ and are not constants since they change with

. Therefore, we need a relation for with ℎ and instead of ℎ and . To write this equation, we need to know the variation of the wall thickness. Based on the assumption related to this variation, we present the following formulations.

A newrelation

A first approximation

If we assume that the variation of the wall thickness is negligible (ℎ = ℎ and = 0) Eq. ( 12) becomes = √ and we write Eq. ( 2) in the following dimensionless form

= 1 -where =

Coefficient has the unit of pressure, it could be interpreted as the initial value (at =0) of the coefficient of proportionality between and the strain. From Eq. ( 13), we have the following explicit equation for ( )

=

In Eq. ( 14), / ≠1, this equation will be used for < .

Proposedrelation

If we consider the variation of the wall thickness ℎ through the Poisson ratio , it is possible to write a relation between ℎ and ℎ based on the area conservation equation 2 ℎ = 2 ℎ, Eq. ( 12) becomes

= √ (

) and we write Eq. ( 2) as In this equation, is known through input data , ℎ and . However, it is possible to write Eq. ( 15) in dimensionless form using and , since = /(1 -), as

= ( )

-

In equation ( 16), the dimensionless coefficient of proportionality

( )
is related to the assumption based on the area conservation equation. When the variation of the wall thickness is negligible ℎ = ℎ , this coefficient becomes equal to 1 since for this case = 0 and = in this dimensionless coefficient and Eq. ( 16) reverts to Eq. ( 13) of the first approximation (Appendix 1).

We write equations ( 13) and ( 16) in a single form as:

(17) = 1 - where = 1 = 0 ( ) ≠ 0
However unlike in the first approximation, Eq. ( 16) doesn't allow one to write an explicit equation for (

). In allrelations (Table 3), the different coefficients of proportionality ( , , or ) play an important role which impacts strongly the results. This coefficient depends on the biomechanical behaviour of the blood vessels which are determined by the physical properties of the individual wall constituents (mostly elastin, collagen, and smooth muscle), and their relative content [START_REF] Mynard | A simple versatile valve model for use in lumped parameter and one-dimensional cardiovascular models[END_REF].

Table 3 Summary of former and proposedrelations.

Coefficient

/

Linear [START_REF] Rammos | A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting[END_REF] ( - 2√ 2 2

) = ℎ + 1 2 -1 Non-linear [15] (√ -√ ) = ℎ + -1 1sr Approximation √ - √ = ℎ 1 - 1 - Proposed (√ - ) = √ ℎ (1 -) 1 (1 -) 1 -
1 st Approximation 2 / 2 / 2 Proposed ( -0.5 √ ) (1 -) 1 -0.5
(1 -) 1 -0.5

Arterial compliance or capacitance and the distensibility

The compliance or capacitance describes how volume changes in response to a change in pressure [START_REF] Spencer | Pulsatile blood flow in the vascular system[END_REF], it is inversely proportional to elasticity. The arterial capacitance per unit length or cross-sectional compliance [START_REF] Reneman | Age-related changes in carotid artery wall properties in men[END_REF] may be calculated assuming that vessel length does not vary with transmural pressure.

(

) 18 

=

The capacitance is a key parameter involved in many calculations such as:

• The flow rate is related to the cross-sectional compliance through =

• The distensibility is defined by

= =

Our two proposed relations for compliance and distensibility are summarized in table [START_REF] Absi | Analytical solutions for the modeled k equation[END_REF] and presented together with the former linear and non-linear equations. with the coefficient (Table 2) given by Urquiza et al. [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF]) (dash-dotted line) and our approximation given by Eq. ( 14) (solid line). with coefficients (Table 2) given rby Sherwin et al. [START_REF] Sherwin | One-dimensional modelling of a vascular network in spacetime variables[END_REF] (dashed line) and our result which is obtained from the resolution of the ordinary differential equation (ODE) given by the cross-sectional compliance (Table 4) (solid line). All other equations remain quite similar to the result from our proposed equations until a value of / equal to about 0.05. However, from / =0.1, the gap increases significantly with

Results and discussion

Variation of the cross-sectional area and diameter

. Former linear and non-linear relations underestimate the variation of cross-sectional area for a given transmural pressure. At / =0.2, the difference is of 26.7% and 24.6% respectively for linear (Rammos) and non-linear (Urquiza) relations. 4).

Variation of cross-sectional compliance and distensibility

Figure [START_REF] Wang | Exact solution for laminar flow in partially collapsed tubes[END_REF] shows a comparison between cross-sectional compliance obtained from the four equations presented in table (4) namely, the linear with the coefficient of Rammos [START_REF] Rammos | A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting[END_REF] (dashed line), the non-linear with the coefficient of Urquiza et al. [START_REF] Urquiza | Multidimensional modelling for the carotid artery blood flow[END_REF]) (dash-dotted line), Eq. ( 13) (thin solid line) and our proposed Eq. ( 16) with =0.5 (thick solid line). At the opposite of figure [START_REF] Liepsch | Study of wall shear stress in an idealized 90-bifurcation with Newtonian and non-Newtonian fluid models[END_REF] where results were similar for lower values of / , results for compliance (figure 3) show more scatter. The difference increases with / and therefore with (figure 3.b). For / =1.5, the gap of the non-linearrelation (with the coefficient of Urquiza et al.) is of 43% with respect to our Eq. [START_REF] Canic | Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties[END_REF]. Figure [START_REF] Absi | Analytical solutions for the modeled k equation[END_REF] presents results for A/A 0 distensibility . Even if the difference between the four curves seems more important, the difference (of the non-linearrelation) is the same as for cross-sectional compliance namely 43%.

In figures (3) and ( 4), all curves begin at a value of dimensionless cross-sectional compliance equal to 2 except our Eq. ( 16) which starts from a value of 1.5. This value is due to the term of the Poisson ratio, i.e., (1 -) which is equal to 3/4 (for =0.5) and therefore at / =1 a value equal to 1.5. The approximation of ≈ ( 3)/(2 ℎ ) (for << ) [START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] provides the same value / = 1.5

and confirms that this approximation is valid only for very small values of / . For larger values, the dependency on (or ) should be considered (figure 3). 4).

Application to arterial vessels

In order to understand the implications for arterial vessels, we will consider the empirical relation for the parameter β1 as a function of [START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] namely ( 18)

1 ( 0 ) = 1 exp( 2 0 ) + 3
The constants =2.00 × 10 7 g.s -2 .cm -1 , =-22.53 cm -1 and =8.65 × 10 5 g.s - [START_REF] Westerhof | Analog studies of the human systemic arterial tree[END_REF]. Values of β1 obtained from Eq. ( 18) are therefore in g.s -2 .cm -1 . The application of the proposed equation to an arterial vessel with =150mmHg (Table 5) show an increase in the diameter of 4 % for =0.8mm while it is of 30 % for =6mm. Figure [START_REF] El Gharbi | An improved near-wall treatment for turbulent channel flows[END_REF] presents the variation of the dimensionless cross-sectional area and diameter for different arterial vessels with initial radius equal to 0.8, 2 and 6 mm. Results show that at =150mmHg, the dimensionless cross-sectional area is more than 1.6 for =6mm, about 1.4 for =2mm and very small 1.08 for =0.8mm. 

Conclusions

In this study, the pressure-area relation was revisited and a new relation was proposed. For the variation of the cross-sectional area, the proposed result was obtained from the resolution of the ordinary differential equation (ODE) given by the cross-sectional compliance or capacitance . The parameter = ℎ / allowed us to write all results in dimensionless form and therefore to define a unique threshold value for the applicability of the former equations. Comparisons with the so-called linear and non-linearequations show that results of cross-sectional area are similar until a value of dimensionless transmural pressure / equal to about 0.05. Former equations could be used with an accepted gap until / =0.1. However, the inaccuracy increases with and at / =0.2, the difference is of 26.7% and 24.6% respectively for the linear and non-linear relations. Results for the variation of arterial compliance and distensibility were presented. These results showed non-negligible differences between proposed and former equations. The proposed equation was applied to arterial vessels with =150mmHg for radius from 0.8 to 6 mm. Results show an increase in the diameter of 4 % for =0.8mm while the increase is of 30 % for =6mm. This study was about the linear theory of elasticity. In future studies, for better understanding of the flow behaviour in arterial vessels, we will consider fluid-structure interaction phenomena [START_REF] Pielhop | Experimental analysis of the fluid-structure interaction in finitelength straight elastic vessels[END_REF] and the influence of transmural pressures on the change in tube shapes [START_REF] Nahar | Influence of elastic tube deformation on flow behavior of a shear thinning fluid[END_REF].
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 2 .a) shows that all equations present practically same results for / <0.05. This could explain the applicability of the linear equation for small values of / . For =0.5, fig. (2.b) presents comparisons between two non-linearrelations = +
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 2 .b) shows that Sherwin's equation underestimates the area compared to our equation. They present similar results for / <0.05.
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 2 Fig. 2: Comparison ofrelations, / ( / ), (a) =0, from linear (Rammos, dashed line), nonlinear (Urquiza et al., dash-dotted line) equations and results from Eq. (14) solid line, (b) =0.5 from nonlinear Sherwin et al. (dashed line) and our solution (solid line) obtained from the resolution of ODE of compliance (Table4).
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 3 Comparison of dimensionless cross-sectional compliance obtained by the four equations (Table4).
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 5 Fig. 5: Variation of dimensionless arterial vessel area and diameter for from 0 to 150 mmHg.

  

  

Table 1

 1 Linear and non-linearrelations used in the literature.

	Author		-Relation
	Rammos et al. (1998) [11]	=	1 +	ℎ	( -	)
	Olufsen et al. (1999) [12]	-	=	4 3	ℎ	1 -
	Sherwin et al. (2003) [14]					

Table 2

 2 Coefficient for the non-linearrelations.

Author

Olufsen et al. (1999)

[START_REF] Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries[END_REF] 

  2 .cm -1 were obtained by fitting the data from Segers et al. (1998)[START_REF] Segers | Role and relevancy of a cardiovascular simulator[END_REF],[START_REF] Stergiopulos | Computer simulation of arterial flow with applications to arterial and aortic stenosis[END_REF] [START_REF] Stergiopulos | Computer simulation of arterial flow with applications to arterial and aortic stenosis[END_REF] and[START_REF] Westerhof | Analog studies of the human systemic arterial tree[END_REF] 

Table 5

 5 

	Parameters for	=150mmHg (0.2×10 5 Pa).
	(cm)	×10 5 (Pa)	/
	0.08	4.16	0.048
	0.2	1.08	0.18
	0.6	0.86	0.23