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Abstract. Despite the digital nature of magnetic resonance imaging,
the resulting observations are most frequently reported and stored in
text documents. There is a trove of information untapped in medical
health records, case reports, and medical publications. In this paper, we
propose to mine brain medical publications to learn the spatial distri-
bution associated with anatomical terms. The problem is formulated in
terms of minimization of a risk on distributions which leads to a least-
deviation cost function. An efficient algorithm in the dual then learns
the mapping from documents to brain structures. Empirical results us-
ing coordinates extracted from the brain-imaging literature show that i)
models must adapt to semantic variation in the terms used to describe
a given anatomical structure, ii) voxel-wise parameterization leads to
higher likelihood of locations reported in unseen documents, iii) least-
deviation cost outperforms least-square. As a proof of concept for our
method, we use our model of spatial distributions to predict the distri-
bution of specific neurological conditions from text-only reports.

1 Introduction

Hundreds of thousands of studies, case reports, or patient records, capture ob-
servations in human neuroscience, basic or clinical. Statistical analysis of this
large amount of data could provide new insights. Unfortunately, most of the
spatial information that these data contain is difficult to extract automati-
cally, because it is hidden in unstructured text, in sentences such as: “[...] in
the anterolateral temporal cortex, especially the temporal pole and inferior and
middle temporal gyri” [1].

This data cannot be processed easily by a machine, as a machine does not
know where the temporal cortex is. As we will show, simply looking up such terms
in atlases does not suffice. Indeed, even atlases disagree [2]. Furthermore, joint
processing of many reports faces varying terminologies, with regions represented
in different atlases that differ and overlap. Finally, not all terms in a report carry
the same importance, and practitioners use terms that are not the exact labels
of any atlas. Coordinate-based meta-analyses capture the spatial distribution of
a term from the literature [3,4], but they also lack a model to combine terms.

Here, we propose to map case reports automatically to the brain locations
that they discuss: we learn mappings of anatomical terms to brain regions from



medical publications. We propose a new learning framework for translating
anatomical terms to brain images – a process that we call “encoding”. We learn
such a mapping, quantify its performance, and compare possible choices of rep-
resentation of spatial data. We then show in a proof of concept that our model
can predict the brain area for textual case reports.

2 Methods: formalizing text-to-brain-map translation

2.1 Problem setting: from text to spatial distributions

We want to predict the likelihood of the location of relevant brain structures
described in a document. For this purpose, we perform supervised learning on
a corpus of brain-imaging studies, each containing: (i) a text, and (ii) the loca-
tions – i.e. the stereotactic coordinates – of its observations. Indeed, Functional
Magnetic Resonance Imaging (fMRI) studies report the coordinates of activa-
tion peaks (e.g., [5, Table 1]), and Voxel Based Morphometry (VBM) analyses
report the location of differences in gray matter density (e.g., [1, Table 2]). Fol-
lowing neuroimaging meta-analyses [3], we frame the problem in terms of spa-
tial distributions of observations in the brain. In a document, observed locations
L = {la ∈ R3, a = 1 . . . c} are sampled from a probability density function (pdf) p
over the brain. Our goal is to predict this pdf p from the text T . We de-
note q our predicted pdf. A predicted pdf q should be close to p, or take high
values at the coordinates actually reported in the study:

∏
l∈L q(l) must be large.

In a supervised learning setting, we start from a collection of studies S = (T ,L),
with T the text and L the locations. Building the prediction engine then entails
the choice of a model relating the predicted pdf p to the text T , the choice of
a loss, or data-fit term, and some regularization on the model parameters. We
now detail how we make each of these choices to construct a prediction.

Model. We start by modelling the dependency of our spatial pdf q on the
study text T . This entails both choosing a representation for q and writing it
as a function of the text. While q is defined on a subvolume of R3, the brain
volume, we build it using a partition to work on a finite probably space: this
can be either a regular grid of voxels or a set of anatomical regions (i.e. an
atlas) R = {Rk, k = 0 . . .m}. As such a partitioning imposes on each region
to be homogeneous, q is then formally written on R3 in terms of the indicator
functions of the parts1: {rk = Ik

‖Ik‖1 , k = 1 . . .m}. Importantly, the volume of

each part ‖Ik‖1 appears as a normalization constant.
To link q to the text T of the study, we start by building a term-frequency

vector representation of T , which we denote x ∈ Rd. d is the size of our vocabu-
lary of English words W = {wt}, and xt is the frequency of word wt in the text.
We assign to each atlas region a weight that depends linearly on x:

q(z) =

d∑
t=1

m∑
k=1

xtβt,krk(z) ∀z ∈ R3 (1)

1 R0 denotes the volume outside of the brain, or background, on which q is 0.



where β ∈ Rd×m are model parameters, which we will learn.
Using an atlas is a form of regularization: constraining the prediction to be in

the span of {rk} reduces the size of the search space. Fine partitions, e.g. atlases
with many regions or voxel grids, yield models with more expressive power, but
more likely to overfit. Choosing an atlas thus amounts to a bias-variance tradeoff.

Label-constrained encoder. A simple heuristic to turn a text into a brain map
is to use atlas labels and ignore interactions between terms. The probability of
a region is taken to be proportional to the frequency of its label in the text. The
vocabulary is then the set of labels: d = m. As the word wk is the label of Rk,
β is diagonal. For example, for a region Rk in the atlas labelled “parietal lobe”,
the probability on Rk depends only on the frequency of the phrase “parietal
lobe” in the text. We call this model label-constrained encoder.

2.2 Loss function: measuring errors on spatial distributions

Strategy. We will fit the coefficients β of our model, see Eq. (1), by minimizing
a risk E(p, q): the expectation of a distance between p and q.

A plugin estimator of p. We do not have access to the true pdf, p; we need
a plugin estimator, which we denote p̂. By construction of our prediction q, the
best approximation of p we can hope for belongs to the span of our regions {rk}.
Hence, we build our estimator p̂ in this space, setting the probability of a region
to be proportional to the number of coordinates that fell inside it:

p̂ =

m∑
k=1

|{a, Ik(la) = 1}|
c

rk =

m∑
k=1

1

c

c∑
a=1

Ik(la)rk ,
m∑
k=1

ŷkrk . (2)

When regions are voxels, there are too many regions and too few coordinates.
Hence we use Gaussian Kernel Density Estimation (KDE) to smooth the esti-
mated pdf2. Our supplementary material details a fast KDE implementation.

Choice of E. We use two common distance functions for our loss. The first is
Total Variation (TV), a common distance for distributions. Note that p defines
a probability measure on the finite sample space R, P(Rk) =

∫
Rk

p(z)dz, where

R = {Rk, k = 1 . . .m} and Rk = supp(rk). q defines Q in the same way. Then,

TV(P,Q) = sup
A⊂R

|P(A)−Q(A)| . (3)

Since R is finite, a classical result (see [6]) shows that this supremum is attained
by taking A = {Rk|P(Rk) > Q(Rk)} (or its complementary) and:

TV(P,Q) =
1

2

m∑
k=1

|P(Rk)−Q(Rk)| = 1

2

∫
R3

|p(z)− q(z)|dz . (4)

2 Using an atlas is also a form of KDE, with kernel (z, z′) 7→ 1/‖Ik‖1 if z and z′ belong
to the same region Rk, k ∈ {1, . . .m}, 0 otherwise.



The TV is half of the `1 distance between the pdfs. ‖p̂−q‖1 is therefore a natural
choice for our loss. The second choice is ‖p̂ − q‖22, which is a popular distance
and has the appeal of being differentiable everywhere.

Factorizing the loss. Let us call vk the volume of rk, i.e. the size of its support:
vk , ‖Ik‖1, k = 1 . . .m. Remember that rk = 1

vk
Ik. Our loss can now be

factorized (see supplementary material for details):∫
R3

δ(p̂(z)− q(z))dz =

m∑
k=1

vkδ

(
ŷk
vk
−
∑d
t=1 xtβt,k
vk

)
(5)

Here, δ is either the absolute value of the difference or the squared difference.

2.3 Training the model: efficient minimization approaches

To set the model parameters β, we used n example studies {Si = (Ti,Li), i =
1 . . . n}. We learn β by minimizing the empirical risk on {Si} and an `2 penalty
on β. We add to the previous notations the index i of each example: pi, qi, ŷi, xi.
Ŷ ∈ Rn×m is the matrix such that Ŷi = ŷi, and X ∈ Rn×d such that Xi = xi.

Case δ = `22. The empirical risk is

n∑
i=1

m∑
k=1

(
Ŷi,k√
vk
−

d∑
t=1

1
√
vk
Xi,tβt,k

)2

. (6)

Defining Y ′:,k =
Ŷ:,k√
(vk)

and β′:,k =
β:,k√
(vk)

, with an `2 penalty, the problem is:

argmin
β′

(
‖Y ′ − β′X‖22 + λ‖β′‖22

)
(7)

where λ ∈ R+. This is the least-squares ridge regression predicting p̂ expressed
in the orthonormal basis of our search space { rk

‖rk‖2 }.

Case δ = `1. The empirical risk becomes

n∑
i=1

m∑
k=1

|Ŷi,k −
d∑
t=1

Xi,tβt,k| (8)

This problem is also known as a least-deviations regression, a particular case of
quantile regression [7], [8]. Unlike `2 regression, which provides an estimate of the
conditional mean of the target variable, `1 provides an estimate of the median.
Quantile regression has been studied (e.g. by economists), as it is more robust
to outliers and better-suited than least-squares when the noise is heteroscedastic
[7]. Adding an `2 penalty, we have the minimization problem:

β̂ = argmin
β

(
‖Ŷ −Xβ‖1 + λ‖β‖22

)
(9)



Unpenalized quantile regression is often written as a linear program and solved
with the simplex algorithm [9], iteratively reweighted least squares, or interior
point methods [10]. [11] uses a coordinate-descent to solve a differentiable ap-
proximation of the quantile loss (the Huber loss) with elastic-net penalty. Here,
we minimize Eq. (9) via its dual formulation (c.f. supplementary material):

ν̂ = argmax
ν

(
Tr(νT Ŷ − 1

4λ
νTXXTν)

)
s.t. ‖ν‖∞ ≤ 1, (10)

where ν ∈ Rn×m. The primal solution is given by β̂ = XT ν̂
2λ . As the dual loss g is

differentiable and the constraints are bound constraints, we can use an efficient
quasi-Newton method (L-BFGS, [12]). g and its gradient are fast to compute as
X is sparse. λ is set by cross-validation on the training set. We use warm-start
on the regularization path (decreasing values for λ) to initialize each problem.

Training the label-constrained encoder. The columns of β can be fitted
independently from each other. If we want β to be diagonal, we only include one
feature in each regression: we fit m univariate regressions ŷ:,k 'X:,kβk,k.

2.4 Evaluation: a natural model-comparison metric

Our metric is the mean log-likelihood of an article’s coordinates in the predicted
distribution, which diverges wherever q = 0. we add a uniform background to
the prediction, to ensure that it is non-zero everywhere:

the predicted pdf is written q′ =
1

2
(

m∑
k=1

Ik
vk

+ q) (11)

the score for a study Si = (Ti,Li),Li = {li,a} is
1

ci

ci∑
a=1

log(q′i(li,a)) (12)

3 Empirical study

3.1 Data: mining neuroimaging publications

We downloaded roughly 140K neuroimaging articles from online sources includ-
ing Pubmed Central and commercial publishers. About 14K of these contain
coordinates, which we extracted, as in [4]. We built a vocabulary of around
1000 anatomical region names by grouping the labels of several atlases and the
Wikipedia page “List of regions in the human brain”3. So in practice, n ≈ 14·103

and d ≈ 1000. m depends on the atlas (or voxel grid) and ranges from 20 to 30K.

3.2 Text-to-brain encoding performance

Comparison of atlases and models. We perform 100 folds of shuffle-split
cross-validation (10% in test set). As choices of {Rk}, we compare several atlases

3 https://en.wikipedia.org/wiki/List_of_regions_in_the_human_brain

https://en.wikipedia.org/wiki/List_of_regions_in_the_human_brain


10.2 10.0 9.8
Log-likelihood of coordinates in left-out articles

Destrieux
(76 regions)

Talairach
Gyrus

(56 regions)

AAL
(117 regions)

Harvard-Oxford
(118 regions)

Voxel-wise
(28542 regions)

Label Constrained
Mean of Training Set
Least Squares
Least Deviations

Fig. 1: Log-Likelihood
of coordinates re-
ported by left-out
articles in the pre-
dicted distribution
(Eq. (12)). The vertical
line represents the test
log-likelihood given a
uniform distribution over
the brain. Voxel-wise
encoding is better than
relying on any atlas. In
this setting, `1 regression
significantly outperforms
least squares.

and a grid of cubic 4-mm voxels. We also compare `1 and `2 regression, and label-
constrained `2. The label-constrained encoder is not used for the voxel grid, as it
does not have labels. As a baseline, we include a prediction based on the average
of the brain maps seen during training (i.e. independent of the text).

Fig. 1 gives the results: for all models, voxel-wise encoding performs bet-
ter than any atlas. Large atlas regions regularize too much. Despite its higher
dimensionality, voxel-wise encoding learns better representations of anatomical
terms. The label-constrained model performs poorly, sometimes below chance, as
the labels of a single atlas do not cover enough words and interactions between
terms are important. For voxel-wise encoding, `1 regression outperforms `2. The
best encoder is therefore learned using a `1 loss and a voxel partition.

Prediction examples. Fig. 2 shows the true pdf (estimated with KDE) and
the prediction for the articles which obtained respectively the best and the first-
quartile scores. The median is shown in the supplementary material.

Examples of coefficients learned by the linear regression. The coefficients
of the linear regression (rows of β) are the brain maps that the model associates

L R L R

Best prediction: “Where sound position
influences sound object representations: a
7-T fMRI study”

L R L R
First quartile: “Interaction of catechol
O-methyltransferase and serotonin trans-
porter genes modulates effective connectiv-
ity in a facial emotion-processing circuitry.”

Fig. 2: True map (left) and prediction (right) for best prediction and 1st quartile



Fig. 3: regression coefficient for “an-
terior cingulate”

L R

y=-6

L R

y=-6

L R

y=-2

Fig. 4: regression coefficients for “left
amygdala”, “amygdala”, and “right
amygdala”

with each anatomical term. For frequent terms, they are close to what experts
would expect (see for example Figs. 3 and 4).

3.3 Leveraging text without coordinates: neurological examples

Our framework can leverage unstructured spatial information contained in a
large corpus of unannotated text. To showcase this, assume that we want to
know which parts of the brain are associated with Huntington’s disease. Our
labelled corpus by itself is insufficient: only 21 documents mention the term
“huntington”. But we use it to learn associations between anatomical terms and
locations in the brain (Section 2). This gives us access to the spatial information
contained in the unlabelled corpus, which was out of reach before (Section 3.2).
We contrast the mean encoding of articles which mention “huntington” against
the mean distribution (taking the difference of their log). Since the large corpus
contains more information about Huntington’s disease (over 400 articles mention
it), this is sufficient to see the striatum highlighted in the resulting map (Fig. 5,
left). Fig. 5 (right) shows the experiment for Parkinson, and Fig. 6 for Aphasia.

4 Conclusion

We have introduced a theoretical framework to translate textual description of
studies into spatial distributions over the brain. Such a translation enables pool-

L R

y=-34

L R

y=2

L R

z=-12

L R

z=0

Huntington’s disease
L R

y=-34

L R

y=2

L R

z=-12

L R

z=0

Parkinson’s disease

Fig. 5: Predicted density for Huntington’s and Parkinson’s. In agreement
with Huntington’s physiopathology [13], our method highlights the putamen, and
the caudate nucleus. Also, in the case of Parkinson’s [14], the brain stem, the
thalamus, and the motor cortex are highlighted.

L R

y=14

L R

z=14

Fig. 6: Predicted density for
aphasia, centered on Broca’s
and Wernicke’s areas, in agree-
ment with the literature [15].



ing together many studies which only provide text (no images or coordinates),
for statistical analysis of their results in brain space. The statistical model gives
a natural metric to validate. This metric enables comparing representations,
showing that voxel-wise encoding is a better approach than relying on atlases.
Building prediction models tailored to our task leads to a linear regression with
an `1 loss (least absolute deviation), the total-variation distance between the true
and the predicted spatial distributions. Such a model can be trained efficiently
on dozens of thousands of data points and outperforms simpler approaches.

Applied to descriptions of pathologies that lack spatial information, our
model synthesizes accurate brain maps that reflect the domain knowledge. Pre-
dicting spatial distributions of medical observations from text opens new alleys
for clinical research from patient health records and case reports.
Acknowledgements This project received funding from: the European Union’s
H2020 Research Programme under Grant Agreement No. 785907 (HBP SGA2),
the Metacog Digiteo project, the MetaMRI associate team, and ERC NeuroLang.
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Supplementary material

A Factorization of the loss function

∫
R3

δ(p̂(z)− q(z))dz =

∫
R3

δ(p̂(z)− q(z))
m∑
k=0

Ik(z)dz (13)

=

∫
R3

δ(p̂(z)− q(z))
m∑
k=1

Ik(z)dz 4 (14)

=

m∑
k=1

∫
R3

δ(ŷkrk(z)−
d∑
t=1

xtβt,krk(z))Ik(z)dz 5 (15)

=
m∑
k=1

∫
R3

δ(
ŷk
vk
−
∑d
t=1 xtβt,k
vk

)Ik(z)dz (16)

=

m∑
k=1

vkδ(
ŷk
vk
−
∑d
t=1 xtβt,k
vk

) (17)

B Derivation of the dual of penalized least-deviations

We have the minimization problem:

β̂ = argmin
β

(
‖Ŷ −Xβ‖1 + λ‖β‖22

)
(18)

where X = (xi) ∈ Rn×d and Ŷ = (ŷi) ∈ Rn×m and λ ∈ R+.
The problem is equivalent to:

argmin
Z,β

(
‖Z‖1 + λ‖β‖22

)
(19)

s.t. Ŷ −Xβ −Z = 0 (20)

Introducing the dual variable ν ∈ Rn×m, the Lagrangian is:

L(Z,β,ν) = ‖Z‖1 + λ‖β‖22 + Tr(νT (Ŷ −Xβ −Z)) (21)

The derivative with respect to β is

2λβ −XTν (22)

So minimizing with respect to β yields β = XT ν
2λ and

min
β
L(Z,β,ν) = ‖Z‖1 + Tr(νT Ŷ − νTZ − 1

4λ
νTXXTν) (23)

4 because p and q are null in the background and δ(0, 0) = 0
5 because Ik 6= 0 =⇒ rk′ = 0 ∀k′ 6= k



The dual norm of the l1 norm is l∞, so minimizing with respect to Z we get the
Lagrange dual function

g(ν) = min
Z,β

L(Z,β,ν) =

{
Tr(νT Ŷ − 1

4λν
TXXTν) if ‖ν‖∞ ≤ 1

−∞ otherwise
(24)

The dual problem is:

ν̂ = argmax
ν

(
Tr(νT Ŷ − 1

4λ
νTXXTν)

)
s.t. ‖ν‖∞ ≤ 1 (25)

g is differentiable; its gradient is

∇g(ν) = Ŷ − 1

2λ
XXTν (26)

And we solve this problem using an efficient algorithm: L-BFGS. Then we get

back the primal solution as β̂ = XT ν̂
2λ . In practice, since data must be centered

and normalized, the mean and scale of X appear in these formulas so that we
do not break sparsity of X: g is written

Tr(νT Ỹ − 1

4λ
KTK) (27)

With

K = (X̃ − x̄)Tν = X̃Tν − x̄�
n∑
i=1

νi (28)

Where X̃ ∈ Rn×d is X divided by n times the variance of its columns, x̄ ∈ Rd is
the mean of the columns of X divided by the same quantity, Ỹ is the centered
and normalized Ŷ , and � is the Hadamard product. This is fast to compute
because X̃ is sparse (in practice, over 97% of entries are null). In a similar way,
the gradient becomes

− Ỹ +
1

2λ
(X̃K − x̄K) (29)

and β is given by

X̃Tν − x̄�
n∑
i=1

νi (30)



C More extensive atlas comparison

10.2 10.0 9.8
Log-likelihood of coordinates in left-out articles

Talairach
Brodmann Area

(72 regions)
Harvard-Oxford

Subcortical
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Cortical
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Fig. 7: Log-Likelihood of coordinates reported by left-out articles in the predicted
distribution.



D Example predictions

D.1 Best prediction

Title:“Where sound position influences sound object representations: a 7-T
fMRI study” [5]
Abstract: “Evidence from human and non-human primate studies supports a
dual-pathway model of audition, with partially segregated cortical networks for
sound recognition and sound localisation, referred to as the What and Where
processing streams. In normal subjects, these two networks overlap partially on
the supra-temporal plane, suggesting that some early-stage auditory areas are
involved in processing of either auditory feature alone or of both. Using high-
resolution 7-T fMRI we have investigated the influence of positional information
on sound object representations by comparing activation patterns to environ-
mental sounds lateralised to the right or left ear. While unilaterally presented
sounds induced bilateral activation, small clusters in specific non-primary audi-
tory areas were significantly more activated by contra-laterally presented stimuli.
Comparison of these data with histologically identified non-primary auditory ar-
eas suggests that the coding of sound objects within early-stage auditory areas
lateral and posterior to primary auditory cortex AI is modulated by the position
of the sound, while that within anterior areas is not.”

L R L R

True map (left) and prediction (right)

D.2 First quantile

Title:“Interaction of catechol O-methyltransferase and serotonin trans-
porter genes modulates effective connectivity in a facial emotion-processing
circuitry.”[17]
Abstract: “Imaging genetic studies showed exaggerated blood oxygenation
level-dependent response in limbic structures in carriers of low activity alleles
of serotonin transporter-linked promoter region (5-HTTLPR) as well as cate-
chol O-methyltransferase (COMT) genes. This was suggested to underlie the
vulnerability to mood disorders. To better understand the mechanisms of vul-
nerability, it is important to investigate the genetic modulation of frontal-limbic
connectivity that underlies emotional regulation and control. In this study, we
have examined the interaction of 5-HTTLPR and COMT genetic markers on
effective connectivity within neural circuitry for emotional facial expressions. A
total of 91 healthy Caucasian adults underwent functional magnetic resonance
imaging experiments with a task presenting dynamic emotional facial expres-
sions of fear, sadness, happiness and anger. The effective connectivity within
the facial processing circuitry was assessed with Granger causality method. We
have demonstrated that in fear processing condition, an interaction between 5-
HTTLPR (S) and COMT (met) low activity alleles was associated with reduced



reciprocal connectivity within the circuitry including bilateral fusiform/inferior
occipital regions, right superior temporal gyrus/superior temporal sulcus, bi-
lateral inferior/middle prefrontal cortex and right amygdala. We suggest that
the epistatic effect of reduced effective connectivity may underlie an inefficient
emotion regulation that places these individuals at greater risk for depressive
disorders.”

L R L R

True map (left) and prediction (right)

D.3 Median

Title: “How specifically are action verbs represented in the neural motor system:
an fMRI study.”[18]
Abstract: “Embodied accounts of language processing suggest that sensori-
motor areas, generally dedicated to perception and action, are also involved in
the processing and representation of word meaning. Support for such accounts
comes from studies showing that language about actions selectively modulates
the execution of congruent and incongruent motor responses (e.g., Glenberg &
Kaschak, 2002), and from functional neuroimaging studies showing that under-
standing action-related language recruits sensorimotor brain areas (e.g. Hauk,
Johnsrude, & Pulvermueller, 2004). In the current experiment we explored the
basis of the neural motor system’s involvement in representing words denoting
actions. Specifically, we investigated whether the motor system’s involvement is
modulated by the specificity of the kinematics associated with a word. Previous
research in the visual domain indicates that words denoting basic level category
members lacking a specific form (e.g., bird) are less richly encoded within vi-
sual areas than words denoting subordinate level members (e.g., pelican), for
which the visual form is better specified (Gauthier, Anderson, Tarr, Skudlarski,
& Gore, 1997). In the present study we extend these findings to the motor do-
main. Modulation of the BOLD response elicited by verbs denoting a general
motor program (e.g., to clean) was compared to modulation elicited by verbs
denoting a more specific motor program (e.g., to wipe). Conform with our hy-
pothesis, a region within the bilateral inferior parietal lobule, typically serving
the representation of action plans and goals, was sensitive to the specificity of
motor programs associated with the action verbs. These findings contribute to
the growing body of research on embodied language representations by show-
ing that the concreteness of an action-semantic feature is reflected in the neural
response to action verbs.”

L R L R

True map (left) and prediction (right)



E Fast Kernel Density Estimation with convolutions

Kernel Density Estimation is a non-parametric way to estimate the pdf of a
random variable, given a sample (possibly weighted). In our case the sample is
the list of coordinates provided by a study. We use KDE to draw the brain map
associated with each study. A reference on density estimation can be found in
[19] or [20]. Once we have chosen a kernel φ (a function that sums to 1, symmetric
and non-negative), we define the rescaled kernel :

φH(u) = |H|− 1
2φ
(
H−

1
2u
)

(31)

where |·| is the determinant, and the smoothing parameterH ∈ Rd×d is a (d×d)
symmetric positive definite matrix, called the bandwidth matrix.

The estimate of the pdf p̂ is then given by:

p̂(v) =
1

c

c∑
a=1

ωaφH (v − la) (32)

where {la, a = 1 . . . c} is the sample and {ωa, a = 1 . . . c} are the weights associ-
ated with the la and sum to c.

Note that if φ is the standard multivariate density (which is the kernel we
use in practice), φH is the multivariate density of mean 0 and covariance H:

φ(u) =
1√

(2π)d
exp

(
−1

2
uTu

)
(33)

and

φH(u) = |H|− 1
2φ
(
H−

1
2u
)

(34)

=
1√

(2π)d|H|
exp

(
−1

2
uT (H−

1
2 )TH−

1
2u

)
(35)

=
1√

(2π)d|H|
exp

(
−1

2
uTH−1u

)
(36)

In practice, we use a multivariate Gaussian kernel and isotropic smoothing
(which is usually the case in neuroimaging):

H =

h2 h2
h2

 (37)

So Equation (32) can be rewritten as

p̂(v) =
1

chd

c∑
a=1

ωaφ

(
v − la
h

)
(38)

with d = 3 is the dimension of the vector space in which our samples live.



A naive computation of this sum would be expensive. But since the estimate
is the convolution of the kernel with the data, it can be computed efficiently
with Fourier transforms [21,19]. In the general KDE setting, the sample points
lie in a continuous space which needs to be binned in order to compute the
discrete convolution. The grid we choose for binning will define the voxels of the
brain map we compute. Two strategies are popular for computing the binned
approximation of a weighted sample: simple binning and linear binning. Simple
binning consists in assigning the whole weight of each sample point to the closest
grid node. Linear binning distributes the weight of the sample point over the
neighbouring nodes, e.g., in the one-dimensional case, if v lies between iδ and
(i+1)δ, (δ being the grid increment) the fraction of v’s weight that iδ will receive

is (i+1)δ−v
δ . We simply assign the weights of the activation peaks to the voxel in

which they lie. In other words, if an activation peak lies between iδ and (i+ 1)δ,
its whole weight will go to iδ. Thus we compute the weights wi,j,k associated
with the nodes of our grid (the voxels of our image) as

wi,j,k =
∑

a∈N (i,j,k)

ωa (39)

where ωa is the weight associated with sample point la and where a belongs to
the neighbourhood N (i, j, k) if and only if, writing la = (x, y, z) the coordinates
in R3 of la,

iδx ≤ x < (i+ 1)δx

jδy ≤ y < (j + 1)δy

kδz ≤ z < (k + 1)δz

where δx, δy and δz are the side lengths of the voxels.
The wi,j,k are sometimes called the bin counts. Equation (32) can be rewritten

in voxel space as:

p̂((i′, j′, k′)) =
1

c

nx∑
i=1

ny∑
j=1

nz∑
k=1

wi,j,kφH (|i′ − i|δx, |j′ − j|δy, |k′ − k|δz) (40)

where nx, ny and nz are the dimensions of the image. This is the convolution
of two images, one, K, containing kernel evaluations at multiples of the voxel
dimensions, and one, W containing the bin counts.

In [21], the authors present a scheme for zero-padding the matrices to con-
volve in a way that ensures very fast computation of their Fourier Transforms
in the one-dimensional and two-dimensional cases; it generalizes immediatly
to higher dimensions and we have used it for our three-dimensional images.
This scheme is only valid when the bandwidth matrix H is diagonal; [22] re-
cently described another padding which is adapted for unconstrained bandwidth
matrices. However, the smoothing matrix we use is indeed diagonal and the
procedure described in [21] can be applied in our case. We use the notation
diag(H) = (hx, hy, hz)



We use a Gaussian kernel, which has infinite support. However, it de-
creases very rapidly and we can approximate it by the truncated kernel, taking
φH(iδx, jδy, kδz) to be 0 when | iδxhx

| ≥ 5, | jδyhy
| ≥ 5, and |kδzhz

| ≥ 5 ([21] suggest 4

as a “safe choice”). This means that many of the terms in K can be set to zero.

Next, we define

λx = min(nx − 1,

⌊
5hx
δx

⌋
) (41)

λy = min(ny − 1,

⌊
5hy
δy

⌋
) (42)

λz = min(nz − 1,

⌊
5hz
δz

⌋
) (43)

λx, λy and λz are the indices beyond which the kernel becomes practically null
(or the dimensions of the image if these indices are superior to the image size).
We also define

θx = 2dlog2(nx+λx+1)e (44)

θy = 2dlog2(ny+λy+1)e (45)

θz = 2dlog2(nz+λz+1)e (46)

θx is the smaller power of 2 that is bigger than nx + λx + 1
Then the non-zero terms of K are symmetrized, and K is padded with zeros in
the middle to size (θx × θy × θz). The reason for this padding is that the Fast
Fourier Transform (FFT) is faster if the dimensions of K are highly composite
numbers, such as powers of 2. The new matrix K is therefore a matrix of size
(θx × θy × θz) such that:

Ki,j,k = φH(iδx, jδy, kδz), i = 0, . . . , λx, j = 0, . . . , λy, k = 0, . . . , λz

Ki,j,k = φH((θx − i)δx, jδy, kδz), i = θx − λx, . . . , θx − 1, j = 0, . . . , λy, k = 0, . . . , λz

Ki,j,k = φH(iδx, (θy − j)δy, kδz), i = 0, . . . , λx, j = θy − λy, . . . , θy − 1, k = 0, . . . , λz

Ki,j,k = φH(iδx, jδy, (θz − k)δz), i = 0, . . . , λx, , j = 0, . . . , λy, k = θz − λz, . . . , θz − 1

Ki,j,k = φH(iδx, (θy − j)δy, (θz − k)δz), i = 0, . . . , λx, j = θy − λy, . . . , θy − 1,

k = θz − λz, . . . , θz − 1

Ki,j,k = φH((θx − i)δx, jδy, (θz − k)δz), i = θx − λx, . . . , θx − 1, j = 0, . . . , λy,

k = θz − λz, . . . , θz − 1

Ki,j,k = φH((θx − i)δx, (θy − j)δy, kδz), i = θx − λx, . . . , θx − 1, j = θy − λy, . . . , θy − 1,

k = 0, . . . , λz

Ki,j,k = φH((θx − i)δx, (θy − j)δy, (θz − k)δz),i = θx − λx, . . . , θx − 1,

j = θy − λy, . . . , θy − 1,

k = θz − λz, . . . , θz − 1



For example, the first slice (:,:,0) of K looks like this:

K:,:,0 =



φ0,0,0 φ0,1,0 . . . φ0,λy,0 0 . . . 0 φ0,λy,0 . . . φ0,1,0
φ1,0,0 φ1,1,0 . . . φ1,λy,0 0 . . . 0 φ1,λy,0 . . . φ1,1,0

...
...

...
...

...
...

...
φλx,0,0 φλx,1,0 . . . φλx,λy,0 0 . . . 0 φλx,λy,0 . . . φλx,1,0

0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 0 . . . 0
φλx,0,0 φλx,1,0 . . . φλx,λy,0 0 . . . 0 φλx,λy,0 . . . φλx,1,0

...
...

...
...

...
...

...
φ1,0,0 φ1,1,0 . . . φ1,λy,0 0 . . . 0 φ1,λy,0 . . . φ1,1,0



(47)

Where we have written φi,j,k = φH(iδx, jδy, kδz) for brevity. The weights’ matrix
W is then padded with zeros to be the same size as K: W is of size (θx, θy, θz)
and

Wi,j,k =

{
wi,j,k if i < nx, j < ny, k < nz

0 otherwise
(48)

Then the upper corner of the convolution of K and W gives us the estimates
of our pdf at every voxel:

p̂(I) = (K ∗W )[: nx, : ny, : nz] (49)

where ∗ is the convolution operator and I is the image:

I = {(iδx, jδy, kδz), 0 ≤ i < nx, 0 ≤ j < ny, 0 ≤ k < nz} (50)

Since the dimensions of K and W are highly composite numbers, computing
their Fourier Transforms is very fast, and the convolution is obtained as the
inverse Fourier Transforms of the element-by-element product of the transforms
of K and W , according to the discrete convolution theorem:

f̂(image) = F−1(F(K)�F(W )) (51)

Where F is the Fourier transform and � is the Hadamard (element-wise) prod-
uct.

When using KDE, two important decisions are the choice of the kernel and
the choice of the smoothing factor h, also called bandwidth. Theoretical results
as well as cross-validation can be used to make these choices [19]. We chose
a Gaussian kernel for simplicity and because it is popular for smoothing MRI
images. If we choose a bandwidth matrix with diagonal (h2, h2, h2), the Full
Width at Half Maximum (FWHM) of the kernel is equal to 2δh

√
2 ln(2), where

δ is the voxel size. We compared h = 0.5, h = 1 and h = 2, and the bandwidth
we chose is h = 1, which yields a FWHM of around 9 mm.
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