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Introduction

Inverse spectral problems (ISP) are a class of problems that is relevant to a wide range of applications in science and technology. Examples of such applications include large static structures such as buildings and bridges, as well as smaller dynamic structures such as automobiles and helicopters. These structures require extensive vibration testing and analysis during the design and the development stages. The determination of the structural parameters is one of the most important stages in the analysis. This is accomplished by solving ISPs to calculate coecients of the dierential systems corresponding to the considered mathematical models. The determination of the variations of the density of the earth from its eigenfrequencies is another example of an ISP arising in the geophysical science eld. All these important applications require at some point of their studies the solution of ISPs. For this reason, ISPs received during the past three decades a great deal of attention by applied mathematicians and engineers, as demonstrated by the prolicness of literature and conferences dedicated to this topic. Inverse spectral problems can be broadly divided into two categories: inverse spectral domain problems (ISDP) and inverse spectral parameter problems (ISPP). In the rst category, i.e., the inverse spectral domain problems (ISDP), the goal is to nd the shape of a region from the partial or total knowledge of the spectrum of an elliptic operator, such as Laplace operator. Although the rst ISDP was formulated in 1882 by Sir A. Shuster, who introduced spectroscopy as a way to nd a shape of a bell by means of the sounds which it is capable of sending out, no signicant progress was accomplished in this area until the mid 1960's. Indeed, the publication of the fundamental paper by Kac in 1966 set the stage for the subsequent mathematical and numerical investigations of this category of problems (see, for example, the short review by Protter [START_REF] Protter | Can one hear the shape of a drum? Revisted[END_REF] and the book of Bérard [START_REF] Bérard | Spectral geometry: direct and inverse problems[END_REF]). Despite the publication of several works on the mathematical and numerical analysis of ISDP's (see [START_REF] Osgood | Compact isospectral sets of surfaces[END_REF][5], among others), there are still many open questions [START_REF] Isakov | Inverse problems for partial dierential equations[END_REF]. In the second category, the inverse spectral parameter problems (ISPP), the aim is to recover material properties from the a priori knowledge of the natural frequencies or mode shape measurements. Hence, this class of problems consists in identifying parameters of dierential operators from their corresponding spectrum. One of the fundamental papers addressing the mathe-matical aspects of ISPPs was authored by Borg, who analyzed the particular case of the Sturm-Liouville operator [START_REF] Borg | Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe[END_REF], which is primarily a one-dimensional model problem. It amounts to determining the density of a vibrating string from its fundamental tone and overtone. Since then, this model problem has been extensively studied. Indeed, various proofs on the uniqueness have been given in [START_REF] Levinson | The inverse Sturm-Liouville problem[END_REF] [START_REF] Hoschstadt | Well-posed inverse spectral problems[END_REF] and constructive methods have been suggested in [12] [18]. Nowadays, an ISPP for the Sturm-Liouville operator is considered to be relatively well understood [START_REF] Marchenko | Sturm-Liouville operators and applications[END_REF] [START_REF] Pöschel | Inverse spectral theory[END_REF] and some of the results pertaining to the construction of the solution, as well as its uniqueness, have been extended to more general one-dimensional operators [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative, Part I[END_REF] [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative[END_REF]. For multidimensional ISPPs, the situation is more complicated despite the important eorts made and documented in literature (see [START_REF] Eskin | On isospectral periodic potentials in R n[END_REF] [START_REF] Simon | A new approach to inverse spectral theory, II. Short range potentials[END_REF], among others). Specifically, for two-dimensional ISPPs, the most signicant results have been established when the spectrum data are given for rectangular-shaped and bounded membranes [START_REF] Mclaughlin | Formulas for nding coecients from nodes/nodal lines[END_REF] [START_REF] Mclaughlin | Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force[END_REF]. ISPP for the linear Schrödinger operator in the case of unbounded domains was rst analyzed in [START_REF] Eskin | The multidimensional inverse spectral problem with a periodic potential[END_REF]. However, this study is restricted to the case where the sought-after potentials are periodic. We must point out that most of the recent studies provide only theoretical results via dierent mathematical approaches (see, e. g., [START_REF] Avdonin | The boundary control approach to inverse spectral theory[END_REF] [START_REF] Cakoni | Inverse scattering theory and transmission eigenvalues[END_REF]). The main goal of this paper is to study from both mathematical and numerical viewpoints the problem of determining refractive index proles from some measured or desired guided waves propagating in optical bers. This ISPP occurs in network communications when developing optical waveguides that achieve a desired lightwave transmission. Extensive eort has been deployed in the last two decades to solve numerically this class of inverse spectral problems, as attested by the numerous publications (see, e.g., [START_REF] Khomchenko | Waveguide Spectroscopy of thin Films[END_REF] [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF]). Prior to that, an interesting attempt was made in the mid 70 s [START_REF] Sladen | Determination of optical ber refractive index proles by a near-eld scanning technique[END_REF]. The proposed approach for computing the refractive index prole uses the measurements collected from the near eld intensity distribution. This method seems to suer from the presence of spurious modes. The more recent work presented in [START_REF] Karchevskii | Reconstruction of dielectric constants of multi-layered optical bers using propagation constants measurements[END_REF] proposes a computational procedure to retrieve the refractive index prole of multi-layered circular optical bers from the knowledge of the propagation constants and their corresponding eigenwaves under the weak guidance propagation assumption. This work extends the ideas and techniques developed in [START_REF] Beilina | Approximate global convergence and adaptivity for coecient inverse problems[END_REF] and [START_REF] Beilina | The layer-stripping algorithm for reconstruction of dielectrics in an optical ber. Inverse problems and applications[END_REF] in the case of a one-layered optical ber. The proposed numerical method employs a functional cost built from the characteristic equation that connects the refractive indices of the waveguide's layers to the propagation constants of its eigenwaves. It is dened as the determinant of the matrix giving the coecients of the waveeld decomposed over a basis of Hankel functions. This approach seems to be limited to circular-shaped waveguides due to the choice of the basis functions. For planar multi-layered waveguides, the waveguide spectroscopy method is used in [START_REF] Khomchenko | Waveguide Spectroscopy of thin Films[END_REF]. This method consists of minimizing the distance between the computed and the measured propagation constants vectors. The computed ones are obtained as the roots of well-known characteristic equations. The application of this method has been extended to waveguides with piecewise constant refractive index proles and arbitrary cross-sectional boundaries [START_REF] Frolov | Integral Equation Methods in Optical Waveguide Theory[END_REF], [START_REF] Karchevskii | Reconstruction of Dielectric Constants of Core and Cladding of Optical Fibers Using Propagation Constants Measurements[END_REF], [START_REF] Karchevskii | Determination of permittivity from propagation constant measurements in optical bers. Inverse problems and applications[END_REF], [START_REF] Karchevskii | Reconstruction of dielectric constants of multi-layered optical bers using propagation constants measurements[END_REF]. The authors propose a strategy that is based on the solution of a nonlinear nonself-adjoint eigenvalue problem corresponding to a system of weakly singular integral equations. The numerical approach introduced in [START_REF] Boucouvalas | Accurate Optical Fiber Refractive Index Reconstruction From Near Field[END_REF] reconstructs the refractive index prole of a cylindrical waveguide from the knowledge of the corresponding near eld in the case of Maxwell system. The main idea of this technique is to reformulate the problem into a set of one-dimensional problems after dividing the optical waveguide into homogeneous cylindrical layers of a prescribed thickness. The accuracy and eectiveness of the method are highly dependent on the thickness parameter values. The work presented in [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF] seems very close to ours. However, the approach adopted in [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF] diers from our solution methodology by several aspects, chief among them: (a) the ISPP is formulated in [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF] as an optimization problem under constraints and is solved via the use of Lagrange multipliers, and (b) the Fréchét derivatives with respect to the refractive index prole are computed using a nite dierence (FD) approximation of order 1. Due to the constraints considered in [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF], the method is limited to continuous proles at the interface core-cladding and its eciency (accuracy and convergence) is sensitive to the FD step size value when approximating the derivatives. In the present work, we investigate the question of the uniqueness of the solution for the considered ISPP and characterize its Fréchet derivative with respect to the refractive index prole. At the numerical level, we propose a solution methodology that falls in the category of regularized iterative methods. The proposed computational procedure possesses the following four main features: (a) a computationally ecient usage of the exact sensitivities of the guided modes to the specied refractive index parameters, (b) the solution of only one eigenvalue problem at each Newton iteration, (c) a Tikhonov-like regularization to restore the stability, and (d) an ecient computational method coupling a local boundary condition to a nite element formulation for solving the direct eigenvalue problem. Note that the mathematical diculties, computational issues, and solution approaches addressed in this paper are relevant to many ISPs arising in other applications. The remainder of this paper is organized as follows. In Section 2, we recall the forward eigenvalue problem that characterizes the propagation of guided modes in a homogeneous optical ber. We assume the propagation to be under the weak guidance conditions [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF] [START_REF] Vassalo | Théorie des guides d'ondes électromagnétiques, Tomes 1 & 2[END_REF]. In Section 3, we state the ISPP of interest and establish mathematical results pertaining to (a) the uniqueness of the solution, and (b) the Fréchet derivative of the eigenmodes with respect to the refractive index prole. Section 4 is devoted to the description of the proposed solution methodology for solving the considered ISPP. We present in Section 5 various illustrative numerical results to highlight the performance eciency of the proposed computational procedure. Concluding remarks are included in Section 6. [START_REF] Bérard | Spectral geometry: direct and inverse problems[END_REF] The Direct Problem

Nomenclature and assumptions

An optical ber can be viewed as a cylindrical dielectric structure that is extended along its propagation axis, denoted here by Ox 3 (see Figure 1(a)). In its transverse directions, Ox 1 and Ox 2 , an optical ber is constituted of two open subsets of R 2 : a core region denoted by Ω and a cladding region Ω e = R 2 \ Ω (see Figure 1(b)). The core Ω is assumed to be Lipschitz continuous. The cladding Ω e is assumed to be innitely extended since guided waves decrease exponentially to zero out of the core region and the radius of the cladding is in practice very large compared to the radius of ber core [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF] [START_REF] Bonnet | High-frequency asymptotic of guided modes in optical bers[END_REF]. The core and the cladding regions are fully determined once the refractive index prole n of the considered ber is known. The proposed study is limited to optical bers with homogeneous cladding. Therefore, the class of refractive index proles n we consider here are positive real-valued functions depending on x = (x 1 , x 2 ) such that n ∈ L ∞ (R 2 ; R + ), and:

∃ n ∞ ∈ R + such that n(x) = n ∞ a.e. x ∈ Ω e . (1) 
Furthermore, to ensure the guided waves propagation in the considered ber, the refractive index prole must attain its maximum inside the core of the ber [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][59], that is:

∃ n + ∈ R + such that ess sup x∈R 2 n = n + > n ∞ , (2) 
where ess sup denotes the essential supremium [START_REF] Bonnet | High-frequency asymptotic of guided modes in optical bers[END_REF]. We consider the following class of refractive index proles:

N = {n ∈ L ∞ (R 2 ; R + ); ∃ n ∞ > 0; n(x) = n ∞ a.e.
in Ω e and ess sup and the set of admissible refractive index proles considered in this study, denoted by N 1 , is dened by:

x∈R 2 n = n + > n ∞ }, (3) 
N 1 = {n ∈ N ; n being piecewise continuous} (4) 
Note that the set N 1 encompasses all refractive index proles encountered in practical applications [START_REF] Snyder | Optical waveguide theory[END_REF][58], [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF].

Problem statement

We consider the propagation of guided modes under the weak guidance conditions. Hence, we assume the refractive-index variations to be small compared to the wavenumber k. In this situation, the propagation of guided waves in homogeneous optical bers can be formulated as the following scalar eigenvalue problem EVP [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][59]:

(EVP)        Find β ∈ ]kn ∞ , kn + [ and u ∈ L 2 (R 2 ); u = 0 such that: ∆u + k 2 n 2 u = β 2 u in R 2 (5) [u] = ∂u ∂ν = 0 on Γ = ∂Ω, (6) 
where:

• β is the propagation constant. It represents the speed of the electromagnetic eld along its propagation axis Ox 3 (see Figure 1(a)).

• u is the associated eigenfunction of β. It represents any transverse component of the electromagnetic eld that propagates in the ber. The couple (β, u) is called a guided mode.

• n is an admissible refractive index, that is, n ∈ N 1 .

• The brackets [ . ] in equation ( 6) represent the jump across the corecladding interface Γ and ν is the unit normal vector on Γ oriented towards the cladding Ω e . The transmission conditions given by ( 6) express the continuity of the tangential components of the electromagnetic eld over the core-cladding interface Γ (see Figure 1(b)).

EVP has been analyzed extensively, both mathematically and numerically.

Results pertaining to the existence of guided modes, their number, as well as their sensitivities to the opto-geometrical parameters k and n of the considered waveguide can be found in [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][59], among other references.

3 The Inverse Spectral Problem

Problem statement

As stated earlier in the introduction section, our aim is to propose a solution methodology that eciently retrieves the refractive index prole from the knowledge of some guided modes (β, u) propagating, at a xed frequency, in a given optical ber. To formulate mathematically this inverse problem, we rst recall that for a prescribed frequency, characterized by the wavenumber k, and a given refractive index n ∈ N 1 , EVP admits anite number S of propagation constants, counted with their multiplicities, denoted by β S = (β 1 , • • • , β S ) T and their corresponding eigenfunctions denoted by u S = (u 1 , • • • , u S ) T [START_REF] Bonnet | High-frequency asymptotic of guided modes in optical bers[END_REF]. Therefore, EVP denes a vector-valued mapping F S = (F 1 , F 2 , • • • , F S ) T , such that:

F S : n -→ F S (n) = β S . (7) 
Note that the l th coordinate F l (n) = β l is the propagation constant corresponding to the l th guided mode, counted with its multiplicity. This means that the β l s are not necessarily distinct. The considered inverse spectral problem can be then formulated as follows:

(ISPP)        Given the rst I guided modes (β 1 , u 1 ), (β 2 , u 2 ), • • • , (β I , u I ) (1 ≤ I ≤ S)
propagating at a xed frequency k, nd the refractive index n ∈ N 1 such that:

F I (n) = β I = (β 1 , β 2 , • • • , β I ) T . (8) 
Remark. Note that the considered ISPP can also be extended to the case where the guided modes are measured for multiple frequencies corresponding to 

N F wavenumbers k 1 , k 2 , • • • , k N F . For each considered wavenum- ber k l (1 ≤ l ≤ N F ), its corresponding rst I l propagation constants β I l = (β 1 l , β 2 l , • • • , β I l ) T

Mathematical results

The rst result establishes the uniqueness of the solution of ISPP.

Proposition 3.1. The refractive index n, solution of ISPP, can be uniquely determined in N 1 from only the knowledge of the fundamental mode (β 1 , u 1 ).

Proof. Consider ISPP with I = 1, that is the fundamental eigenmode pair (β 1 , u 1 ) is given. Let n 1 and n 2 be two solutions of ISPP. Then, equation ( 5) implies:

∆u 1 + k 2 n 2 l u 1 = β 2 1 u 1 in R 2 with n l = n l,∞ > 0 in Ω e ; l = 1, 2. (9) 
It follows from the dierence between the two equations given by (9) that:

(n 2 1 -n 2 2 ) u 1 = 0 a.e. in R 2 (10) 
In particular, we have:

(n 1, ∞ -n 2, ∞ ) u 1 = 0 a.e. in Ω e , (11) 
Hence, either u 1 = 0 a.e. in Ω e or n 1, ∞ = n 2, ∞ .

Case1: Assume that u 1 = 0 a.e. in Ω e .

Since

u 1 ∈ H 2 (R 2 ) [59]
, then we have:

u 1 = ∂u 1 ∂ν = 0 a.e. on ∂Ω e (12) 
and the standard trace theorems can be applied to u 1 on the boundary for both Dirichlet and Neumann traces. It follows that u 1 satises the following homogeneous boundary value problem:

∆u 1 + (k 2 n 2 1 -β 2 1 )u 1 = 0 in Ω u 1 = ∂u 1 ∂ν = 0 on ∂Ω
Hence, using the unique continuation principle (see, e.g., [START_REF] Carleman | Sur un Problème d'Unicité pour les Systèmes d'Équations aux Dérivées Partielles à Deux Variables Indépendantes[END_REF][62]), we deduce that:

u 1 = 0 a.e. in Ω,
and therefore u 1 = 0 a.e. in R 2 , which contradicts u 1 being an eigenfunction, i.e., u 1 2 = 0.

Case2: Assume that n 1, ∞ = n 2, ∞ .
If n 1 = n 2 , then, since the refractive index is a positive valued function, there must be an open subset D ⊆ Ω, such that:

n 2 1 -n 2 2 = 0 a.e. in D. ( 13 
)
It follows from the restriction of equation [START_REF] Hoschstadt | The inverse Sturm-Liouville problem[END_REF] to D that:

D (n 2 1 -n 2 2 ) 2 u 2 1 dx = 0, (14) 
Consequently, we deduce from equations ( 13)-( 14) that:

u 1 = 0 a.e. in D. (15) 
Using the same argument as in Case 1, we deduce that u 1 = 0 a.e. in D c = R 2 \ D and therefore u 1 = 0 a.e. in R 2 , which contradicts u 1 being an eigenfunction (i.e., u 1 2 = 0).

Remark. The above proof suggests that the conclusion of Proposition 3.1 is still valid when the considered fundamental mode (β 1 , u 1 ) is replaced by any other pair of guided modes. The multiplicity of the propagation constant does not matter in the proof of the proposition.

The next result states that the previous uniqueness result is no longer valid if the propagation constant value is given without the knowledge of the order of the corresponding guided mode.

Proposition 3.2. The refractive index n, solution of ISPP, cannot be uniquely determined in N 1 if the propagation constant β is given without its associated eigeneld u.

Proof. In this situation, it is possible to prove the existence of a sequence of refractive indices (n l ) l ∈ N 1 , for which the considered β is the propagation constant of the corresponding l th mode. Indeed, observe that the mapping F 1 : n -→ β 1 (n) is an increasing function in the following sense:

for n, n ∈ N 1 , such that n ≥ n , then F 1 (n) = β 1 (n) ≥ β 1 (n ) = F 1 (n ) [59].
In addition, F 1 is locally lipschitzian, and therefore continuous from N 1 to R + [START_REF] Bonnet | High-frequency asymptotic of guided modes in optical bers[END_REF]. Consequently, F 1 denes a bijection from N 1 to R + . This implies the existence of a unique refractive index n 1 ∈ N 1 , solution of ISPP, such that β is the corresponding fundamental mode propagation constant.

Similarly, since the mapping F l , l ≥ 2, is also a bijection from N 1 into R + [59], then we also prove the existence of a sequence of refractive indices (n l ) l≥2 in N 1 such that the considered β is also associated to their respective l th guided mode.

We conclude this section by providing a characterization of the Fréchet derivative of the propagation constants with respect to the refractive index n. This result is relevant to the implementation of any Newton-type method for solving ISPP. Indeed, it is well known that the accuracy and the eciency of Newton-type methods strongly depend on the accuracy level in the computation of the jacobian matrix that occurs at each iteration. Theorem 3.3. For a given wavenumber k, the Fréchet derivative of the mapping F l (1 ≤ l ≤ S), given by equation [START_REF] Borg | Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe[END_REF], with respect to the refractive index prole n in the direction h ∈ L ∞ (R 2 ; R + ), when it exists, satises:

∂F l ∂n (n) h = k 2 R 2 nhu 2 l dx β l R 2 u 2 l dx . ( 16 
)
Proof. Since the guided mode pair (β l , u l ) satises ( 5), then we apply the chain rule and obtain:

∆ ∂u l ∂n h + k 2 n 2 -β 2 l ∂u l ∂n h + 2 k 2 nh -β l ∂β l ∂n h u l = 0 (17) 
Next, we multiply equation ( 17) by u l and integrate over R 2 . We then obtain:

R 2 ∆ ∂u l ∂n h + k 2 n 2 -β 2 l ∂u l ∂n h u l dx + 2 R 2 k 2 nh -β l ∂β l ∂n h u 2 l = 0 (18 
) Furthermore, we integrate equation ( 18) by parts and obtain:

R 2 ∆u l + k 2 n 2 -β 2 l u l ∂u l ∂n hdx + 2 R 2 k 2 nh -β l ∂β l ∂n h u 2 l = 0 (19)
Note that, similarly to the derivation of the variational formulations in [START_REF] Bamberger | Calcul des modes guidés d'une bre optique. Première partie: diérentes formulations mathématiques du problème[END_REF] [64], equation ( 19) is obtained from [START_REF] Friedland | Inverse eigenvalue problems[END_REF] in two steps. We rst perform the integration in the distribution sense. We then use the standard density argument of

D(R 2 ) into H 2 (R 2 ).
Finally, it follows from equations ( 5) and ( 19) that

R 2 k 2 nh -β l ∂β l ∂n h u 2 l = 0, (20) 
which concludes the proof of Theorem 3.3.

Solution Methodology

We propose a Tikhonov-regularized Newton procedure for solving ISPP [START_REF] Engl | Regularization of inverse problems[END_REF] [66], since regularized iterative methods appear to be the primary candidates for solving nonlinear and ill-posed problems (see, e.g., [START_REF] Djellouli | Inverse acoustic problems[END_REF], and the references therein). The Newton algorithm addresses the nonlinear aspect of ISPP, whereas the Tikhonov regularization procedure is incorporated to address its ill-posed nature [START_REF] Tikhonov | Regularization of incorrectly posed problems[END_REF][69].

Parametrization

We assume that the sought-after refractive index prole n is in N 1 and can be approximated by a set of trial solutions given by the following parametrization:

n(x) ≈ N P m=1 α m g m (|x|) ; ∀x ∈ R 2 , (21) 
where:

• the parameter N P is a positive integer representing the number of parameters. N P is typically between 2 and 4, for most refractive index proles of practical interest [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF], [56][58]. Note that the numerical results reported in [START_REF] Rezgui | An inverse eigenvalue problem. application: Graded-index optical bers[END_REF] were obtained with N P = 2 and 3 only.

• the parameters α 1 , α 2 , • • • , α N P are real numbers. They represent the unknown coecients to be determined.

• (g m ) 1≤m≤N P is a selected set of real-valued polynomial functions such that:

i. For 1 ≤ m ≤ N P -1, g m is a piecewise polynomial function of degree (m -1), whose support is contained in the core Ω of the ber.

ii. g N P is the characteristic function of the ber cladding, i.e., g N P (x) = 0 if x ∈ Ω and g N P (x) = 1 elsewhere.

Basis functions for parametrizing respectively a refractive step-index prole and a refractive graded-index prole of a circular-shaped optical ber are depicted in Figures 2 and3, for illustrative purposes. Observe that it is possible to employ other basis functions such as trigonometric or B-spline functions that are often encountered when solving inverse problems (see, e.g., [START_REF] Djellouli | Inverse acoustic problems[END_REF]). This type of bases is more appropriate for refractive index proles that are not function of the radial direction r, but depend on x = (x 1 , x 2 ), particularly for optical bers with arbitrary cross-sectional boundaries. We have adopted here these polynomial-type functions for mainly two reasons:

(a) The class of refractive index proles that we consider (see ( 3)-( 4)) is always piecewise continuous in Ω and constant in Ω c . Hence, these functions appear to form an appropriate basis for approximating this class of proles.

(b) Since the proposed solution methodology employs a nite element method for solving the direct eigenvalue problem (see Section 4.3), the use of polynomial functions in the parametrization can be easily "blended" in the nite element approximation without signicantly increasing the computational complexity of the method.

g (r) r a O 1 1 (a) r a O g (r) 2 1 (b)
Figure 2: Basis functions for parametrizing refractive step-index proles in the case of a circular-shaped optical ber. N P = 2.

Newton iteration equation

Assume n (j) = N P m=1 α (j) m g m to be the computed refractive index prole at iteration j that approximates the solution n of ISPP. Then, equation ( 8) is

g (r) r a O 1 1 (a) g (r) r a O 1 2 (b) r a O 1 g (r) 3 (c) r a O 1 g (r) 4 (d)
Figure 3: Basis functions for parametrizing refractive graded-index proles in the case of a circular-shaped optical ber. N P = 4.

replaced by the Newton iteration equation:

J (j) F δn (j) = β I -F I (n (j) ) (22) 
where δn (j) is the update vector given by:

δn (j) = N P m=1 δα (j) m g m (23) 
and the updated index prole n (j+1) is given by:

n (j+1) = n (j) + δn (j) , (24) 
where

J (j)
F is the jacobian matrix of the operator

F I = (F 1 , • • • , F I ) T , eval- uated at n (j) , i.e. J (j) F = ∂β (j) l ∂n n (j) g m 1 ≤ l ≤ I 1 ≤ m ≤ N P . ( 25 
)
β (j) l = F l (n (j) ) (1 ≤ l ≤ I)
designates the propagation constant of the l th guided mode, solution of EVP, for the refractive index prole n (j) , and (g m ) 1≤m≤N P is the considered basis of functions. The entries of the jacobian matrix J (j) F are given, as stated in Theorem 3.3, by equation ( 16) in which h is replaced by the basis functions g m , introduced in Paragraph 4.1 (see Figures 23). Note that, at the algebraic level, if the number of parameters N P is equal to the number of the measurements I, then equation ( 22) is a square linear system. However, if N P is larger than I, the linear system ( 22) is rectangular. In this case, we solve this system in the least-squares sense, that is, equation ( 22) is replaced by:

J T F (j) J (j) F δn (j) = J T F (j) β I -F I (n (j) ) , (26) 
where T stands for the transpose of a matrix. Last, since ISPP is an ill-posed problem, we employ the standard Tikhonov regularized procedure to restore the stability [68][69]. Therefore, we replace equation [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative[END_REF] or equation ( 26) by the following compact regularized Newton-type equation:

E (j) J (j) F + µI N P δn (j) = E (j) β I -F I (n (j) ) , (27) 
where E (j) is a N P × I matrix given by:

E (j) =    I N P if N P = I J T F (j) if N P > I, (28) 
and µ is a positive number called the regularized parameter. There are various strategies for selecting the "optimal" value of µ (see, e. g. [70][73]). Due to the small size of the resulting linear system, we propose a trial and error strategy for nding the optimal value of µ. This consists in sweeping µ over a large interval of positive real numbers and evaluating the residual for each value of µ, and we then select the value of µ that leads to the minimum residual (up to the noise level).

Ecient solver for the direct eigenvalue problem EVP

The proposed regularized Newton algorithm calls for the solution of the forward eigenvalue problem EVP. To this end, we employ the direct solver developed in references [74][75]. This solver requires to rst reformulating EVP in a bounded domain (see Figure 4(a)) as follows:

(EVP)

               Find β ∈ ]kn ∞ , kn + [ and u ∈ L 2 (Ω Σ ); u = 0 such that: ∆u + k 2 n 2 u = β 2 u in Ω Σ (29) 
[u] = ∂u ∂ν = 0 on Γ = ∂Ω (30)

∂u ∂ν + β 2 -k 2 n 2 ∞ + K 2 u = 0 on Σ = ∂Ω Σ , (31) 
where K denotes the curvature of the employed articial boundary Σ. In the particular case of Σ being a circular-shaped boundary of radius R, K = 1/R. Then, we apply a linear nite element approximation [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF][77] to calculate the solutions of the truncated eigenvalue problem EVP. This leads to the solution of the following quadratic eigenvalue problem:

A x + λ B x + √ λ C x = 0 (32) 
where:

• λ = β 2 -k 2 n 2 ∞ is the eigenvalue.
• x is the corresponding eigenvector. x ∈ R N with N being the number of degrees of freedom of the FEM approximation.

• A, B, and C are symmetric matrices. A is the sum of a stiness matrix, a mass-like matrice, and a mass-like matrix on Σ that results from the term containing the curvature K in equation [START_REF] Hald | Inverse nodal problems; nding the potential from nodal lines[END_REF]. B is a mass matrix and therefore B is positive denite. C is a mass-type matrix dened on Σ. C is a quasi-tridiagonal matrix.

To solve numerically the quadratic eigenvalue problem given by ( 32), we transform it into a generalized eigenvalue problem of the form [START_REF] Djellouli | A Local Boundary Condition Coupled to a Finite Element Method to Compute Guided Modes of Optical Fibres under the Weak Guidance Assumptions[END_REF][75]:

A z = √ λ B z (33) 
where

A = -C -B A 0 and B = B 0 0 B
We compute the pairs of eigensolutions √ λ, z by employing the Implicitly Restarted Arnoldi Method IRAM [START_REF] Lehoucq | ARPACK Users guide: Solutions for large scale eigenvalue problems by implicitly restarted Arnoldi methods[END_REF], which is an iterative algorithm of QRtype [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF] [START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF].

x O 2 1 Γ x Ω 2π/k a Ω Σ Σ (a) (b)
Figure 4: (a) The computational domain for a circular-shaped optical ber and (b) an illustrative nite element mesh using triangular-shaped elements.

Algorithm summary

The proposed algorithm can be summarized as follows:

Step 0. Initialization. The proposed algorithm requires the following initial data:

• A prescribed shape of the core-cladding interface Γ = ∂Ω of the considered optical ber.

• A set of N F wavenumbers k 1 , • • • , k N F dening the frequency regime of the guided wave propagation.

• A set of the desired/measured guided modes that propagate in the considered ber for the respective prescribed wavenumbers k l , 1 ≤ l ≤ N F . For each k l , its corresponding desired/measured guided modes are characterized by a set of pairs consisting of the propagation constants and their corresponding guided elds, i.e., for each wavenumber k l , we have the set of desired/measured pairs:

β 1 l , u 1 l , β 2 l , u 2 l , • • • , β I l , u I l , 1 ≤ l ≤ N F .
Note that these modes are listed with their multiplicities, i.e.

β 1 l < β 2 l ≤ β 3 l ≤ • • • ≤ β I l , 1 ≤ l ≤ N F .
The tilde indicates that the data (when measured) are possibly tainted with errors.

• An initial parameter vector (n

(0) 1 , • • • , n (0) 
N P ) representing the initial refractive index prole:

n (0) = N P m=1 n (0) m g m
The admissible values of these parameters are arbitrarily selected, i.e., they are "blind" guessed values.

Step 1. Apply Newton Iteration. This requires the accomplishment of the following three tasks, at the algorithm j th iteration (j = 0, 1, 2, • • • ):

i. Solve EVP with the refractive index n (j) and for each wavenumber

k l , 1 ≤ l ≤ N F , to obtain a set of eigenpairs β (j) 1 l , u (j) 1 l , • • • , β (j) I l , u (j) I l 1≤l≤N F .
ii. Evaluate the jacobian entries given by equation ( 25) using equation ( 16), the refractive index n (j) , and the computed eigenpairs:

β (j) 1 l , u (j) 1 l , • • • , β (j) 
I l , u (j) I l 1≤l≤N F .
iii. Solve the regularized Newton iteration equation given by [START_REF] Simon | A new approach to inverse spectral theory, I. Fundamental formalism[END_REF] to evaluate δn (j) :

E (j) J (j) F + µI N P δn (j) = E (j) β I -F I (n (j) ) , (34) 
where E (j) is given by (28).

Step 2. Stopping criteria. We monitor the convergence of the algorithm at iteration j (j = 0, 1, 2, • • • ) by evaluating both the relative residual on the propagation constants:

Error1 (j) = N F l=1 β 1 l -β (j) 1 l 2 + • • • + β I l -β (j) I l 2 1/2 N F l=1 β 1 l 2 + • • • + β I l 2 1/2 (35) 
and the magnitude of the refractive index prole update:

max 1≤m≤Np δn (j) m ( 36 
)
We stop the algorithm at iteration j when one of these two values attains a prescribed tolerance level ε. Note that we also evaluate, at each iteration j (j = 0, 1, 2, • • • ), the relative residual on the elds, i.e:

Error2 (j) = N F l=1 u 1 l -u (j) 1 l 2 2 + • • • + u I l -u (j) I l 2 2 1/2 N F l=1 u 1 l 2 2 + • • • + u I l 2 2 1/2 (37) 
This quantity is however used as a "discrimination" tool, i.e., to identify the order of the computed modes as well as their corresponding polarization [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF] [58].

Computational complexity

The proposed solution methodology summarized in Paragraph 4.4 requires, at each Newton iteration, the following:

• The computation, for each considered wavenumber k l ( 1 ≤ l ≤ N F ), of the rst I l eigenpairs (β 1 l , u 1 l ) , • • • , (β I l , u I l )
. This is performed by applying IRAM algorithm (which is a QR-type method) [START_REF] Lehoucq | ARPACK Users guide: Solutions for large scale eigenvalue problems by implicitly restarted Arnoldi methods[END_REF] to a generalized eigenvalue system whose size is 2N × 2N, where N is the number of degrees of freedom of the FEM approximation. Note that the application of IRAM calls for solving non-symmetric linear systems, which is accomplished using GMRES procedure [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF].

• The computation of the jacobian entries, for each considered wavenumber k l ( 1 ≤ l ≤ N F ), by evaluating N P × I l integrals. This can be performed using a Gauss-type quadrature [81][82]. However, since we have employed an "overkill" mesh for solving the direct eigenvalue problem EVP, the size of the triangles is very small compared to the variations of the integrands. Hence, it appears reasonable to assume the integrand over each FEM triangle to be constant and equal to the average of its values on the nodes of the considered triangle. The obtained results indicate that this simple procedure is very accurate and cost-eective.

• The determination of the prole update δn by solving a small N P × N P linear system that can be executed analytically by simply applying a direct method [START_REF] Golub | Matrix Computations[END_REF]. However, in this work, we inverted this system analytically when the order of parameter N P is either 2 or 3 (see Sections 5.1 and 5.2). Consequently, we have observed that µ = 0 is the optimal value of the regularization parameter, i.e., there is no need to regularize since the inversion is analytically performed and therefore is "exact" when the number of the sought-after parameters is less or equal to 3. On the other hand, when N P = 5 or 6 (see Section 5.3), the algorithm does not converge without regularization.

Illustrative Numerical Results

We present numerical results to illustrate the potential of the proposed Newton algorithm for eciently determining the refractive index prole from the knowledge of some guided modes. These results were obtained in the case of an optical ber whose core-cladding interface Γ is a circular-shaped boundary (see Figure 4(a)). In all of the numerical experiments, we set the radius a of Γ to be a = 0.4µm and we use only one frequency whose wavenumber is k = 5 × 10 6 m -1 . Note that we have xed the values of these two optogeometric parameters so that we can use the same nite element resolution in all experiments, i.e., there is no need to generate a new mesh. On the other hand, the refractive index prole parameters n + and n ∞ will have their values changed to ensure that the value of the normalized frequency

V = ka n 2 + -n 2
∞ is suciently large to allow the needed number of guided modes to propagate in the ber [START_REF] Gloge | Weakly Guiding Fibers[END_REF] [START_REF] Sharma | Calculation of cuto frequencies in optical bers for arbitrary proles using the matrix method[END_REF]. Furthermore, we use the following discretization parameters:

• The exterior articial boundary Σ is circular-shaped of radius R and is located at one wavelength from the core-cladding interface Γ (see Figure 4(a)). This distance is considered to be far enough to prevent any reections, as demonstrated in references [74][75].

• We use a linear nite element approximation with 50 elements per wavelength. This discretization appears to be ne enough to ensure the computation of the guided modes with a high accuracy level [74] [75].

In what follows, we present results for determining three major classes of refractive index proles that are of practical interest: step-index, gradedindex, and W-refractive index proles [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][58], [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF], [START_REF] Gloge | Weakly Guiding Fibers[END_REF].

Retrieving refractive step-index proles

The goal of this section is to determine the parameters corresponding to a refractive step-index prole. To this end, we consider the class of refractive index proles of the form:

n(x) = n + ; x ∈ Ω n ∞ ; x ∈ Ω e . ( 38 
)
We present the results of two numerical experiments. In the rst one, the goal is to determine the refractive index of the core of the ber only, whereas in the second one, we recover both indices. We must point out that the measured guided modes are synthetic data obtained by solving the following dispersion equation (see equation (A9), page 1574, in reference [START_REF] Djellouli | A Local Boundary Condition Coupled to a Finite Element Method to Compute Guided Modes of Optical Fibres under the Weak Guidance Assumptions[END_REF]):

λ 1 J ν+1 (λ 1 ) J ν (λ 1 ) = λ 2 K ν+1 (λ 2 ) K ν (λ 2 ) ; ν = 0, 1, 2, • • • (39) 
where

λ 1 = a k 2 n 2 + -β 2 and λ 2 = a β 2 -k 2 n 2 ∞ . J ν (resp. K ν )
is the Bessel function (resp. the modied Bessel function) of the rst kind [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF].

Experiment 1: Partial parameters recovery

The goal of this experiment is to retrieve one refractive index parameter from the knowledge of one pair of guided modes. We choose the unknown refractive index prole parameter to be n + , the refractive index of the core of the ber, and we assume that:

n + -n ∞ = 0.01. (40) 
This means that we consider here a one-parameter inverse problem. The target refractive index prole value is n + = 50.005 whereas the initial value is n (0) + = 200.005. The measured guided mode corresponding to the target prole n + is the fundamental mode LP 01 [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][58] whose propagation constant, computed from equation [START_REF] Colton | Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[END_REF], is:

β 1 = 249.996 (41) 
The initial propagation constant value corresponding to the initial refractive index prole n (0) is:

β (0) 1 = 1000.014. ( 42 
)
We also assess the sensitivity of the performance eciency of the proposed algorithm to the noise level in the data. To this end, the propagation constant β 1 was respectively tainted with three dierent levels of white noise: 5%, 10% and 20%. Note that the noisy values are denoted by β 1 . The results are reported in Table 1 and Figures 56. The following observations are noteworthy:

• The initial value of the refractive index parameter is selected outside the pre-asymptotic convergence region. Indeed, the relative error on the refractive index prole is about 300%. In addition, equations ( 41)- [START_REF] Horváth | Inverse eigenvalue problems[END_REF] show that the use of this initial guess leads to the computation of a propagation constant with relative residuals ranging from 200% to 300%, depending on the noise level. Furthermore, as indicated in Figures 6(a) and 6(b), the isovalues of the exact eld vary between 0.0002 and 0.037, whereas the ones corresponding to the initial guess range between 1.06 × 10 -7 and 0.05. Clearly, Experiment 1 is performed with a "blind" initial guess value n + .

• Figure 5 illustrates the fast convergence and the robustness to the noise eect of the proposed solution methodology. More specically, one can observe that the relative residual drops from the initial value of over 200% to about the noise level in -at most-3 iterations, for all considered noise levels. In addition, Figure 5 reveals that the convergence is monotone with almost no oscillations. This unusual behavior when solving inverse-type problems is most likely due to the fact that the algorithm is applied to a one-parameter inverse problem and therefore the instability eects, if any, seem to be barely noticeable.

• At convergence, the refractive index parameter n + is delivered with an accuracy up to the noise level (see Table 1). On the other hand, Table 1 indicates that the proposed algorithm delivers the guided eld u 1 with an excellent accuracy level even when the noise level is 20% (see Figure 6). 

Initial

Experiment 2: Full parameters recovery

The goal here is to retrieve the two refractive index parameters when two measured/desired eigenmodes are given. The unknown refractive index parameters are n + and n ∞ (see equation [START_REF] Eckhardt | Inverse spectral theory for Sturm-Liouville operators with distributional potentials[END_REF] and Figure 2). The values of the target and initial refractive index proles, n and n (0) , are reported in Table 2. The measured guided modes corresponding to the target prole n are the fundamental mode LP 01 and the second mode LP 11 [56][58]. The propagation constants corresponding to these two modes are obtained from equation [START_REF] Colton | Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[END_REF], and their values are:

β 2 = (β 1 , β 2 ) T = (1000.014, 999.997) T . ( 43 
)
For the initial refractive index prole n (0) (see Table 2), its propagation constants corresponding respectively to modes LP 01 and LP 11 [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF], are:

β (0) 2 = β 1 (0) , β 2 (0) T = (2000.018, 2000.007) T . (44) 
Similarly to Experiment 1, we assess the sensitivity of the proposed algorithm to the noise level in the data by respectively adding to β 2 three levels of white noise: 5%, 10% and 20%, and thereafter denoted by β 2 .

The obtained results are reported in • Similarly to Experiment 1, the initial values of the refractive index parameters are selected outside the pre-asymptotic convergence region, since the relative error on the refractive index prole is 100% (see Ta-ble 2). Moreover, this initial guess leads to the computation of propagation constants with relative residuals ranging from 67% to 100%, depending on the level of noise (see equations ( 43)-( 44)). This is also illustrated by the important dierence in the values of the corresponding eigenmodes. Indeed, for example, the isovalues for the exact LP 11 eld vary between -0.049 and 0.049, whereas the ones corresponding to the initial guess range between -0.058 and 0.058, as indicated in Figures 8(a Hence, this experiment is clearly performed with a "blind" initial guess value.

• Figure 7 illustrates the fast convergence and the robustness to the noise eect of the proposed solution methodology. More specically, one can observe that the relative residual drops from the initial value of over 67%, to below the noise level after one iteration only, for all considered noise levels. Furthermore, Figure 7 clearly shows that the convergence is almost monotone with almost no oscillations. This behavior is most likely due to the fact that the algorithm is applied to a two-parameter problem, and therefore, the instability eects seem to be negligible.

• At convergence, the refractive index parameters (n + , n ∞ ) are delivered with an accuracy up to the noise level (see Table 3). The corresponding guided elds (u 1 , u 2 ) are also computed with a satisfactory accuracy level (see Table 3 and Figures 89).

Retrieving a refractive graded-index prole

The goal of this section is to determine the parameters corresponding to a refractive graded-index prole. To this end, we consider the class of refractive index proles of the form:

n(x) = n + + α.|x| 2 ; x ∈ Ω n ∞ ; x ∈ Ω e , (45) 
and satisfying:

0 < n + -n ∞ ≤ 0.01. ( 46 
)
Hence, the propagation of the modes is under the weak guidance conditions [56][59]. In what follows, we present the results of two numerical experiments. In the rst experiment, the goal is to determine the value of the refractive index at the center of the ber core n + , as well as in the cladding n ∞ . In the second experiment, we recover the indices of both the core (n + , α) and the cladding n ∞ .

Experiment 3: Partial parameters recovery

The goal here is to retrieve two refractive index parameters, given two measured/desired eigenmodes. The unknown refractive index parameters are n + and n ∞ (see equation ( 45) and Figure 2). Moreover, the value of the parameter α ∈ R in equation ( 45) is chosen to ensure the continuity of the refractive graded-index prole across the interface core-cladding. Therefore, α is a parameter that depends on n + and n ∞ . Consequently, we consider here a two-parameter inverse problem. The values of the target and initial refractive index proles, n = (n + , n ∞ ) and n (0) = (n

(0) + , n (0) 
∞ ), are reported in Table 4 as well as the resulting values of α for both proles. The measured guided modes corresponding to this prole are the fundamental mode LP 01 and the second mode LP 11 [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF] [START_REF] Vassalo | Théorie des guides d'ondes électromagnétiques, Tomes 1 & 2[END_REF]. The values of propagation constants obtained with the nite element solver [START_REF] Djellouli | A Local Boundary Condition Coupled to a Finite Element Method to Compute Guided Modes of Optical Fibres under the Weak Guidance Assumptions[END_REF][75] are given by:

β 2 = (β 1 , β 2 ) T = (2250.008, 2249.992) T . (47) 
For the initial refractive index prole n (0) (see Table 4), its propagation constants corresponding respectively to modes LP 01 and LP 11 , obtained from the dispersion equation ( 39), are: 

β (0) 2 = β 1 (0) , β 2 (0) 
We assess the sensitivity of the proposed algorithm to the noise level in β 2 , by respectively adding to it three levels of white noise: 5%, 10% and 20%, and thereafter denote the noisy β 2 by β 2 .

The results are reported in 35) to the noise level on the propagation constants β 2 for Experiment 3.

• The initial values of the refractive index parameters are chosen outside the pre-asymptotic convergence region. Indeed, the initial relative error on the refractive index prole is 80% (see Table 4). Moreover, equations ( 47)- [START_REF] Frolov | Integral Equation Methods in Optical Waveguide Theory[END_REF] indicate that this initial guess on the propagation constants results in initial relative residuals ranging from 53% to 78%, depending on the level of noise. Furthermore, the isovalues of the exact LP 01 eld vary between 0.0 and 0.0778, whereas the ones corresponding to the initial guess range between 0.0 and 0.1129. Similarly, isovalues of the exact LP 11 eld vary between -0.0651 and 0.0651, whereas the ones corresponding to the initial guess range between -0.0954 and 0.0954. Hence, this numerical experiment is performed with a "blind" initial guess value.

• Figure 10 illustrates the fast convergence and the robustness to the noise eect of the proposed solution methodology. More specically, one can observe that the relative residual drops from the initial value of over 52%, to below the noise level in one iteration only, for all considered noise levels. Furthermore, Figure 10 clearly shows that the convergence is almost monotone with virtually no oscillations.

• At convergence, the refractive index parameters (n + , n ∞ ) are delivered with an accuracy up to the noise level (see Table 5). Similarly, the guided elds (u 1 , u 2 ) are delivered with an accuracy almost equal to the noise level. Clearly, the proposed method is eective in recovering the index prole and the corresponding guided modes with a satisfactory accuracy level.

Experiment 4: Full parameters recovery

The goal here is to retrieve the three refractive index parameters of the graded-index prole given by equation ( 45) from the knowledge of three measured/desired eigenmodes. Hence, unlike in Experiment 3, the parameter α ∈ R is assumed here to be unknown and independent of n + and n ∞ . Consequently, we apply the proposed regularized Newton algorithm to a three parameter inverse problem. The values of the target and initial refractive index proles n = (n + , n ∞ , α ) and n (0) = (n

(0) + , n (0) 
∞ , α (0) ) are reported in Table 6. The measured guided modes corresponding to the target index prole are the rst three modes LP 01 , LP 11 , and LP 02 [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF] [START_REF] Vassalo | Théorie des guides d'ondes électromagnétiques, Tomes 1 & 2[END_REF]. The values of the corresponding propagation constants were obtained with the nite element solver [START_REF] Djellouli | A Local Boundary Condition Coupled to a Finite Element Method to Compute Guided Modes of Optical Fibres under the Weak Guidance Assumptions[END_REF] [START_REF] Barucq | Construction of local boundary conditions for an eigenvalue problem. Application to optical waveguide problems[END_REF], and are given by:

β 3 = (β 1 , β 2 , β 3 ) T = (3000.01050, 2999.99609, 2999.98242) T . (49) 
For the initial refractive index prole n (0) (see Table 6), the values of the corresponding propagation constants, obtained with the nite element solver [START_REF] Djellouli | A Local Boundary Condition Coupled to a Finite Element Method to Compute Guided Modes of Optical Fibres under the Weak Guidance Assumptions[END_REF] [75], are: We assess the sensitivity of the proposed algorithm to the noise level in β 3 , by adding to it three levels of white noise: 5%, 10% and 20%, and thereafter denote the noisy β 3 by β 3 .

β (0) 3 = β 1 (0) , β 2 (0) , β 3 (0) 
The obtained results are reported in • Similarly to the previous experiments, the initial values of the refractive index parameters are selected outside the pre-asymptotic convergence region. Indeed, the initial relative error on the refractive index prole parameters (see Table 6) is about 66.7%. This initial guess leads to the computation of propagation constants with relative residuals ranging from 39% to 67%, depending on the noise level (see equations ( 49)-( 50)). Moreover, the isovalues of the exact modes are signicantly different from the initial ones. For example, the isovalues of the exact LP 02 eld vary between -0.035 and 0.077, whereas the ones corresponding to the initial guess range between -0.066 and 0.116, as indicated in Figures 12(a)12(b). Hence, this experiment is clearly performed with a "blind" initial guess value.

• Figure 11 illustrates the fast convergence and the robustness to the noise eect of the proposed solution methodology. More specically, one can observe that the algorithm converges after only one iteration, for all considered noise levels (see the second column in Table 7). Fur-thermore, Figure 11 clearly shows that the convergence is almost monotone with almost no oscillations.

• At convergence, the relative error on refractive index parameters n = (n + , n ∞ , α ) is comparable to the noise level. Table 7 indicates the corresponding propagation constants β 3 as well as the associated eigenfunctions u 1 and u 2 are obtained with relative errors comparable to the noise levels. This remark is also valid for the associated eigenfunction u 3 , except when the noise level in the data is 20%. This might be due to the fact that the eigenmode LP 02 is very close to the cut-o frequency [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][58], and therefore very sensitive to a relatively large perturbation on the value of the propagation constant β 3 .

Retrieving W-shaped refractive index proles

Next, we consider a third class of refractive index proles, namely the Wrefractive index proles, that is important to many applications [START_REF] Marcuse | Theory of dielectric optical waveguides[END_REF][58], [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF]. This class of proles is very eective for reducing the modal dispersion eect and for enhancing the bandwidth performance of the optical bers [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF]. This class of proles is given by the following power law [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF]:

n(x) =      n + 1 -2ρ∆ |x| a g ; 0 ≤ |x| ≤ a n ∞ ; |x| ≥ a (51) 
where

• ∆ is a positive number representing the refractive index dierence. ∆ is given by:

∆ = n 2 + -n 2 ∞ 2n 2 + ( 52 
)
• g is a positive number, called the index component. It determines the refractive index proles.

• ρ is a positive number representing the depth of the index valley, as shown in Figure 13(a), Figure 17(a), and Figure 20(a). Observe that when ρ = 1, the prole index given by (51) falls in the category of the graded refractive index proles similar to the one considered in Section 5.2.

The goal here is to use the index prole parametrization given by ( 21) and apply the proposed algorithm to retrieve proles given by [START_REF] Beilina | The layer-stripping algorithm for reconstruction of dielectrics in an optical ber. Inverse problems and applications[END_REF] in the case where ρ = 1.7 and g = 2. The practical performance of this set of proles has been analyzed in [START_REF] Ishigure | Modal Bandwidth Enhancement in a Plastic Optical Fiber by W-Refractive Index Prole[END_REF]. We investigate the sensitivity of the reconstruction to the number of parameters N P in [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative, Part I[END_REF]. We present results obtained for N P = 4 and N P = 5. We also present reconstruction results with N P = 3 to demonstrate that when some a priori knowledge about the target prole is available, one can use fewer parameters.

Experiment 5: Retrieving a W-refractive index prole with four parameters

The goal here is to determine the prole depicted in Figure 13(a) from the knowledge of its rst four guided modes LP 01 , LP 

We use the parametrization given by [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative, Part I[END_REF] with N P = 4 and the basis functions {g l } 1≤l≤4 , depicted in Figure 3. Hence, we consider a four-parameter inverse problem whose unknowns are α 1 , α 2 , α 3 and α 4 . Similarly to the previous experiments, we taint the propagation constants vector β 4 with 3 noise levels: 5%, 10% and 20%. The initial index prole n (0) is a step-index prole depicted in Figure 13 

For each noise level in the measured propagation constants vector β 4 , we apply the proposed inversion algorithm from the initial step index prole n (0) to determine the W-refractive index depicted in Figure 13(a). The results are reported in Figures 1416. The following observations are noteworthy:

• The algorithm is initiated outside the pre-asymptotic convergence region. Indeed, the initial refractive index prole is a step-index prole that signicantly diers from the target prole which is a W-shape prole (see Figure 13). The relative error between the two proles is over 66%. Moreover, the initial relative residual on the propagation constants vector is about 67%. The corresponding initial eigenelds are also very dierent from the ones corresponding to the W-shape prole, as illustrated in Figures 16(a • Similarly to the previous experiments, the convergence of the proposed algorithm is relatively very fast, as demonstrated in Figure 14. We must point out that in this case the regularization was critical to ensure the convergence of the algorithm.

• Figure 15 shows that, at convergence, the sought-after refractive index prole is delivered with an accuracy ranging from 10 -5 % (in the absence of noise) to about 20% when the noise level is 20%. The recovery of the W-shape prole appears to be quite satisfactory, as illustrated in Figure 16 in which the mode LP x 2 21 is depicted. The relative error varies from 4% to 18%, depending on the noise level. 

Experiment 6: Retrieving a W-refractive index prole with ve parameters

The main objective in this experiment is to investigate the eect of increasing the number of parameters in the approximation given by ( 21) on the per- 35) to the noise level on the propagation constants β 5 for Experiment 6.

Experiment 7: Retrieving a W-refractive index prole with three parameters

The goal of this experiment is to demonstrate that when some a priori knowledge on the sought-after prole is available, it is possible to successfully recover the prole using fewer parameters in [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative, Part I[END_REF]. For this numerical experiment, The target prole (W-refractive) is depicted in Figure 20(a). We employ the parametrization given by ( 21) with N P = 3. Note that the g 1 is the constant depicted in Figure 3(a), g 2 is the quadratic polynomial function depicted in Figure 3(c), and g 3 is the constant function depicted in Figure 3(d). Hence, we assume a priori that this set of trial solutions can describe the sought-after W-prole. The synthetic measurements are the rst guided modes LP 01 , LP 11 , and LP 02 whose propagation constants are: 

β 3 = (5062.
Similarly to all previous experiments, the synthetic propagation constants are tainted with white noise of the same three levels. For each noise level, we apply the proposed inversion algorithm from the initial prole n (0) to determine the W-refractive index prole in Figure 20(a). The results are reported in Figures 2122. The results of this experiment suggest the following:

• Even though the algorithm is starting from an "educated" guess n (0) , the initial relative error on the refractive index prole is about 100% and the initial relative residual is also about 100%. This means that the inversion algorithm is still initiated outside the pre-asymptotic convergence region. • Figure 21 indicates that the inversion algorithm converges in less than three iterations, regardless of the noise level. At convergence, the algorithm delivers refractive index proles with a high accuracy level as depicted in Figure 22. Indeed, the relative error ranges from 10 -5 % (for 0% noise level) to 20% (for 20% noise level).

Remark. It is worth mentioning that the proposed solution methodology fails to retrieve the target refractive index prole in the following two situations:

• when the number of measured/desired guided modes is smaller than the number of the target refractive index prole parameters. These cases require solving at each Newton iteration under-determined parameters problems. We have observed that the proposed computational procedure does not converge even for simple situations such as refractive step-index proles with initial guess values very close to the target values.

• when the target refractive index prole cannot be described by the shape parametrization adopted for representing the trial solutions, i.e., the selected parametrization is incomplete. This has been observed when the target prole is a W-refractive index prole and the selected parametrization employs basis functions g 1 and g 2 depicted in Figure 2.

Summary and Conclusion

We have investigated mathematically and numerically the important problem of determining refractive index proles that accommodate a measured/desired guided mode propagation in homogeneous optical bers under the weak guidance conditions. This nonlinear and ill-posed inverse problem falls in the category of inverse spectral problems that consists of nding the potential of a scalar elliptic operator from the partial knowledge of its discrete spectrum. From a mathematical view point, we have established the uniqueness of the refractive index prole from the knowledge of only one guided mode, i.e., the knowledge of one eigenvalue and its corresponding eigenfunction is enough to uniquely determine the refractive index prole. We have also provided a characterization of the derivative of the guided modes with respect to the refractive index prole. This result is crucial for an accurate computation of the Jacobians occuring at the Newton iteration equations. From a numerical point of view, we have proposed a regularized iterative method to compute the refractive index prole parameters when some guided modes are given. Numerical experiments were performed to retrieve three classes of refractive index proles: the step-index, the graded-index, and the W-shape. The obtained results demonstrate that the proposed computational procedure is accurate, eective, and robust to the noise. Indeed, in all numerical experiments, the refractive index proles are accurately retrieved up to the noise level after few iterations.
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 1 Figure 1: (a) An optical ber, (b) a transverse section of a homogeneous optical ber.

  and their associated eigenfunctions u I l = (u 1 l , u 2 l , • • • , u I l ) T are given respectively in ISPP. Therefore, the number of eigenmodes I in ISPP becomes I = N F l=1 I l .

Figure 5 :

 5 Figure 5: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constant β 1 .

Figure 6 :

 6 Figure 6: Isovalues corresponding to the fundamental mode LP 01 . Analytic vs. computed elds for various noise levels on β 1 .

Figure 7 :

 7 Figure 7: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 2 for Experiment 2.
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 811 Figure 8: Isovalues corresponding to the guided mode LP x 1 11 . Analytic vs. computed elds for various noise levels on β 2 for Experiment 2.

  Computed with 0% noise level (d) Computed with 5% noise level (e) Computed with 10% noise level (f) Computed with 20% noise level
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 911 Figure 9: Isovalues corresponding to the guided mode LP x 2 11 . Analytic vs. computed elds for various noise levels on β 2 for Experiment 2.

  )8(b) and Figures 9(a)9(b).

  T = (4000.005, 3999.985) T .

  Noise level on β = ( β 1 , β 2 ) : 0%. Noise level on β = ( β 1 , β 2 ) : 5%. Noise level on β = ( β 1 , β 2 ) : 10%. Noise level on β = ( β 1 , β 2 ) : 20%.
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 10 Figure 10: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 2 for Experiment 3.

  T = (5000.0068, 4999.989, 4999.971) T .[START_REF] Karchevskii | Reconstruction of Dielectric Constants of Core and Cladding of Optical Fibers Using Propagation Constants Measurements[END_REF] 
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 11 Figure 11: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 3 for Experiment 4.

  Computed with 0% noise level (d) Computed with 5% noise level (e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 12 :

 12 Figure 12: Isovalues corresponding to the guided mode LP 02 . Analytic vs. computed elds for various noise levels on β 3 for Experiment 4.

4 =Figure 13 :

 413 Figure 13: Refractive index prole in Experiment 5: Target vs. initial. sponding to n (0) are: β (0) 4 = (12562.5234, 12562.5215, 12562.5186, 12562.5176) T ,(54)

  )16(b) for the mode LP x 2 21 .

Figure 14 :

 14 Figure 14: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 4 for Experiment 5.

Figure 15 :

 15 Figure 15: Sensitivity of computed refractive index prole at convergence to the noise level on the propagation constants β 4 in Experiment 5.

  Computed with 0% noise level (d) Computed with 5% noise level (e) Computed with 10% noise level (f) Computed with 20% noise level
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 1621 Figure 16: Isovalues corresponding to the guided mode LP x 2 21 . Target vs. computed elds for various noise levels on β 4 for Experiment 5.

Figure 18 :

 18 Figure 18: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 5 for Experiment 6.
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 195 Figure 19: Sensitivity of computed refractive index prole at convergence to the noise level on the propagation constants β 5 .

Figure 20 :

 20 Figure 20: Refractive index prole in Experiment 7: Target vs. initial.

Figure 21 :

 21 Figure 21: Convergence history. Sensitivity of the relative residual given by equation (35) to the noise level on the propagation constants β 3 for Experiment 7.

Figure 22 :

 22 Figure 22: Sensitivity of computed refractive index prole at convergence to the noise level on the propagation constants β 3 .

Table 1 :

 1 Sensitivity of the relative residual and the relative error, at convergence, to the noise level for Experiment 1.

		Relative	Relative	Relative	Relative
	noise level	residual (%)	error	error	error
	on β 1 (%)		on n (%)	on β 1 (%)	on u 1 (%)
	0	0.852	0.852	0.852	0.308
	5	3.042	8.193	8.194	3.063
	10	2.734	13.005	13.007	4.701
	20	2.229	22.671	22.675	7.667

Table 3

 3 

	and Figures 7-9. The following

Table 2 :

 2 Target vs. initial refractive index prole parameters for Experiment 2.

	Initial	Relative	Relative	Relative	Relative	Relative
	noise level residual (%)	error	error	error	error
	on β 2 (%)		on n (%)	on β 2 (%) on u 1 (%) on u 2 (%)
	0	0.0	4.349 × 10 -5	0.0	0.18468	1.26672
	5	2.926 × 10 -5	4.999	5.0	5.19346	7.83993
	10	8.864 × 10 -5	9.999	10.0	9.21879	13.35070
	20	6.732 × 10 -5	19.989	20.0	22.15990	28.71202

Table 3 :

 3 Sensitivity of the relative residual and the relative error, at convergence, to the noise level for Experiment 2.

Table 5

 5 

	and Figures 10-??. The following obser-

Table 4 :

 4 Target vs. initial refractive index prole parameters for Experiment 3.

	Initial	Relative	Relative	Relative	Relative	Relative
	noise level residual (%)	error	error	error	error
	on β 2 (%)		on n (%)	on β 2 (%)	on u 1 (%) on u 2 (%)
	0	1.284 × 10 -3 2.874 × 10 -3 1.284 × 10 -3	0.46894	1.68805
	5	1.124 × 10 -3	4.998	4.999	4.91770	6.81393
	10	9.397 × 10 -4	9.998	9.999	9.93758	12.49697
	20	6.587 × 10 -4	19.998	19.999	18.29067	22.12093

Table 5 :

 5 Sensitivity of the relative residual and the relative error, at convergence, to the noise level for Experiment 3.

Table 7

 7 

	and Figures 11-12. The following

Table 6 :

 6 Target vs. initial refractive index prole parameters for Experiment 4.

	Ini. noise Relative Relative Relative Relative Relative Relative
	level on	residual error on error on error on error on error on
	β 3 (%)	(%)	n (%)	β 3 (%)	u 1 (%)	u 2 (%)	u 3 (%)
	0	4.70E-6 1.02E-5 4.70E-6	0.383	1.624	0.723
	5	3.52E-5	5.0	5.0	2.448	3.211	3.064
	10	3.63E-5	10.0	10.0	9.223	9.422	9.695
	20	0.0	20.0	20.0	17.983	19.016	51.547

Table 7 :

 7 Sensitivity of the relative residual and the relative error, at convergence, to the noise level for Experiment 4.

  11 , LP 02 , and LP 21 . These synthetic four guided modes were delivered by the nite element solver introduced in Section 4.3. The corresponding propagation constants values obtained with the nite element solver [74][75] are: β 4 = (7562.51270, 7562.50098, 7562.48877, 7562.48877) T .

  51025, 5062.49561, 5062.48145) T .

		1800.005						1890.005				
		1800.000						1890.000				
	n(r)						n(r)					
		1799.995						1889.995				
		1799.990						1889.990				
		0	0.2	0.4	0.6	0.8	1	0	0.2	0.4	0.6	0.8	1
				r=|x|						r=|x|		
			(a) Noise level 0%.				(b) Noise level 5%.	
								2160.005				
		1980.005										
	n(r)	1980.000					n(r)	2160.000				
		1979.995						2159.995				
		0	0.2	0.4	0.6	0.8	1	0	0.2	0.4	0.6	0.8	1
				r=|x|								
			(c) Noise level 10%.							
													(57)

r=|x|

(d) Noise level 20%.
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formance (convergence and accuracy) of the proposed inversion algorithm. To this end, we consider a vector of ve measured propagation constants corresponding to the modes LP 01 , LP 11 , LP 02 , LP 21 , LP 12 . The synthetic vector β 5 computed with the nite element solver [74][75], is given by: β 5 = (9000.01367, 9000.00293, 8999.99219, 8999.99219, 8999.98145) T (55) and corresponding to the sought-after W-refractive index prole depicted in Figure 17(a). We use the parametrization given by [START_REF] Coleman | Solution of the inverse spectral problem for an impedance with integrable derivative, Part I[END_REF] with N P = 5. Note that we also employ the basis functions depicted in Figure 3, but with g 4 being the polynomial function of degree 3 extended by 0 for r ≥ a, and g 5 being the function depicted in Figure 3(d). We thus consider a ve-parameter inverse problem whose unknowns are α j , j = 1, • • • , 5. Similarly to Experiment 5, measurements are contaminated with the same noise levels. The initial index prole n (0) is also a step-index prole (see Figure 17 

For each noise level in the measured propagation constants vector β 5 , we apply the proposed algorithm from the initial step-index prole n (0) to determine the W-refractive index prole in Figure 17(a). The results are reported in Figures 18??. These results reveal the following:

• Similarly to Experiment 5, the algorithm is initiated from a refractive index prole (a step index) that signicantly diers from the target prole (W-shape), as indicated in Figure 17. The initial relative error is about 60%, resulting in an initial relative residual of also about 60%.

Clearly, the inversion algorithm is initiated outside the pre-asymptotic region.

• Figure 18 shows that the convergence of the algorithm is comparable to the one observed in Experiment 5 when using only 4 parameters. In addition, the algorithm does not converge without incorporating the regularization procedure.

• The sought-after refractive index prole is determined with an accuracy level comparable to the case of 4 parameters. Indeed, at convergence, the relative error on the refractive index prole ranges from 10 -5 % (in the absence of noise) to about 20% when the noise level is 20%.

On the other hand, we observed an improvement in the accuracy of the corresponding eigenmodes. For example, the highest mode LP 12 is