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Abstract. A hybrid system is proposed to model the electrical potential
emitted by a neuron as a response to an externally applied DC current.
Experimentally, Hodgkin and Huxley built a four-dimensional and non-
linear dynamical system to simulate this activity. Our idea is to use a
new continuous and piecewise affine approximation as a hybrid model of
the Hodgkin-Huxley dynamic. Our new model reproduces the Hodgkin-
Huxley features with good accuracy (e.g. including the fact that the
incoming current intensity is a bifurcation parameter), and, moreover,
still allows an analytic computation of its solutions.

1 Introduction

Neurons communicate with each other by generating electrical signals, called ac-
tion potentials. Action potentials are the result of currents that pass through ion
channels in the cell membrane. Each neuron integrates the incoming signals and,
when the stimulation reaches a certain threshold, an output signal is generated
and delivered. This paper deals with the dynamics of the membrane potential
of a single neuron under a certain stimulus.

As a result of their experiments on a giant squid nerve fiber, Hodgkin and
Huxley proposed a first model describing the dynamics of the action poten-
tials [9]. The main idea is that because of active ion transport (mainly sodium,
potassium and chloride) through the cell membrane, this membrane acts as a
capacitor. From then their measures tended to show that potassium ions can
cross the membrane when four similar molecules occupy a certain region of this
membrane (so that potassium conductance is considered proportional to the
number of sites on the inside of the membrane which are occupied by the four
molecules, gK ≈ ḡKn4). Similarly, the sodium conductance is supposed to be
proportional to the number of sites on the inside of the membrane which are
occupied simultaneously by three activating molecules and not blocked by an
inactivating molecule (gNa ≈ ḡNam3h). The chloride and other ions conduc-
tance is supposed constant. From this assumptions, Hodgkin and Huxley then
proposed the following dynamical system as a simplified neuron model:
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(H-H)





CM
dV
dt = I(t)− ḡKn4(V − VK)− ḡNam3h(V − VNa)− ḡl(V − Vl)

dn
dt = (1− n).αn(V )− n.βn(V )

dm
dt = (1−m).αm(V )−m.βm(V )

dh
dt = (1− h).αh(V )− h.βh(V )

• V is the displacement of the membrane potential from its resting value
• n is the proportion of the K+ activating molecules inside the membrane at

time t ; 0 ≤ n ≤ 1
• m is the proportion of the Na+ activating molecules inside the membrane

at time t ; 0 ≤ m ≤ 1
• 1 − h is the proportion of the Na+ inactivating molecules inside the mem-

brane at time t ; 0 ≤ h ≤ 1
• I(t) is the intensity of the current applied to the neuron cell.

The α and β being respectively the transfer rate constants from outside to inside
and from inside to outside, the ḡX and VX being respectively the conductances
and resting potentials of potassium, sodium and chloride ions [11].

Despite the small dimension of the (H-H) system, the mathematical analysis
is still quite complex. Therefore only numerical simulations are used and simpli-
fied models are required for a better understanding of the neuronal dynamics.

Some simplifications have been proposed [1], models like integrate-and-fire,
resonate-and-fire ([13]) or even Hopfield or FitzHugh-Nagumo (see [15, §6.5] or [7,
§3.1] for further references) provide different level of relevant informations on the
neuronal dynamics. For instance, these models are used to show the existence of a
spike (excitable state), or of a threshold potential for the emission of a periodical
state (see e.g. [7, §3.3] for more details). Unfortunately, these simplifications
give only a few fully analytical results or low quality numerical approximations.
Therefore some piecewise linear simplifications have been proposed by Tonnelier
[16] to combine analytic results and good numerical approximations. Still there
is no complete analytic analysis of the dynamics and Tonnelier’s approximations
suffer from a non-continuous behavior.

Our approach is to use a hybrid system modeling and to refine Tonnelier’s
approximation. Indeed the main advantage of an hybrid system is that it com-
bines fully symbolic and multi-scale resolutions. On the one hand, by using
continuous and linear approximations, any refinement is possible: the original
system is replaced by piecewise linear parts at as many points as needed to en-
sure any quality of approximation. On the other hand in each resulting “cell”
(corresponding to a state of the hybrid system), the system is fully linear and
therefore analytically solvable. These two aspects together enable an analytic
analysis of most of any system properties, whatever its complexity is.

There are many possible linearization by parts. For instance, one can build a
mesh of the phase space and use multi-dimensional interpolation to define a linear
approximation of the system in each cell (simplex) of the mesh, see [4, 8, 2] for
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more details. We present a few simultations using this approximation in section
5.3. In this paper, we will instead use another idea: we linearize each equation
separately by implicit representation and one-dimensional linearization on each
variable, see sections 2.2 and 2.3 (using the latter on the Hodgkin-Huxley model,
we actually need fewer hybrid states to prove the desired analytic properties).

We therefore propose a new continuous and piecewise affine approximation of
the Hodgkin-Huxley model. We implicitly build a hybrid automaton defined by
the pieces of the approximation within the phase plane of the dynamical system
(see figure 6). Now, in each state, the solutions of our model are analytically
computable. Moreover, simulations of this automaton show the good quality of
our approximations.

In section 2, we give a reduction from the four-dimensional Hodgkin-Huxley
model to a two-dimensional continuous and piecewise affine model. We next lin-
earize both equations separately by way of an implicit representation in sections
2.2 and 2.3 and propose the associated hybrid automaton in section 3. We then
fully analyze the model dynamics in section 4 and produce some simulations
and comparisons between the Hodgkin-Huxley model and our approximation in
section 5.

2 Reduction of the Hodgkin-Huxley model

In this section we propose a reduction from the Hodgkin-Huxley model to our
piecewise affine and continuous model. We combine both FitzHugh-Nagumo [7,
§3.1.1] and Tonnelier’s approaches [16, §1.4.3] and refine them.

2.1 From four dimensions to two dimensions

Fig. 1. Simulation of n + h variation with time for a low intensity

The first step is to reduce the dimension. We first rewrite the activating or
inactivating molecule equations in the form X = − 1

τX(V )

(
X − X̄(V )

)
. Then for
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Fig. 2. Simulation of n + h variation with time for a high intensity

a fixed potential V , the variable X approaches the value X̄(V ) (its asymptotic
value) with a time constant τX(V ). Experimental data shows that the variable
m always reaches its asymptotic value m̄(V ) much faster than the variables n
and h do [7, §2.2.1]. The first hypothesis is then that the m-gate of sodium are
instantaneously activated, so that we can assume m ≈ m̄(V ). Then, FitzHugh
noticed that whatever incoming current intensity, the n+h quantity remains close
to 0.8 as shown on figures 1 and 2 from Jeff Moehlis1. We now have a system with
only two dimensions : V and n. In the following, we will consider the functions
and constants given e.g. in [5]:

VNa = 115mV ; VK = −12mV ; Vl = 10.599mV

ḡNa = 120mΩ−1cm−2 ; ḡK = 36mΩ−1cm−2 ; ḡl = 0.3mΩ−1cm−2

CM = 1µFcm−2 ; m̄(V ) =
25− V

25− V + 40
(
e−

7
4 V + 5

2 − e−
1
18 V

)

αn(V ) =
10− V

100
(
e

10−V
10 − 1

) ; βn(V ) =
e−

V
80

8

2.2 The first equation approximation

Let ϕ be the right hand side of the first equation, leaving out the intensity:

ϕ : (V, n) → −ḡKn4(V − VK)− ḡNam̄(V )3(0.8− n)(V − VNa)− ḡl(V − Vl)

Figure 3 shows an example of the value of ϕ(V, n) as an implicit curve ϕ(V, n) = c
for some constant c. The implicit curve representing ϕ(V, n) = c (of the form
n = δ(V )) has clearly a cubic shape. FitzHugh and Nagumo then proposed to
approximate δ by a degree three polynomial p (scaled and shifted to maintain
its roots between 0 and 1).
1 http://www.math.princeton.edu/˜jmoehlis/APC591/tutorials/tutorial2
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Fig. 3. Implicit representation of the first right hand side, here c=-3

They obtained the following equation with w corresponding to a scaling and
shifting of n, v is a scaling of CMV and I is modified consequently:

dv

dt
= v(1− v)(v − a)− w + I = p(v)− w + I, for 0 < a < 1. (1)

Unfortunately this approximation is still too complex for a fully analytical ap-
proach. Consequently we decided to linearize ϕ(V, n) by pieces and care to pre-
serve the continuity of the curve. We also used the previous scalings and shiftings
and choose to preserve (v−,p(v−)) and (v+,p(v+)), the respective coordinates of
the local minimum and maximum of p (v− = a+1−√a2−a+1

3 , v+ = a+1+
√

a2−a+1
3 ),

as well as the two extreme roots. As shown on figure 4, p is now approached by

Fig. 4. The piecewise affine p̃ and the degree 3 polynomial approximations of the first
right hand side
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the following continuous and piecewise affine function, p̃ :

p̃(v)=





p(v−)
v−

v if v < v−

[
p(v+)−p(v−)

v+−v−

]
v +

[
p(v+)− p(v+)−p(v−)

v+−v−
v+

]
if v− ≤ v ≤ v+

p(v+)
1−v+

(1− v) if v > v+

(2)

Finally the first equation of the system becomes: dv
dt = p̃(v)− w + I.

2.3 The second equation approximation

Unlike FitzHugh-Nagumo, we propose to also approach the second equation the
same way. Let ψ be the second right hand side, before scaling and shifting:
ψ : (V, n) → (1− n)αn(v)− nβn(v), for 0 ≤ n ≤ 1. Figure 5 shows the implicit
curve ψ(V, n) = c, here for c = 0. The graph V = χ(n) of this implicit curve has
a logöıde shape.

Fig. 5. Implicit representation of the second right hand side

Therefore, we linearize again by pieces and use the scales and shifts of the first
approximation. This introduces extra constant factors in this second equation,
so that ψ(V, n) is replaced by bv − χ̃(w), with χ̃(w) the affine approximation
chosen: linear for most of its range (indeed equation 1 shows that for no incoming
current and with no displacement potential, the neuron must remain inactive,
i.e. at v = 0 and I = 0, dv

dt must be zero and so is w) and with a small slope
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outside two extreme thresholds w0 and w1, as follows:

χ̃(w) =





λ0(w − w0) + γw0 if w ≤ w0

γw if w0 ≤ w ≤ w1

λ1(w − w1) + γw1 if w ≥ w1

(3)

Finally the second equation of the system becomes: dw
dt = bv − χ̃(w).

3 Hybrid automaton

Now, we have a continuous and piecewise affine system modeling the neuron
activity. To study the dynamics of this model (M), we consider it as a hybrid

v

1 2 3

4 5 6

7 8 9w1

w0

0
v− v+

w

I

1

Fig. 6. Hybrid automaton of the continuous and piecewise affine model

system:




dv
dt = p̃(v)− w + I

dw
dt = bv − χ̃(w)

(M)
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As there are 3 different pieces for each equation, this system is a hybrid au-
tomaton with nine contiguous states. Inside each state (rectangular cell), the
trajectory evolves continuously according to its affine system (defined in sec-
tions 2.2, and 2.3). Figure 6 shows these states together with the affine system
for a positive incoming current. Next section will study the different possible
configurations, and therefore the transitions between the states, depending on
the applied DC current I.

4 Analysis of the (M) model dynamics

We assume the current intensity I to be constant and positive (we are in the
case where the neuron is under an external stimulation). We begin the analysis
with the study of the equilibrium points of the system. This enables us to study
I as a bifurcation parameter of the system.

4.1 Equilibrium points

ww

S

0 0

S

S

00

S

v

v(c) v

w

(a)
v

w

(d)

(b)

 

Fig. 7. Some equilibrium points of the system (M) when I > 0
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The equilibrium point of the system (M) is an intersection of the two curves
induced by the differential equations: (w = p̃(v)+I) and (bv = χ̃(w)).

In concordance with experimental data, we assume that the linear part of χ̃
is neither nearly horizontal, nor nearly vertical. Therefore, first, we assume that
γ (resp. λ) is small enough (resp. big enough), which means that the middle
part of p̃ is is more gentle than the linear part of χ̃ and steeper than the nearly
horizontal parts of χ̃. Second, as the linear part of χ̃ is not extremely steep,
γ
b w1 > v+. Lastly, we consider that w0 is negative so that (v = 0, w = 0),
the resting point for I = 0, is reachable. This together gives us the following
conditions:

b

λi
<

p(v+)− p(v−)
v+ − v−

<
b

γ
(4)

b

γ
v+ < w1 (5)

w0 < 0 (6)

By looking at the original system and the graphs of the functions, we see that
the experimental data of e.g. [9, Table 3], [10, §3.2.3] or [5, §2] largely fulfill
these conditions. Therefore we can consider that they are non-restrictive. Con-
sequently, we actually only have to consider the four possible configurations
shown on figure 7.

Now, we will look for equilibrium points in each cell of the automaton. This
together with the stability of the points, will enable us to describe the transitions
between states and the phase portrait of the approximation.

4.2 Stability and bifurcation parameter

The Hodgkin-Huxley system is actually parameterized by a number of parame-
ters and shows a variety of qualitatively different behaviors depending on these
parameter values. [5, 6], for instance, have explored numerically the dynamics of
the HH equations for a wide range of parameter values in the multiple-parameter
space, that is, they examined the global structure of bifurcations, by way of nu-
merical simulations. In particular, they considered the externally applied DC
current as the basic bifurcation parameter [5, §3.3] and used numerical simula-
tions with the AUTO software [3] to detect the bifurcations.

Our idea in this section is to show that our linearized approximation models
also this behavior. The method is to first search for equilibrium points corre-
sponding to the system associated to the cell. For instance, if the point is stable
and belongs to cell, many trajectories entering this cell will converge to this point
and the automaton will remain in this state. If the point is unstable, there is a
possibility of periodical behavior, etc. The trick is that the necessary conditions
so that an equilibrium point is located in a certain cell, will actually induce some
equivalent conditions on the incoming intensity:

First, for any intensity and under the conditions (4), (5), (6), there are no
fixed point in states 1, 2, 3, 7 and 8. In state 4, the equilibrium point verifies
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the following: w∗ = p(v−)
v−

v∗ + I ; bv∗ = γw∗. Then a simple computation
shows that belonging to cell 4 (i.e. v∗ < v− and w0 < w < w1)) is equivalent to
I < I1 and I0 < I < I ′1, where I1 = b

γ v− − p(v−), I0 = γ
b

[
b
γ − p(v−)

v−

]
w0 and

I ′1 = γ
b

[
b
γ − p(v−)

v−

]
w1. Now, as w0 < 0, I0 is negative. Also, using condition 5,

we have I1 < I ′1. Moreover, when computing the jacobian of the system at the
fixed points one can show that this point is actually stable. So we have the nice
condition on I:

– whenever 0 ≤ I < I1, there exist a stable fixed point inside cell 4 and we are
in case (a).

In the same manner, we can show that there exists two other threshold intensities
I2 = b

γ v+ − p(v+) and I3 = w1 + p(v+)
1−v+

(
γ
b w1 − 1

)
, so that:

– whenever I1 < I < I2, there exists an unstable fixed point inside cell 5 and
we are in case (b).

– whenever I2 < I < I3, there exists a stable fixed point inside cell 6 and we
are the case (c).

And, the last possible fixed points are located in cells 8 and 9 with the condition:

– whenever I > I3 there exists a stable fixed point inside cell 9 and we are in
case (d).

In conclusion, we analytically proved that the neuronal stimulus I (equiva-
lently the externally applied DC current) is a bifurcation parameter of our lin-
earized system. In the following section we actually prove that when a stable
fixed point exists in a cell, the automaton tends to switch to the state contain-
ing this fixed point. Therefore the neuron emits one or more spike and then
stabilizes at a given potential. On the contrary, in case (b), we will see that the
configuration leads to a periodic behavior.

4.3 Phase portrait

The phase space associated to our model is divided into nine cells defined by
the automaton (6). In the previous section, we proved that in cases (a), (c) and
(d) the linearized system has only one fixed point. This point is located in a
certain cell, so that whenever a trajectory arrives in this cell, it is attracted to
the fixed point. Then, the question is: do we have global convergence towards
the fixed point ? The idea is to show that for every initial condition (vi, wi), the
associated trajectory tends to cross the cell containing the fixed point.

Well, as shown on figure 8, the two nullclines of our system divide the plan
into four parts. Each one of those four parts has then a different combination
of v and w derivative signs. On the smae figure, we show an example trajectory
simulated with CONTENT (an environment for continuation and bifurcation
analysis of dynamical systems [14]). For instance, in the part defined by (v′ > 0
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v’>0
w’>0

v’>0

w’>0

w’<0

w’<0
v’<0

v’<0

Fig. 8. Trajectory behavior using the sign of the derivatives (here for I > 0)

and w′ > 0), the trajectory evolves in concordance, i.e. v and w are increasing.
Now, since the third affine part of the v-nullcline decreases in v, the trajectory
must cross it at some point. When this happens, w keeps increasing while v now
starts to decrease as the trajectory is in the (v′ < 0 and (w′ > 0) part. The key
point is that a trajectory will always turn anti-clockwise in the phase space. In
conclusion, this together with the analysis of section 4.2 proves the following:

– whenever 0 ≤ I < I1, all the trajectories collapse to the stable fixed point of
cell 4. This correspond to a spike emission followed by a return back to the
resting potential.

– whenever I1 < I < I2, all the trajectories keep turning around the unstable
fixed point of cell 5. This correspond to oscillations of the potential.

– whenever I2 < I, all the trajectories expand to a stable fixed point inside cell
6, 8 or 9. This correspond to a stimulation by a very high incoming intensity
with a spike emission and a stabilization at a high potential.

5 Quality of the Approximation

We now confront the theoretical results of the previous section with the numer-
ical simulations of the Hodgkin-Huxley model. The simulations are done with
CONTENT or Matlab. We first produce simulations of the original Hodgkin-
Huxley model and compare them with simulations of our hybrid model. Then
we present an alternative way of linearizing which gives an even better quality
of simulations but no fully analytical analysis yet.
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5.1 Hodgkin-Huxley model
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Fig. 9. Excitable state (low incoming intensity) in a simulation of Hodgkin-Huxley
model: fixed point in the phase space corresponding to the Spike solution for the
displacement current

The simulations of the Hodgkin-Huxley model show that there are two main
characteristic for the neuronal behavior: a spike solution and a periodic solution
shown respectively on figures 9 and 10. Here we used Matlab as the system
is too complex for CONTENT (CONTENT had some troubles to draw the
trajectory before finding the limit cycle and the trajectory even crossed itself
!). Next section will produce the simulations of our linearized model for the two
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Fig. 10. Periodic state (high incoming intensity) in a simulation of Hodgkin-Huxley
model: limit cycle in the phase space corresponding to Oscillations of the displacement
current
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equivalent situations.

5.2 The continuous and piecewise affine model

The analysis of section 4 has shown that our model also produces the two charac-
teristic behaviors: an excitable state and a periodic state. We here show the good
numerical properties of these two states. Indeed, on figure 11, the left simulation
is the convergence towards the stable fixed point and the right simulation shows
the quality of our approximation of the spike solution. Analytically, within this
excitable state (e.g. one of the configurations (a), (c) or (d) holds), the neuron
emits actually a finite number of spikes, each one corresponding to a full loop
around the fixed point. This does not really shows up in the Hodgkin-Huxley
model as the other spikes are very small. On the contrary, in our model, the
scales are much smaller and the other spikes are more visible. Moreover our

0 25 50 75 100 125 150
-0.2

-0.1

0

0.1

0.2

0.3

0.4

t

v

0 25 50 75 100 125 150
-0.2

-0.1

0

0.1

0.2

0.3

0.4

t

v

Fig. 11. Excitable state within the hybrid system

model reproduces the main property of the Hodgkin-Huxley model, that is to
say the ability to generate oscillations when the current intensity is within an
appropriate range. The right simulation of figure 12 shows this oscillatory state,
namely the periodic state. Also, the CONTENT simulator can now detect easily
the limit cycle, as shown on the left simulation on figure 12.

When comparing with the simulations of the Hodgkin-Huxley model of the
previous subsection, we clearly see the good quality of the approximation. Indeed,
the continuity and the accuracy of our approximation ensures a good regularity
of the new solution.
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Fig. 12. Periodical state within the hybrid system

5.3 Another linearization for an hybrid approach: multi-dimensional
interpolation

In this section we propose to show the use of multi-dimensional interpolation
instead of the scheme of section 2.2 (using implicit representations). The idea is to
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Fig. 13. Matlab Simulations of the periodic state using linear interpolation with 30
and 200 points on the mesh

build a mesh of the phase space (this can be done dynamically as the trajectories
evolve). For the Hodgkin-Huxley model we can use either the 4-dimensional or
the 2-dimensional version. For the sake of visualization, we produce here figures
linearizing in dimension 2. The system of A. Girard [8, 2] uses interpolation at
each node of the mesh to define a linear approximation of the system in each cell
(simplex). Figure 13, shows the periodic trajectory of figure 12 for different mesh
sizes. One can check the convergence of the trajectory when the mesh is refining.
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Indeed, linearization can always be close enough to the original model so that
the phase portrait of the linearization reproduces the full original behavior [8].
Also, we are able to automatically compute fixed points or stable and unstable
invariants and we can semi-automatically compute e.g. the limit cycles (i.e. a
point close enough to the cycle must be provided manually) or even the local
attracting sets. Still, this method does not allow us to analyse any property of
the system. The study of the Intensity as a bifurcation parameter, for instance,
seems still pretty difficult with this approach.

6 Conclusion

The Hodgkin-Huxley model only considers two different ionic species (K+, Na+)
and a leakage current. However, even for this four dimensional model, the math-
ematical analysis is complex and most of the results are numerical. We therefore
need simplified models to understand the neuronal dynamics better.
Our approach was first to reduce the dimension of the Hodgkin-Huxley model
(using FitzHugh-Nagumo approach) and then to approximate each equation of
the reduced system by a continuous and piecewise affine function. Indeed the
continuity of our approximation ensures the regularity of the new solution and
the piecewise affine approximation allows us to compute the solutions analyti-
cally. Both simulations and analytical study of our model bring to the fore the
two characteristic features of the neuronal behavior:

– The spike solution
↪→ correspond to the generation of a finite number of action potentials.
↪→ is a transient state that characterize the property of neuronal excitability.

– The periodic solution
↪→ correspond to the generation of a infinite number of action potentials.
↪→ is an asymptotic state that shows the presence of a limit cycle.

We also formally proved that the applied current intensity is a bifurcation pa-
rameter of the linearized system.

With this case-study, we showed how continuous and piecewise affine hy-
brid systems can be used to analytically compute phase portraits that approach
complex dynamical systems with no loss of intrinsic properties. Next step would
then be to provide an automatic or quasi-automatic symbolic computation of the
phase portrait of piecewise affine systems. Indeed, we are able to automatically
compute fixed points or stable and unstable invariants. Still the full automatic
analysis is not yet possible as we can only compute e.g. the limit cycles with some
manual inputs. Also, a combination of different kind of linearizations would al-
low multi-resolution and therefore an even higher quality of simulation together
with the semi-automatical analysis.
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