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Abstract
We consider self-adjoint semigroups Tt = exp(−tA) acting on L2(Ω) and satisfying

(generalised) Gaussian estimates, where Ω is a metric measure space of homogeneous type
of dimension d. The aim of the article is to show that A⊗ IdY admits a Hörmander type
Hβ2 functional calculus on Lp(Ω;Y ) where Y is a UMD lattice, thus extending the well-
known Hörmander calculus of A on Lp(Ω). We show that if Tt is lattice positive (or merely
admits an H∞ calculus on Lp(Ω;Y )) then this is indeed the case. Here the derivation
exponent has to satisfy β > α · d + 1

2 , where α ∈ (0, 1) depends on p, and on convexity
and concavity exponents of Y . A part of the proof is the new result that the Hardy-
Littlewood maximal operator is bounded on Lp(Ω;Y ). Moreover, our spectral multipliers
satisfy square function estimates in Lp(Ω;Y ). In a variant, we show that if eitA satisfies
a dispersive L1(Ω) → L∞(Ω) estimate, then β > d+1

2 above is admissible independent of
convexity and concavity of Y . Finally, we illustrate these results in a variety of examples.
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1 Introduction
Let f be a bounded function on (0,∞) and u(f) the operator on Lp(Rd) defined by [f(−∆)g]̂ =
[u(f)g]̂ = f(‖ξ‖2)ĝ(ξ). Hörmander’s theorem on Fourier multipliers [Ho60, Theorem 2.5] asserts
that u(f) : Lp(Rd) → Lp(Rd) is bounded for any p ∈ (1,∞) provided that for some integer β
strictly larger than d

2 ,

(1.1) ‖f‖2Hβ2 := max
k=0,1,...,β

sup
R>0

1
R

∫ 2R

R

∣∣∣tk dk
dtk

f(t)
∣∣∣2 dt <∞.

This theorem has many refinements and generalisations to various similar contexts. Namely,
one can generalise to non-integer β in (1.1) to get larger (for smaller β) admissible classes
Hβ2 = {f : (0,∞) → C bounded and continuous : ‖f‖Hβ2 < ∞} of multiplier functions f (see
Subsection 2.1). Moreover, it has been a deeply studied question over the last years to know to
what extent one can replace the ordinary Laplacian subjacent to Hörmander’s theorem by other
operators A acting on some Lp(Ω) space. A theorem of Hörmander type holds true for many
elliptic differential operators A, including sub-Laplacians on Lie groups of polynomial growth,
Schrödinger operators and elliptic operators on Riemannian manifolds, see [Alex, Christ, Duong,
DuOS]. More recently, spectral multipliers have been studied for operators acting on Lp(Ω) only
for a strict subset of (1,∞) of exponents [Bl, CDY, CO, COSY, KuUhl, KU2, SYY] and for
abstract operators acting on Banach spaces [KrW3]. A spectral multiplier theorem means then
that the linear and multiplicative mapping

(1.2) Hβ2 → B(X), f 7→ f(A),

is bounded, where typically X = Lp(Ω).
The main topic of the present article is to determine in which cases (1.2) holds with X =

Lp(Ω;Y ), i.e. when does the tensor extension f(A) ⊗ IdY of f(A) : Lp(Ω) → Lp(Ω) extend
to a bounded operator on the Bochner space Lp(Ω;Y ). It is well-known that if Y is a Hilbert
space, or if f(A) is lattice positive, or if f(A) is both bounded on L∞(Ω) and on L1(Ω), then
this tensor extension is possible, but in general, this is a difficult task, e.g. for a multiplier f(A)
with singular integral kernel having a cancellation effect. As a motivation for this question,
take the following abstract hyperbolic PDE

∂2
t u(x, y, t) = −Axu(x, y, t) (x ∈ Ω, y ∈ Ω′ t > 0)
u(x, y, 0) = f(x, y) (x ∈ Ω, y ∈ Ω′),

which is solved formally by u(x, y, t) = exp(it
√
A)(f)(x, y). Noting that

f(λ) = (1 + λ)−δ exp(it
√
λ)

2



belongs to the class Hβ2 for δ > β
2 [KrW3, Lemma 3.9], [KrPhD, Prop 4.8 (4)] yields that

‖u(t)‖X 6 C(1 + |t|)2δ‖(1 + A)δf‖X provided that (1.2) holds. One thus obtains a norm
estimate of the solution u in terms of fractional domain space norms D((1 + A)δ) ⊂ X of the
initial value f . As an example, we can take X = Lp(Ω;Ls(Ω′)). We refer to [HiPr, Sections 5
and 6] and [DeKr1, Section 4] for further applications of the functional calculus to equations
on such X.

Even in the case that A = −∆, which can be considered as our basic example and starting
point for further considerations, one cannot take any Banach space Y in X = Lp(Ω;Y ) of
(1.2), but is restricted to take a UMD space Y [KW04, 10.3 Remark], for a definition of the
UMD property see Subsection 2.2. In establishing a functional calculus on X = Lp(Ω), square
function estimates such as

(1.3)
∥∥∥(∑

k

|Ttkfk|2
) 1

2
∥∥∥
X
6 C

∥∥∥(∑
k

|fk|2
) 1

2
∥∥∥
X

are known to play an important role, where Tt is a spectral multiplier of A, typically the
semigroup generated by A. We will prove such square function estimates also for X = Lp(Ω;Y ).
In order to do so, we will need a maximal estimate, which in the simplest form states as
|Ttf | 6 cMHL(f) for all t > 0. A natural framework for us will be that Y = Y (Ω′) is a
UMD lattice over some measure space Ω′ and Ω a metric measure space, in fact, a space of
homogeneous type, see Subsection 2.4. Then MHL stands for the Hardy-Littlewood maximal
operator, which is

MHL(f)(x, ω′) = sup
r>0

1
V (x, r)

∫
B(x,r)

|f(y, ω′)| dµ(y) (x ∈ Ω, ω′ ∈ Ω′)

where B(x, r) stands for the closed ball centered in x of radius r and V (x, r) stands for the
volume of that ball. Our first main result reads then as:

Theorem 1.1 If Ω is a space of homogeneous type, then MHL is bounded on Lp(Ω;Y ) for any
p ∈ (1,∞) and for every UMD lattice Y .

By an abstract machinery from [KrW3], square functions as in (1.3) for Tt the semigroup
for complex times t ∈ C+ plus an a priori H∞ calculus of A on Lp(Ω;Y ) are sufficient for the
Hörmander calculus (1.2). Our task thus becomes to verify (1.3) and the H∞ calculus of A,
which means that (1.2) holds with the class Hβ2 replaced by the smaller class H∞(Σω) consisting
of bounded and analytic functions, see Subsection 2.1 for a precise definition. For the H∞
calculus, there are several strategies of extrapolation, or lattice positivity of the semigroup, or
L∞(Ω) and L1(Ω) contractivity of the semigroup, see Theorem 4.6, Corollary 4.9 or Proposition
4.8 respectively. When it comes to the square function estimate (1.3), we have chosen as
a starting point that Ω is a space of homogeneous type, Tt is self-adjoint on L2(Ω), has a
representation

Ttf(x) =
∫

Ω
pt(x, y)f(y) dµ(y)

and its integral kernel pt(x, y) satisfies Gaussian estimates, that is, for some m > 2, C, c > 0

(1.4) |pt(x, y)| 6 C 1
V (x, rt)

exp
(
−c
(

dist(x, y)
rt

) m
m−1

)
(x, y ∈ Ω, t > 0),

where rt = t
1
m . Such estimates are by now a well-established property for semigroups generated

by differential operators (see Section 5). These are not the most general assumptions for our
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purposes and the more general generalised Gaussian estimates, see (2.5) below, for semigroups
acting only on Lp(Ω) for p belonging to a subinterval (p0, p

′
0) ⊆ (1,∞) fit equally well for our

methods. See Subsection 5.3 for examples. We have chosen a presentation of our method in
Section 4 for generalised Gaussian estimates and deduce the classical Gaussian estimates case
as corollaries. Then our main result reads as follows.

Theorem 1.2 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be a
self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0. Assume that (Tt)t>0 satisfies
Gaussian estimates (1.4) with parameter m > 2. Let Y be a UMD lattice. Finally, assume
that Tt is lattice positive, i.e Ttf > 0 for all f > 0 and all t > 0, or merely that A has a
bounded H∞(Σω) calculus on Lp(Ω;Y ) for some fixed p ∈ (1,∞) and ω ∈ (0, π). Then A has
a Hörmander Hβ2 calculus on Lp(Ω;Y ) with

β > α · d+ 1
2 .

Here, α ∈ (0, 1) is a parameter depending on p and Y , and will be close to the best value 0 if p
is close to 2 and Y is close to a Hilbert space, e.g. Y = Ls(Ω′) with s close to 2. More generally,
α is a function of p and of the convexity and concavity index of the lattice Y in the sense of
[LTz] (see (4.1), and Subsection 2.2 for the definition of these notions). Theorem 1.2 is proved
in Corollaries 4.13 and 4.9. We refer to Theorem 4.10 for the version with (p0,m) generalised
Gaussian estimates, which needs convexity and concavity exponents of Y compatible with p0.
In the scalar case Y = C (or Hilbert space case), the derivation index of Theorem 1.2 becomes
β > | 1p −

1
2 |d+ 1

2 , compared to the better β > max(| 1p −
1
2 |d,

1
2 ) known in many cases, see e.g.

[COSY, Theorem 4.1] and Remark 4.12. This price of higher differentiation order is justified
not only by the fact that Y can be a lattice for us, but also by the following strengthening of
Theorem 1.2 to square function estimates that we obtain:

Theorem 1.3 Assume that the hypotheses of Theorem 1.2 above hold and let β > α · d+ 1
2 be

as in the conclusion. Then there is C <∞ such that

(1.5)
∥∥∥∥(∑

k

|mk(A)fk|2
) 1

2
∥∥∥∥
Lp(Ω;Y )

6 C sup
k
‖mk‖Hβ2

∥∥∥∥(∑
k

|fk|2
) 1

2
∥∥∥∥
Lp(Ω;Y )

.

This can be rephrased as {m(A) : ‖m‖Hβ2 6 1} is R-bounded in Lp(Ω;Y ) (see Subsection
2.1 for the definition). Concerning our method, there might also be weaker Poisson estimates
as e.g. in [DuRo, Kr1] sufficient, which have a polynomial decay at dist(x, y)→∞ in place of
the exponential decay in the Gaussian estimates. But since they are rarely known for complex
times that we would need (see [Kr1, Section 4] for examples), we have chosen not to pursue this
case in our presentation.

In case that one does not know the convexity and concavity exponents of Y , there is an
alternate approach to get to (1.3), which has as additional assumption a dispersive estimate
(1.6). Namely we shall show the following.

Theorem 1.4 Let (Ω,dist, µ) be a space of homogeneous type of dimension d, let Y be any
UMD lattice and let 1 < p < ∞. Assume that A generates the self-adjoint semigroup (Tt)t>0
on L2(Ω) satisfying the Gaussian estimate (1.4) with m = 2 and that (Tt)t>0 is lattice positive.
Assume moreover that there is a polynomial volume growth V (x, r) 6 C|r|d (x ∈ Ω, r > 0) and
that A satisfies the dispersive estimate

(1.6) ‖ exp(itA)‖L1(Ω)→L∞(Ω) 6 C|t|−
d
2 (t ∈ R\{0}).

Then A has a Hβ2 calculus on Lp(Ω;Y ) for any exponent β > d
2 + 1

2 . Moreover, (1.5) holds.
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For a proof of this theorem, we refer to Corollaries 4.9 and 4.23, where a slightly more
general formulation than Theorem 1.4 is used. Let us remark that the above Theorems 1.2, 1.3
and 1.4 are valid if Y is a UMD space isomorphic to a (UMD) lattice (having convexity and
concavity if applicable). This is e.g. the case if Y is a UMD space with an unconditional basis
[LTz1, p. 19]. Then for Theorem 1.3, one has to rewrite the square functions by Rademacher
sums as in (2.3) below.

We conclude this introduction with an overview of the sections. In Section 2, we introduce
the necessary background of the mathematical objects we study. In particular, in Subsection 2.1,
we introduce square function estimates as used in (1.3) in Banach spaces, define the Hörmander
function space and give some simple properties. Moreover, we indicate how one can define the
Hörmander calculus (1.2) for a semigroup generator, without using the self-adjoint calculus as
a starting point, which is missing for Bochner spaces Lp(Ω;Y ) unless Y itself is a Hilbert space.
Moreover, we give in Theorem 2.7 the above mentioned abstract criterion for the Hörmander
calculus from [KrW3]. In Subsection 2.2, we discuss the framework for the UMD lattice Y and
the needed properties, e.g. related to convexity and concavity. Next, we give in Subsection
2.3 the indications how a tensor amplificated operator T ⊗ IdY : Lp(Ω) ⊗ Y → Lp(Ω) ⊗ Y
extends properly to Lp(Ω;Y ). In Subsection 2.4, we recall the class of metric measure spaces Ω
that we use throughout as well as the above mentioned (generalised) Gaussian estimates (1.4).
Section 3 is entirely devoted to prove Theorem 1.1. Then Section 4 contains the main material
to prove the above Theorems 1.2 and 1.3, and we also give several sufficient criteria when A
admits the a priori needed H∞ calculus on Lp(Ω;Y ). For the reader’s convenience, we spell
out the Hörmander theorem in the important particular cases of Gaussian estimates and of the
case Y = Ls(Ω′) with Ω′ a further measure space (Corollary 4.13). We compare our results
with those from other literature (Remark 4.12). Moreover, we indicate some consequences of
Theorem 1.2 on Bochner-Riesz means and Paley-Littlewood decompositions in Bochner spaces.
The proof of Theorem 1.2 is based on extrapolation of (generalised) off-diagonal estimates from
real to complex time of the self-adjoint semigroup generated by A stemming from Blunck’s and
Kunstmann’s work, combined with the Hardy-Littlewood maximal operator theorem 1.1, and
uses the non-trivial convexity and concavity of Y . A different approach without the extrapo-
lation procedure and hence without referring to convexity and concavity is given in Subsection
4.1. Here, we present three cases in which complex time estimates of the semigroup are known:
first, the pure Laplacian case, which is one of the rare cases where the complex time integral
kernel is explicitly known, second, the extrapolation of Gaussian estimates from [CaCoOu] and
third, the case of Gaussian estimates combined with a dispersive estimate, see Corollary 4.23.
In the first and the third case, a Hörmander calculus theorem is derived with an exponent d+1

2 ,
which is worse than the one from Theorem 1.2 in case that Lp(Ω;Y ) is close to being Hilbert,
but is better in case that no particular information on convexity and concavity of Y is given.
Finally in Section 5, we illustrate a variety of cases when our Theorems 1.2, 1.3 and 1.4 apply.

2 Preliminaries
In this section, we define and recall the central notions of the article and we prove several
lemmas and results which will be relevant for the sequel. We first begin with preliminaries on
R-boundedness, H∞ functional calculus and Hörmander functional calculus.
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2.1 R-boundedness, H∞ functional calculus and Hörmander functional
calculus

Definition 2.1 Let X be a Banach space and τ ⊂ B(X). Then τ is called R-bounded if there
is some C <∞ such that for any n ∈ N, any x1, . . . , xn ∈ X and any T1, . . . , Tn ∈ τ, we have

E
∥∥∥∥ n∑
k=1

εkTkxk

∥∥∥∥
X

6 CE
∥∥∥∥ n∑
k=1

εkxk

∥∥∥∥
X

,

where the εk are i.i.d. Rademacher variables on some probability space, that is, Prob(εk =
±1) = 1

2 . The least admissible constant C is called R-bound of τ and is denoted by R(τ).

Note that trivially, we always have R({T}) = ‖T‖ for any T ∈ B(X). Although the notion of
R-boundedness is stated in the literature usually only for families of linear operators, it makes
literally perfectly sense for non-linear mappings X → X, and we shall use it later for sublinear
operators on Banach lattices.

Definition 2.2 Let X be a Banach space. We call a family τ of (in general non-linear) map-
pings X → X lower R-bounded if there exists a C < ∞ such that for any x1, x2, . . . , xn ∈ X
and T1, T2, . . . , Tn ∈ τ, we have

E
∥∥∥∥ n∑
k=1

εkxk

∥∥∥∥
X

6 C

∥∥∥∥ n∑
k=1

εkTkxk

∥∥∥∥
X

.

We next recall the necessary background on functional calculus that we will treat in this
article. Let −A be a generator of an analytic semigroup (Tz)z∈Σδ on some Banach space X, that
is, δ ∈ (0, π2 ], Σδ = {z ∈ C\{0} : | arg z| < δ}, the mapping z 7→ Tz from Σδ to B(X) is analytic,
Tz+w = TzTw for any z, w ∈ Σδ, and limz∈Σδ′ , |z|→0 Tzx = x for any strict subsector Σδ′ . We
assume that (Tz)z∈Σδ is a bounded analytic semigroup, which means supz∈Σδ′ ‖Tz‖ < ∞ for
any δ′ < δ.

It is well-known [EN, Theorem 4.6, p. 101] that this is equivalent to A being pseudo-ω-
sectorial for ω = π

2 − δ, that is,

1. A is closed and densely defined on X;

2. The spectrum σ(A) is contained in Σω (in [0,∞) if ω = 0);

3. For any ω′ > ω, we have supλ∈C\Σω′ ‖λ(λ−A)−1‖ <∞.

We say that A is ω-sectorial if it is pseudo-ω-sectorial and has moreover dense range. If A
is pseudo-ω-sectorial and does not have dense range, but X is reflexive, which will always be
the case in this article, then we may take the injective part A0 of A on R(A) ⊆ X [KW04,
Proposition 15.2], which then does have dense range and is ω-sectorial. Here, R(A) stands for
the range of A. Then −A generates an analytic semigroup on X if and only if so does −A0 on
R(A). This parallel will continue this section, i.e. the functional calculus for A0 can be extended
to A in an obvious way, see [KrPhD, Illustration 4.87].

For θ ∈ (0, π), let

H∞(Σθ) = {f : Σθ → C : f analytic and bounded}

equipped with the uniform norm ‖f‖∞,θ. Let further

H∞0 (Σθ) =
{
f ∈ H∞(Σθ) : ∃ C, ε > 0 : |f(z)| 6 C min(|z|ε, |z|−ε)

}
.
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For a pseudo-ω-sectorial operator A and θ ∈ (ω, π), one can define a functional calculus
H∞0 (Σθ)→ B(X), f 7→ f(A) extending the ad hoc rational calculus, by using a Cauchy integral
formula. If moreover, there exists a constant C < ∞ such that ‖f(A)‖ 6 C‖f‖∞,θ, then A is
said to have bounded H∞(Σθ) calculus and if A has dense range, the above functional calculus
can be extended to a bounded Banach algebra homomorphism H∞(Σθ)→ B(X). This calculus
also has the property fz(A) = Tz for fz(λ) = exp(−zλ), z ∈ Σπ

2−θ.
For further information on the H∞ calculus, we refer e.g. to [KW04]. We now turn to

Hörmander function classes and their calculi.

Definition 2.3 Let α > 1
2 . We define the Hörmander class by

Hα2 =
{
f : [0,∞)→ C is bounded and continuous on (0,∞), |f(0)|+ sup

R>0
‖φf(R ·)‖Wα

2 (R)︸ ︷︷ ︸
=:‖f‖Hα2

<∞
}
.

Here φ is any C∞c (0,∞) function different from the constant 0 function (different choices of
functions φ resulting in equivalent norms) and Wα

2 (R) is the classical Sobolev space.

The term |f(0)| is not needed in the functional calculus applications of Hα2 if A is in addition
injective. The Hörmander classes have the following properties.

Lemma 2.4 1. Assume that α ∈ N. Then a locally integrable function f : (0,∞) → C
belongs to the Hörmander class Hα2 if and only if

|f(0)|2 +
α∑
k=0

sup
R>0

∫ 2R

R

∣∣∣tk dk
dtk

f(t)
∣∣∣2 dt

t
<∞,

and the above quantity is equivalent to ‖f‖2Hα2 .

2. Hα2 is a Banach algebra for the pointwise multiplication.

3. Assume that 1
2 < α < β. Then Hβ2 ⊆ Hα2 is a continuous injection.

Proof : See [KrW3, Section 3], [KrPhD, Section 4.2.1] for the case that ‖f‖Hα2 does not contain
the summand |f(0)|. The present case is deduced immediately.

We can base a Hörmander functional calculus on theH∞ calculus by the following procedure.

Definition 2.5 We say that a pseudo-0-sectorial operator has a bounded Hα2 calculus if for
some θ ∈ (0, π) and any f ∈ H∞(Σθ), ‖f(A)‖ 6 C‖f‖Hα2 (6 C ′‖f‖∞,θ).

In this case, theH∞(Σθ) calculus can be extended to a bounded Banach algebra homomorphism
Hα2 → B(X) in the following way. Let

Wα
2 =

{
f : (0,∞)→ C : f ◦ exp ∈Wα

2 (R)
}

equipped with the norm ‖f‖Wα
2

= ‖f ◦ exp ‖Wα
2 (R). Note that for any θ ∈ (0, π), the space

H∞(Σθ) ∩ Wα
2 is dense in Wα

2 [KrW3]. Since Wα
2 ↪→ Hα2 , by the above density, we get a

bounded mapping Wα
2 → B(X) extending the H∞ calculus.

Definition 2.6 Let (φk)k∈Z be a sequence of functions in C∞c (0,∞) with the properties that
suppφk ⊂ [2k−1, 2k+1], φk(t) = φ0(2−kt) and

∑
k∈Z φk(t) = 1 for all t > 0. Then (φk)k∈Z is

called a dyadic partition of unity.
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Let (φk)k∈Z be a dyadic partition of unity. For f ∈ Hα2 , we have that φkf ∈ Wα
2 , hence

(φkf)(A) is well-defined. Then it can be shown that for any x ∈ X,
∑n
k=−n(φkf)(A)x converges

as n→∞ and that it is independent of the choice of (φk)k∈Z. This defines the operator f(A),
which in turn yields a bounded Banach algebra homomorphism Hα2 → B(X), f 7→ f(A). This
is the Hörmander functional calculus. For details of this procedure, we refer to [KrW3, Section
4], [KrPhD, Sections 4.2.3 - 4.2.6]. The Hörmander functional calculus is the central object in
this paper. We shall access it by the following Theorem from [KrW3, Theorem 7.1] or [KrPhD].
Here and in what follows we put C+ = Σπ

2
= {z ∈ C : <(z) > 0}. For the notion of Pisier’s

property (α) we refer e.g. to [KW04, 4.9].

Theorem 2.7 Let A be a generator of an analytic semigroup on some reflexive Banach space
X with property (α). Assume that A has an H∞(Σσ) calculus to some angle σ ∈ (0, π) and that

(2.1)
{

exp(−teiθA) : t > 0
}

is R-bounded in B(X) with R-bound 6 C(cos(θ))−α. This is clearly the case if

(2.2)
{(

cos(arg z)
)α exp(−zA) : z ∈ C+

}
is R-bounded in B(X). Then A has a Hörmander functional calculus Hβ2 on X with β > α+ 1

2 .

Proof : The Theorem is proved in [KrW3, Theorem 7.1] under condition (2.2) and for A having
dense range. An inspection of the proof given there shows that (2.1) is sufficient, and the above
alluded passage from the injective part A0 to A together with |f(0)| 6 ‖f‖Hβ2 allows to conclude
for general A.

2.2 UMD spaces, Banach lattices, p-convexity and q-concavity
In this article, UMD lattices, i.e. Banach lattices which enjoy the UMD property, play a
prevalent role. For a general treatment of Banach lattices and their geometric properties, we
refer the reader to [LTz, Chapter 1]. We recall now definitions and some useful properties. A
Banach space Y is called UMD space if the Hilbert transform

H : Lp(R)→ Lp(R), Hf(x) = lim
ε→0

∫
|x−y|>ε

1
x− y

f(y) dy

extends to a bounded operator on Lp(R;Y ), for some (equivalently for all) 1 < p <∞ [HvNVW,
Theorem 5.1]. The importance of the UMD property in harmonic analysis was recognized
for the first time by Burkholder [Bur81, Bur83], see also his survey [Bur01]. He settled a
geometric characterization via a convex functional [Bur81] and together with Bourgain [Bou83],
they showed that the UMD property can be expressed by boundedness of Y -valued martingale
sequences. A UMD space is super-reflexive [Al79], and hence (almost by definition) B-convex.

A Köthe function space Y is a Banach lattice consisting of equivalence classes of locally
integrable functions on some σ-finite measure space (Ω′, µ′) with the additional properties

1. If f : Ω′ → C is measurable and g ∈ Y is such that |f(ω′)| 6 |g(ω′)| for almost every
ω′ ∈ Ω′, then f ∈ Y and ‖f‖Y 6 ‖g‖Y .

2. The indicator function 1A is in Y whenever µ′(A) <∞.

3. Moreover, we will assume that Y has the Fatou property: If a sequence (fk)k of non-
negative functions in Y satisfies fk(ω′)↗ f(ω′) for almost every ω′ ∈ Ω′ and supk ‖fk‖Y <
∞, then f ∈ Y and ‖f‖Y = limk ‖fk‖Y .
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Note that for example, any Lp(Ω′) space with 1 6 p 6∞ is such a Köthe function space.

Assumption 2.8 In the rest of the paper, Y = Y (Ω′) will always be a UMD space which is
also a Köthe function space, unless otherwise stated.

By B-convexity, Y is order continuous and therefore Y and its dual Y ′ can be represented
on the same measure space (Ω′, µ′), and moreover the duality is given simply by

〈y, y′〉 =
∫

Ω′
y(ω′)y′(ω′) dµ′(ω′),

see [LTz, 1.a, 1.b]. It is not difficult to show that if Y is UMD, then also its dual is UMD.
Hence the dual of a UMD lattice is again a UMD lattice. Lp(Ω;Y ) is reflexive for (Ω, µ) a
σ-finite measure space, Y a UMD space and 1 < p < ∞, since Y is reflexive and thus has the
Radon-Nikodym property. As a survey for UMD lattices and their properties in connection
with results in harmonic analysis, we refer the reader to [RdF].

Let Y = Y (Ω′) be a B-convex Banach lattice and (εk)k an i.i.d. Rademacher sequence.
Then we have the norm equivalence

(2.3) E
∥∥∥∥ n∑
k=1

εkyk

∥∥∥∥
Y

∼=
∥∥∥∥( n∑

k=1
|yk|2

) 1
2
∥∥∥∥
Y

uniformly in n ∈ N [Ma74]. In particular, this also applies to Lp(Ω;Y ), 1 < p < ∞, since this
will also be a B-convex Banach lattice.

Let E be any Banach space. We can consider the vector valued lattice Y (E) = {F : Ω′ →
E : F is strongly measurable and ω′ 7→ ‖F (ω′)‖E ∈ Y } with norm ‖F‖Y (E) =

∥∥‖F (·)‖E
∥∥. If Y

and E are Banach lattices that are Köthe function spaces with a σ-order continuous norm (e.g.
an Lp space for p <∞ [Lind, p. 235] or more generally, a UMD lattice), then [Y (E)]′ = Y ′(E′)
[Lind, p. 239, p. 237]. From [RdF, Corollary p. 214], we know that if Y is UMD and E is UMD,
then also Y (E) is UMD. Recall now the definition of p-convexity and q-concavity.

Definition 2.9 Let Y be a Banach lattice and 1 6 p, q 6∞. Then Y is called p-convex if there
exists a constant C <∞ such that for any x1, . . . , xn ∈ Y , we have∥∥∥∥∥

( n∑
i=1
|xi|p

) 1
p

∥∥∥∥∥
Y

6 C

( n∑
i=1
‖xi‖pY

) 1
p

.

Similarly, Y is called q-concave if there exists a constant C > 0 such that for any x1, . . . , xn ∈ Y ,
we have ∥∥∥∥∥

( n∑
i=1
|xi|q

) 1
q

∥∥∥∥∥
Y

> C

( n∑
i=1
‖xi‖qY

) 1
q

.

We now state several lemmas which will be relevant for the sequel.

Lemma 2.10 Let Y = Y (Ω′) be a Banach lattice and 1 6 p <∞. Suppose that Y is p-convex.
Then Y p = {z : Ω′ → C : z measurable and there exists some y ∈ Y : |z| = yp} together with
the order induced by Y and the norm ‖z‖Y p =

∥∥ |z| 1p ∥∥p
Y

is a Banach lattice. Y p is called the
p-convexification of Y .

Proof : See [RdF, (c.2)].
Note that we clearly have for 1 6 p 6 q <∞ that Y q = (Y p)q/p.
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Lemma 2.11 Let Y (Ω′) = [Y0(Ω′), L2(Ω′)]θ be the complex interpolation space between a Ba-
nach lattice over Ω′ and a Hilbert space, and θ ∈ (0, 1). Then Y (Ω′) is p-convex and q-concave
for 1

p = (1− θ) + θ
2 and 1

q = θ
2 . Conversely, any p-convex and q-concave Banach lattice Y (Ω′)

with values of p and q as above for some θ ∈ (0, 1) is, after renorming, of the form above.

Proof : Note Calderon’s complex interpolation identity [Y0, L
2]θ = Y 1−θ

0 (L2)θ = {y : Ω′ → C :
y measurable and |y| = |y0|1−θ|y1|θ for some y0 ∈ Y0, y1 ∈ L2} [RdF, (c.3)]. Then the Lemma
follows from the description of p-convex and q-concave lattices [TJ, p. 218-219, Theorem 28.1]
after a possible renorming to have convexity and concavity constants equal to 1 (see e.g. [Lor,
Proposition 3.3.6]), together with the fact that a Hilbert space is both 2-convex and 2-concave.

Lemma 2.12 Let 1 6 p 6 s 6 ∞ with p < ∞. Then Ls(Ω′) is s-convex and s-concave. Its
p-convexification identifies to Ls(Ω′)p = L

s
p (Ω′).

Proof : We clearly have
∥∥∥(∑

i

|xi|s
) 1
s
∥∥∥
Ls(Ω′)

=
(∑

i

‖xi‖sLs(Ω′)
) 1
s , which immediately gives

s-convexity and s-concavity. Moreover, ‖x‖Ls(Ω′)p =
∥∥ |x| 1p ∥∥p

Ls(Ω′) = ‖x‖
L
s
p (Ω′)

, which shows
the second statement.

Lemma 2.13 Let p ∈ [1, 2).

1. If Y is a p-convex UMD lattice, then Y (`2) is also p-convex.

2. If Y is a p-convex UMD lattice and Y p is also UMD, then Y (`2)p is UMD.

3. Y is a p-convex Banach lattice if and only if Y ′ is a p′-concave Banach lattice.

4. If Y is a p-convex Banach lattice, then it is also a q-convex Banach lattice for any q ∈
(0, p).

5. If Y is a UMD lattice, then there exists some ε > 0 such that for any 0 < q < 1 + ε, Y q
is a UMD lattice.

Proof : 1. Note that since p 6 2, we have `p(`2) ↪→ `2(`p) (contractively). This implies that if
yik ∈ Y , then pointwise{∑

i

(∑
k

|yik(ω′)|p
) 2
p

} 1
2

6

{∑
k

(∑
i

|yik(ω′)|2
) p

2
} 1
p

.

Since Y is a lattice, this implies∥∥∥∥∥
{∑

i

(∑
k

|yik|p
) 2
p

} 1
2
∥∥∥∥∥
Y

6

∥∥∥∥∥
{∑

k

(∑
i

|yik|2
) p

2
} 1
p
∥∥∥∥∥
Y

6

{∑
k

∥∥∥∥∥
(∑

i

|yik|2
) 1

2
∥∥∥∥∥
p

Y

} 1
p

,

where we have used that Y is p-convex in the last step.
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2. Let H be the Hilbert transform on L2(R). Let further
∑
k fk ⊗ (zki )i ∈ L2(R)⊗ Y (`2)p.

We calculate∥∥∥∥∥(H ⊗ IdY (`2)p
)(∑

k

fk ⊗ (zki )i
)∥∥∥∥∥

2

L2(R;Y (`2)p)

=
∫
R

∥∥∥∥∥∑
k

Hfk(t)(zki )i

∥∥∥∥∥
2

Y (`2)p
dt

=
∫
R

∥∥∥∥∥
(∑

i

∣∣∣∑
k

Hfk(t)zki
∣∣∣ 2
p

) 1
2
∥∥∥∥∥

2p

Y

dt

=
∫
R

∥∥∥∥∥
(∑

i

∣∣∣∑
k

Hfk(t)zki
∣∣∣ 2
p

) p
2
∥∥∥∥∥
p

Y p

dt.

The latter is a norm in L2(R;Y p(`
2
p )). Since Y p is a UMD space and `

2
p also is a UMD space

(as 2
p > 1), according to [RdF, Corollary p. 214], Y p(`

2
p ) is also a UMD space. Thus we can

estimate the expression above by the same term without H, which shows that Y (`2)p is UMD.
3. We refer to [LTz, Proposition 1.d.4].
4. We refer to [Lin, Remark 3.4.14 (1)].
5. This is proved in [RdF, Theorem 4].

Remark 2.14 In [RdF, Problem 3], Rubio de Francia asks the question: if Y is a UMD lattice
that is also p-convex, is then also Y q a UMD lattice for any q < p? This problem seems to be
open since 1986. In several instances in this article, we need that for a p-convex UMD lattice
Y , the convexification Y p is also UMD and have thus to assume the latter as well.

We turn to vector valued Lp spaces, which are the underlying Banach spaces at the center
of interest in this article. In what follows, we let (Ω, µ) be a σ-finite measure space. For later
use, we record the following fact.

Lemma 2.15 Let Y be a UMD lattice and p ∈ (1,∞). Then Lp(Ω;Y ) has Pisier’s property
(α).

Proof : Since Y is UMD, it has finite concavity, and so finite cotype [LTz, Proposition 1.f.3].
Thus, also Lp(Ω;Y ) has finite cotype [DiJT, Theorem 11.12]. Then according to [KW04, N 4.8
- 4.10], the Banach function space Lp(Ω;Y ) has property (α).

2.3 Tensor extension of operators to vector valued Lp spaces
We recall some technical points on linear and sublinear operators acting on Lp(Ω) and their
tensor extensions to Lp(Ω;Y ), where Y is a UMD lattice. For an operator T acting on Lp(Ω)
with 1 < p < ∞ and Y any Banach space, we can consider the tensor extension T ⊗ IdY :
Lp(Ω)⊗Y → Lp(Ω)⊗Y defined by (T ⊗IdY )(

∑n
k=1 fk⊗yk) =

∑n
k=1 Tfk⊗yk. Since Lp(Ω)⊗Y

is dense in Lp(Ω;Y ), T ⊗ IdY extends to a bounded operator on Lp(Ω;Y ) if and only if∥∥∥ n∑
k=1

Tfk ⊗ yk
∥∥∥
Lp(Ω;Y )

6 C
∥∥∥ n∑
k=1

fk ⊗ yk
∥∥∥
Lp(Ω;Y )

for some C < ∞ and any
∑n
k=1 fk ⊗ yk ∈ Lp(Ω) ⊗ Y . We denote such an extension by slight

abuse of notation again by T .
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Definition 2.16 For D ⊂ Lp(Ω;Y ) a subspace (D = Lp(Ω) ⊗ Y mainly), T : D → Lp(Ω;Y )
is called sublinear if

|T (cf)| = |c| |Tf |
|T (f + g)| 6 |Tf |+ |Tg|

|T (f)− T (g)| 6 |T (f − g)|

for any f, g ∈ D and c ∈ C.

Lemma 2.17 Let D above be a dense subspace of Lp(Ω;Y ) and T : D → Lp(Ω;Y ) be a
sublinear operator. Assume that T is bounded, that is, ‖Tf‖Lp(Ω;Y ) 6 C‖f‖Lp(Ω;Y ) for any
f ∈ D. Then T extends uniquely to a bounded sublinear operator T : Lp(Ω;Y )→ Lp(Ω;Y ).

Proof : For f ∈ Lp(Ω;Y ), let (fn)n be an approximating sequence in D. Define Tf = limn Tfn.
Hereby, by sublinearity of T , we have ‖Tfn−Tfm‖ 6 ‖T (fn−fm)‖ 6 C‖fn−fm‖, so that Tfn
is indeed a Cauchy sequence in Lp(Ω;Y ) and the limit does not change if the approximating
sequence is changed. Hence, T : Lp(Ω;Y )→ Lp(Ω;Y ) is well-defined. Now boundedness is easy
to show.

In a similar manner, one can prove the following variant of the above lemma.

Lemma 2.18 Let τ be a family of bounded sublinear operators on Lp(Ω;Y ). Let D be a dense
subspace of Lp(Ω;Y ).

1. Suppose that τ is R-bounded D → Lp(Ω;Y ), that is, there exists a constant C <∞ such
that for any T1, T2, . . . , TN ∈ τ and f1, . . . , fN ∈ D, we have∥∥∥∥∥

(∑
n

|Tnfn|2
) 1

2
∥∥∥∥∥
Lp(Ω;Y )

6 C

∥∥∥∥∥
(∑

n

|fn|2
) 1

2
∥∥∥∥∥
Lp(Ω;Y )

.

Then τ is R-bounded Lp(Ω;Y )→ Lp(Ω;Y ).

2. Suppose that τ is lower R-bounded D → Lp(Ω;Y ). Then τ is lower R-bounded Lp(Ω;Y )→
Lp(Ω;Y ).

We will close the preliminaries with the following subsection, which deals with space of
homogeneous type and (generalised) Gaussian estimates.

2.4 Spaces of homogeneous type, (generalised) Gaussian estimates
Let us first recall the definition of space of homogeneous type.

Definition 2.19 Let (Ω,dist, µ) be a metric measure space, that is, dist is a metric on Ω and
µ is a Borel measure on Ω. We denote B(x, r) = {y ∈ Ω : dist(x, y) 6 r} the closed balls of Ω.
We assume that µ(B(x, r)) ∈ (0,∞) for any x ∈ Ω and r > 0. Then Ω is said to be a space of
homogeneous type if there exists a constant C <∞ such that the doubling condition holds:

µ(B(x, 2r)) 6 Cµ(B(x, r)) (x ∈ Ω, r > 0).

We write in short V (x, r) = µ(B(x, r)). In what follows, (Ω,dist, µ) is always a space
of homogeneous type. It is well-known that there exists some finite d ∈ (0,∞) such that
V (x, λr) 6 CλdV (x, r) for any x ∈ Ω, r > 0 and λ > 1. Such a d is called (homogeneous)
dimension of Ω.
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Lemma 2.20 Let (Ω,dist, µ) be a space of homogeneous type. Then there exists a constant
C > 0 such that for all r > 0 and x, y ∈ Ω with dist(x, y) 6 r :

1
C
V (x, r) 6 V (y, r) 6 CV (x, r).

Proof : One has B(x, r) ⊆ B(y, 2r), so V (x, r) 6 V (y, 2r) 6 CV (y, r) according to the doubling
condition. The converse inequality is proved in the same way.

We now introduce both the notions of Gaussian estimates and generalised Gaussian esti-
mates.

Definition 2.21 Let (Tt)t>0 be a semigroup acting on L2(Ω). Assume that

Ttf(x) =
∫

Ω
pt(x, y)f(y) dy

for any f ∈ L2(Ω), x ∈ Ω, t > 0 and some measurable functions pt : Ω × Ω → C. Let m > 2.
Then (Tt)t is said to satisfy Gaussian estimates (of order m) if there exist constants C, c > 0
such that

(2.4) |pt(x, y)| 6 C 1
V (x, rt)

exp
(
−c
(

dist(x, y)
rt

) m
m−1

)
(x, y ∈ Ω, t > 0),

where rt = t
1
m .

Definition 2.22 Let (Ω,dist, µ) be a space of homogeneous type. Let A be a self-adjoint oper-
ator on L2(Ω) generating the semigroup (Tt)t>0. Let p0 ∈ [1, 2) and m ∈ [2,∞). We say that
(Tt)t>0 satisfies generalised Gaussian estimates (with parameters p0,m) if there exist c, C <∞
such that

(2.5)
∥∥1B(x,rt)Tt1B(y,rt)

∥∥
Lp0 (Ω)→Lp

′
0 (Ω)

6 C|V (x, rt)|
−( 1

p0
− 1
p′0

)
exp
(
−c
(

dist(x, y)
rt

) m
m−1

)
(x, y ∈ Ω, t > 0),

where rt = t
1
m .

Remark 2.23 According to [BK02, Proposition 2.9] and [BK05, Proposition 2.1], Gaussian
estimates (2.4) with parameter m > 2 for a semigroup imply generalised Gaussian estimates
(2.5) with parameter p0 = 1 and m. Moreover, according to [BK05, Proposition 2.1], generalised
Gaussian estimates with parameters p0 ∈ [1, 2) and m > 2 imply generalised Gaussian estimates
with parameters p1 ∈ [p0, 2) and m.

Remark 2.24 Assume that a semigroup is self-adjoint and satisfies generalised Gaussian es-
timates (2.5). Then according to [BK02, Proposition 2.1 (1) =⇒ (2) with u = v = 2], we
have

‖1B1Tt1B2‖2→2 6 g(dist(B1, B2)r−1)

for any ball B1, B2 ⊆ Ω, with g some bounded decreasing function. This implies in particular
that supt>0 ‖Tt‖2→2 < ∞, which in turn gives σ(A) ⊆ [0,∞). Thus any of our self-adjoint
generators A of the semigroup Tt satisfying generalised Gaussian estimates is positive.
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In our work, we will make use of the fact that a space of homogeneous type Ω can be
partitioned into finer and finer subsets which take over the role of dyadic cubes in Rd. This is
the content of the following theorem.

Theorem 2.25 Let (Ω,dist, µ) be a space of homogeneous type. One can construct a dyadic
system D =

⋃
k∈ZDk, where each collection Dk consists of pairwise disjoint sets of positive

measure, dyadic cubes, with the following properties:

• Ω =
⋃
Q∈Dk Q,

• if Q ∈ Dk and R ∈ Dl with l > k, then either R ⊂ Q or Q ∩R = ∅,

• for some scaling parameter δ ∈ (0, 1) it holds that, every Q ∈ Dk contains a point z for
which

B(z, δk/3) ⊂ Q ⊂ B(z, 2δk).

Proof : Theorem 2.2 in [HyKa] with δ 6 1/12, c0 = C0 = 1, c1 = 1/3, C1 = 2, together with
[HyKa, 2.21].

According to the next two lemmas, arbitrary balls in Ω are comparable to these dyadic cubes
in a certain sense.

Lemma 2.26 Let (Ω,dist, µ) be a space of homogeneous type. Let D be a dyadic system from
Theorem 2.25. For every r > 0 there exists an integer k(r) such that if x ∈ Q ∈ Dk(r), then
Q ⊂ B(x, r) and µ(B(x, r)) . µ(Q) with implied constant independent of x and r.

Proof : For r > 0 let k(r) be the smallest integer for which δk(r) < r/4, so that δr 6 4δk(r) < r.
For any x ∈ Ω and r > 0, there exists a unique Q ∈ Dk(r) containing x. Now, for some z ∈ Q,
since dist(x, z) 6 2δk(r),

Q ⊂ B(z, 2δk(r)) ⊂ B(x, 4δk(r)) ⊂ B(x, r).

On the other hand, r 6 4δk(r)−1 = 12δ−1(δk(r)/3) so that

µ(B(x, r)) . µ(B(z, r)) . µ(B(z, δk(r)/3)) 6 µ(Q),

where we have used Lemma 2.20 together with dist(x, z) 6 2δk(r) 6 r.

Lemma 2.27 Let (Ω, µ) be a space of homogeneous type. There exists a finite collection of
dyadic systems Dm on Ω, so that for every ball B one can find a dyadic cube QB in one of the
systems such that B ⊂ QB and µ(QB) . µ(B).

Proof : See [HyKa, 2.21 and Theorem 4.1].

3 The Hardy-Littlewood lattice maximal function
In this section we consider the Hardy-Littlewood lattice maximal function

(3.1) MHL(f)(x, ω′) = sup
r>0

1
V (x, r)

∫
B(x,r)

|f(y, ω′)| dµ(y), x ∈ Ω, ω′ ∈ Ω′,

and prove the following result:
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Theorem 3.1 MHL is bounded on Lp(Ω;Y ) for any p ∈ (1,∞) and for every UMD lattice Y .

Boundedness of such vector-valued maximal operators originates in the case Y = `q and
Ω = Rd in the work of Fefferman and Stein [FeSt]. The boundedness of lattice maximal
operators is commonly abstracted in the following Banach space property [GMT1, GMT2]:

Definition 3.2 Let Y = Y (Ω′) be a Banach lattice and denote by D the family of dyadic
intervals on the unit interval [0, 1). The space Y is said to have the Hardy-Littlewood property
if the dyadic lattice maximal function

(3.2) Md(f)(x, ω′) = sup
I3x
I∈D

1
|I|

∣∣∣∣∫
I

f(y, ω′) dy
∣∣∣∣, x ∈ [0, 1), ω′ ∈ Ω′,

defines a bounded operator on Lp([0, 1);Y ) for one (or, equivalently, for all) p ∈ (1,∞).

Note that the definition in [GMT1] refers directly to MHL on Rd. The point of this section
is to extend this property toMHL on spaces of homogeneous type, and it is useful to begin with
dyadic maximal operators. It is immediately clear that MHL dominates any dyadic maximal
operator on Rd. Conversely, using the well-known Euclidean version of Lemma 2.27 above, we
see that dyadic maximal operators dominate MHL. The equivalence between the definition in
[GMT1] and the one above will thereby quickly follow from our considerations.

The UMD property was connected with the Hardy-Littlewood property by Bourgain in
[Bou84, Lemma 1], see also [RdF, Theorem 3].

Theorem 3.3 (Bourgain) Let Y be a Banach lattice. Then Y is UMD if and only if Y and
Y ′ have the Hardy-Littlewood property.

The proof of Theorem 3.1 is based on the following transference result:

Lemma 3.4 Let Y = Y (Ω′) be a Banach lattice. Further, let F = (Fk)k∈Z be a filtration
on (Ω, µ) and denote by Ek the corresponding conditional expectation operators. If Y has the
Hardy-Littlewood property, then the lattice maximal function

(3.3) MF (f)(x, ω′) = sup
k∈Z
|Ekf(x, ω′)|, x ∈ Ω, ω′ ∈ Ω′,

defines a bounded operator on Lp(Ω;Y ) for all p ∈ (1,∞). Moreover, the operator norm of MF
is not greater than the operator norm of Md.

The proof of Lemma 3.4 is based on a concave function argument originating from the work
of Burkholder [Bur81] (see also [Bur01]). We follow closely the argument presented in [Kempp1,
Section 7]. We begin by observing that, given a filtration (Fk)k∈N on (Ω, µ), the inequality

(3.4)
∫

Ω

∥∥ sup
06k6n

|Ekf(x, ·)|
∥∥p dµ(x) 6 C

∫
Ω
‖Enf(x)‖p dµ(x), f ∈ Lp(Ω;Y ), n ∈ N,

where C is a fixed constant, is equivalent with

(∗)
∫

Ω
Vp

(
{Ekf(x)}nk=0, Enf(x)

)
dµ(x) 6 0, f ∈ Lp(Ω, Y ), n ∈ N,

where

(3.5) Vp(S, y) =
∥∥ sup
y′∈S
|y′(·)|

∥∥p − C‖y‖p, S ⊂ Y finite, y ∈ Y.
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Lemma 3.5 Suppose that Y is a Banach lattice and let 1 < p <∞. The following conditions
are equivalent:

1. (∗) holds for the dyadic filtration on the unit interval (with the Lebesgue measure).

2. There exists a real-valued function U : {finite subsets of Y } × Y → R such that

• U(S, y) > Vp(S, y)
• U(S ∪ {y}, y) = U(S, y)
• U(∅, y) 6 0
• U(S, ·) is concave

for finite subsets S of Y and y ∈ Y .

3. (∗) holds for any filtration on any σ-finite measure space.

Proof : 1. ⇒ 2. We define

(3.6) U(S, y) = sup
{∫ 1

0
Vp

(
S ∪ {Ekf(x)}nk=0, Enf(x)

)
dx :

∫ 1

0
f(x) dx = y, f Fn-measurable and Y -valued, n ∈ N

}
for finite S ⊂ Y and y ∈ Y .

That U(S, y) > Vp(S, y) is immediate from the definition of U already with n = 0. Likewise,
that U(S ∪ {y}, y) = U(S, y) follows at once from the observation that {y} ⊂ {Ekf(x)}nk=0 for
almost every x ∈ [0, 1) whenever

∫ 1
0 f(x) dx = y and n ∈ N. That U(∅, y) 6 0 is exactly the

assumption 1.
To see that U(S, ·) is concave, we first show that it is midpoint concave, i.e. that for any

y1, y2 ∈ Y we have

(3.7) U
(
S,
y1 + y2

2

)
>

1
2
(
U(S, y1) + U(S, y2)

)
.

To deal with the suprema, let mi < U(S, yi) for i = 1, 2. By the definition of U there exist
functions f1, f2 ∈ Lp([0, 1);Y ) for which

∫ 1
0 fi(x) dx = yi and∫ 1

0
Vp

(
S ∪ {Ekfi(x)}nk=0, Enfi(x)

)
dx > mi, i = 1, 2.

The function defined as

f(x) =
{
f1(2x), 0 6 x < 1/2,
f2(2x− 1), 1/2 6 x < 1,

will then satisfy ∫ 1

0
Vp

(
S ∪ {Ekf(x)}n+1

k=0 , En+1f(x)
)
dx >

m1 +m2

2 .

To see this note that

{Ekf(x)}n+1
k=1 ⊃ {Ekf1(2x)}nk=0, 0 6 x < 1/2,

{Ekf(x)}n+1
k=1 ⊃ {Ekf2(2x− 1)}nk=0, 1/2 6 x < 1.

16



Therefore ∫ 1/2

0
Vp

(
S ∪ {Ekf(x)}n+1

k=0 , En+1f(x)
)
dx

>
∫ 1/2

0
Vp

(
S ∪ {Ekf1(2x)}nk=0, Enf1(2x)

)
dx

= 1
2

∫ 1

0
Vp

(
S ∪ {Ekf1(x)}nk=0, Enf1(x)

)
dx >

m1

2

and similarly ∫ 1

1/2
Vp

(
S ∪ {Ekf(x)}n+1

k=0 , En+1f(x)
)
dx >

m2

2 .

Since mi were arbitrary, (3.7) follows.
To finish this part of the proof, we remark that a midpoint concave function that is also

locally bounded from below is actually concave. We have now shown that U satisfies the required
conditions.

2. ⇒ 3. (finite space, finite algebras) For this step we first consider filtrations of finite
algebras and then reduce the general case to this.

Claim: If (Fk)k∈N is a filtration of finite algebras on a finite measure space (Ω, µ), then

(3.8)
∫

Ω
U
(
{Ekf(x)}nk=0, Enf(x)

)
dµ(x) 6

∫
Ω
U
(
{Ekf(x)}n−1

k=0 , En−1f(x)
)
dµ(x)

for all f ∈ L1(Ω;Y ) and n ∈ N.
Proof of claim: By the second property in Lemma 3.5 2., U

(
{Ekf(x)}nk=0, Enf(x)

)
=

U
(
{Ekf(x)}n−1

k=0 , Enf(x)
)
. Moreover, on each generator A of the (finite) algebra Fn−1, the set

{Ekf(x)}n−1
k=0 is a constant YA and

(3.9)
∫
A

U
(
YA, Enf(x)

)
dµ(x) 6 µ(A)U

(
YA,

1
µ(A)

∫
A

Enf(x) dµ(x)
)
.

Therefore ∫
Ω
U
(
{Ekf(x)}nk=0, Enf(x)

)
dµ(x)

=
∑

A∈gen(Fn−1)

∫
A

U
(
YA, Enf(x)

)
dµ(x)

6
∑

A∈gen(Fn−1)

µ(A)U
(
YA,

1
µ(A)

∫
A

Enf(x) dµ(x)
)

=
∑

A∈gen(Fn−1)

∫
A

U
(
YA, En−1f(x)

)
dµ(x)

=
∫

Ω
U
(
{Ekf(x)}n−1

k=0 , En−1f(x)
)
dµ(x).

(3.10)

We have now shown: 2. implies that the maximal function

M
(n)
F (f)(x, ω′) = sup

06k6n
|Ekf(x, ω′)|, x ∈ Ω, ω′ ∈ Ω′,
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satisfies

(3.11) ‖M (n)
F (f)‖Lp(Ω;Y ) 6 C‖Enf‖Lp(Ω;Y ), f ∈ Lp(Ω;Y ), n ∈ N,

uniformly for all filtrations (Fk)k∈N of finite algebras on any finite measure space (Ω, µ).
2. ⇒ 3. (reduction to finite algebras) To see that the finiteness requirement for

σ-algebras is not necessary we argue as follows:
Suppose that (Fk)k∈N is a filtration, n a positive integer and f a function in Lp(Ω;Y ). Let

ε > 0 and begin by choosing simple functions sk ∈ Lp(Fk;Y ), k = 0, 1, . . . , n, so that

‖Ekf − sk‖Lp(Ω;Y ) <
ε

2k+2 .

For k = 0, 1, . . . , n, let F̃k be the finite algebra generated by s0, s1, . . . , sk and observe that
F̃k ⊂ Fk and that F̃k ⊂ F̃k+1, i.e. that (F̃k)nk=0 is a filtration. Now

‖M (n)
F (f)‖Lp(Ω;Y ) =

(∫
Ω

∥∥ sup
06k6n

Ekf(x, ·)
∥∥p dµ(x)

)1/p

6

(∫
Ω

∥∥ sup
06k6n

(Ekf(x, ·)− Ẽkf(x, ·))
∥∥p dµ(x)

)1/p

+ ‖M̃ (n)
F (f)‖Lp(Ω;Y ),

where the maximal operator M̃ (n)
F satisfies ‖M̃ (n)

F (f)‖Lp(Ω;Y ) 6 C‖Enf‖Lp(Ω;Y ) for a constant
C independent of the filtration (F̃k)nk=0. This independence is crucial, as F̃k’s arose from f .

We then estimate (∫
Ω

∥∥ sup
06k6n

(Ekf(x, ·)− Ẽkf(x, ·))
∥∥p dµ(x)

)1/p

6

(∫
Ω

( n∑
k=0

∥∥Ekf(x, ·)− Ẽkf(x, ·)
∥∥)p dµ(x)

)1/p

6
n∑
k=0
‖Ekf − Ẽkf‖Lp(Ω;Y )

6
n∑
k=0

(∥∥Ekf − sk∥∥Lp(Ω;Y ) + ‖Ẽkf − sk‖Lp(Ω;Y )

)
.

Furthermore, since

‖Ẽkf − sk‖Lp(Ω;Y ) = ‖Ẽkf − Ẽksk‖Lp(Ω;Y ) = ‖Ẽk(Ekf − sk)‖Lp(Ω;Y )

6 ‖Ekf − sk‖Lp(Ω;Y ),

we get (∫
Ω

∥∥ sup
06k6n

(Ekf(x, ·)− Ẽkf(x, ·))
∥∥p dµ(x)

)1/p
6 2

n∑
k=0
‖Ekf − sk‖Lp(Ω;Y )

<

n∑
k=0

ε

2k+1 < ε.

18



2. ⇒ 3. (reduction to finite space) As the final step, we will get rid of the assumption
that the measure space (Ω, µ) is finite.

Suppose then that (3.11) holds uniformly with respect to any filtration F on any finite
measure space and let (Ω, µ) be a σ-finite measure space with a filtration F = (Fk)∞k=0. Since
F0 is σ-finite (by assumption), we can write Ω as a union of disjoint sets Aj ∈ F0, j ∈ N, each
with finite µ-measure. Let us define for j ∈ N the finite measures µj(A) = µ(A ∩ Aj) on Ω.
The conditional expectation of a function f ∈ Lp(Ω;Y ) with respect to Fk and µj is simply the
conditional expectation of 1Ajf with respect to Fk which further equals 1AjEkf (since F0 ⊂ Fk
for all k). In symbols

E
(j)
k f = 1AjEkf,

where E(j)
k f denotes the conditional expectation of f with respect to Fk and µj . Thus

‖M (n)
F (f)‖pLp(Ω;Y ) =

∞∑
j=0

∫
Aj

∥∥ sup
06k6n

Ekf(x, ·)
∥∥p dµ(x)

=
∞∑
j=0

∫
Aj

∥∥ sup
06k6n

E
(j)
k f(x, ·)

∥∥p dµj(x)

6
∞∑
j=0

Cp
∫
Aj

∥∥Enf(x, ·)
∥∥p dµj(x)

= Cp‖Enf‖pLp(Ω;Y ).

So far we have only considered filtrations indexed by N. Suppose that (3.11) holds with
respect to any filtration indexed by N on any σ-finite measure space and let F = (Fk)k∈Z be a
filtration on (Ω, µ). Then for all N > 0, (3.11) holds with respect to (Fk)∞k=−N with a constant
independent of N and thus by monotone convergence theorem with respect to (Fk)k∈Z.

This finishes the proof.
Let now D =

⋃
k∈ZDk be a dyadic system on Ω as in Theorem 2.25. Denote by Fk the

σ-algebra generated by Dk and note that the corresponding conditional expectation is

(3.12) Ekf(x) =
∑
Q∈Dk

1Q(x)
µ(Q)

∫
Q

f(y) dµ(y).

The maximal function associated with the increasing filtration (Fk)k∈Z is therefore given by

(3.13) MF (f)(x, ω′) = sup
Q3x
Q∈D

1
µ(Q)

∣∣∣∣∫
Q

f(y, ω′) dµ(y)
∣∣∣∣, x ∈ Ω, ω′ ∈ Ω′.

Lemma 2.27 allows us to control the Hardy-Littlewood lattice maximal function MHL by
its dyadic counterparts. Indeed, we see that for any ball B,

(3.14) 1
µ(B)

∫
B

|f(y, ω′)| dµ(y) . 1
µ(QB)

∫
QB

|f(y, ω′)| dµ(y).

Therefore,

(3.15) MHL(f)(x, ω′) .
∑
m

MFm(|f |)(x, ω′), x ∈ Ω, ω′ ∈ Ω′,
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where Fm are the filtrations arising from the finite collection of dyadic systems Dm.
We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 : The result is an immediate consequence of the considerations above.
Indeed, if Y is a UMD lattice, it has the Hardy-Littlewood property by Theorem 3.3. By
Lemma 2.27, we may construct dyadic filtrations Fm so that MHL is dominated pointwise by
the sum of MFm as in (3.15). By Lemma 3.4, the latter maximal operators are bounded on
Lp(Ω;Y ) for any p ∈ (1,∞), and therefore so is MHL.

We remark that in the case Y = `s(`2), Theorem 3.1 can be proved by a similar method
as [GLY, Theorem 1.2, Corollary 2.9]. Important for our later considerations will also be the
following variant of the centered Hardy-Littlewood maximal operator.

Definition 3.6 Let f : Ω→ Y locally integrable, q ∈ [1,∞] and r > 0.

1. We put

(3.16) Nq,r(f)(x, ω′) = 1
V (x, r)

1
q

(∫
B(x,r)

|f(y, ω′)|q dµ(y)
) 1
q

,

(obvious modification if q =∞).

2. Furthermore, we put

(3.17) Mq
HL(f)(x, ω′) = sup

r>0
Nq,r(f)(x, ω′).

These operators are well-defined a priori on Lp(Ω) ⊗ Y , and they are sublinear on that
subspace. We will show below that they are bounded Lp(Ω) ⊗ Y ⊆ Lp(Ω;Y ) → Lp(Ω;Y ), so
that by Lemma 2.17, they extend boundedly to Lp(Ω;Y ).

Proposition 3.7 Let Y be a pY -convex UMD lattice for some pY ∈ [1,∞] such that the con-
vexification Y pY is again a UMD lattice, q ∈ [1,∞) and p ∈ (1,∞). Assume that pY > q and
p > q. Then Mq

HL is bounded on Lp(Ω;Y ).

Proof : Let f ∈ Lp(Ω)⊗ Y ⊆ Lp(Ω;Y ). For x ∈ Ω and ω′ ∈ Ω′, we put g(x, ω′) = |f(x, ω′)|q.
Then

‖Mq
HL(f)‖pLp(Ω;Y ) =

∫
Ω

∥∥∥∥∥
(

sup
r>0

1
V (x, r)

∫
B(x,r)

|f(y, ω′)|q dy
) 1
q
∥∥∥∥∥
p

Y

dx

=
∫

Ω

∥∥∥∥∥
(

sup
r>0

1
V (x, r)

∫
B(x,r)

g(y, ω′) dy
) 1
q
∥∥∥∥∥
p

Y

dx

=
∫

Ω

∥∥∥∥∥sup
r>0

1
V (x, r)

∫
B(x,r)

g(y, ω′) dy

∥∥∥∥∥
p
q

Y q

dx

.
∫

Ω

∥∥g(x, ω′)
∥∥ pq
Y q
dx

=
∫

Ω

∥∥f(x, ω′)
∥∥p
Y
dx = ‖f‖pLp(Ω;Y ),

where we have used that p
q > 1 and that Y pY is a UMD lattice, so also Y q = (Y pY )

q
pY is a

UMD lattice according to Lemma 2.13. Hence Theorem 3.1 was applicable on L
p
q (Ω;Y q).
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4 Hörmander functional calculus
In this section, we prove the Hörmander functional calculus result on Lp(Ω;Y ), using the R-
boundedness of the semigroup for complex times. The main idea is to estimate the semigroup
against the Hardy-Littlewood maximal operator. To push down the Hörmander calculus deriva-
tion exponent and also to treat generalised Gaussian estimates in place of classical Gaussian
estimates, we will the need the local Lq average operator Nq given in Definition 3.6. We will
also illustrate in this section several consequences of the Hörmander functional calculus result.
In the following definition, we give the parameter needed in the Hörmander calculus, which will
encode convexity and concavity of Y and the Lebesgue Lp exponent.

Definition 4.1 Let p ∈ (1,∞), pY ∈ (1, 2] and qY ∈ [2,∞). We put

(4.1) α(p, pY , qY ) = max
(

1
p
,

1
pY

,
1
2

)
−min

(
1
p
,

1
qY
,

1
2

)
∈ (0, 1).

Informally spoken, this is the length of the segment, which is the convex hull of the points
1
p ,

1
pY
, 1
qY

and 1
2 sitting on the real line.

The R-boundedness of the semigroup under generalised Gaussian estimates reads as follows.

Theorem 4.2 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be a
self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0. Let p0 ∈ [1, 2) and m ∈ [2,∞).
Assume that (Tt)t>0 satisfies generalised Gaussian estimates with parameters p0,m. Let Y be a
UMD lattice which is pY -convex and qY -concave for some pY ∈ (p0, 2] and qY ∈ [2, p′0) Assume
that the convexifications Y pY and (Y ′)q′Y are also UMD lattices. Then{(

cos(arg z)
)α exp(−zA) : z ∈ C+

}
is R-bounded on Lp(Ω;Y ) for p ∈ (p0, p

′
0), where

α > α(p, pY , qY )d

from (4.1).

We spell out some particular cases of Theorem 4.2.

Corollary 4.3 1. Let the assumptions of Theorem 4.2 be satisfied, with Y = Ls(Ω′). Assume
that p, s ∈ (p0, p

′
0). Then

{(
cos(arg z)

)α
Tz : z ∈ C+

}
is R-bounded on Lp(Ω;Ls(Ω′)) for

α >

(
max

(
1
p
,

1
s
,

1
2

)
−min

(
1
p
,

1
s
,

1
2

))
· d.

2. Let (Tt)t be a self-adjoint semigroup on L2(Ω) having (classical) Gaussian estimates. Let
Y be any UMD lattice. Then for p ∈ (1,∞),

{(
cos(arg z)

)α
Tz : z ∈ C+

}
is R-bounded

on Lp(Ω;Y ) for α > α(p, pY , qY ) · d ∈ (0, d).

Proof : 1. It suffices to note that according to Lemma 2.12, Ls is s-convex and s-concave, so
also ps-convex and qs-concave with some exponents p0 < ps < min(s, 2) and p′0 > qs > max(s, 2)
which are allowed in the assumptions of Theorem 4.2. Moreover, (Ls(Ω′))ps = L

s
ps (Ω′) and

(Ls′(Ω′))q′s = L
s′
q′s (Ω′) are UMD lattices since s

ps
, s
′

q′s
∈ (1,∞).
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2. According to Remark 2.23, classical Gaussian estimates are equivalent to generalised
Gaussian estimates with parameter p0 = 1. Note that according to Lemma 2.13 any UMD
lattice Y is pY -convex and qY -concave for some pY ∈ (1, 2] and qY ∈ [2,∞) and moreover such
that, Y pY and (Y ′)q′Y are UMD.

For the preparation of the proof of Theorem 4.2, we need two lemmas. First, we have the
following result from [Ku08, Proposition 2.3].

Lemma 4.4 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let 1 6 q0 6
q1 6∞ and (S(t))t∈τ be a family of linear operators on Lq0(Ω) ∩ Lq1(Ω). Recall the notation

A(x, r, k) = B
(
x, (k + 1)r

)
\B(x, r).

Assume∥∥1B(x,ρ(t))S(t)1A(x,ρ(t),k)
∥∥
Lq0 (Ω)→Lq1 (Ω) 6 V

(
x, ρ(t)

)−( 1
q0
− 1
q1

)
h(k) (x ∈ Ω, t ∈ τ, k ∈ N0)

for some functions ρ : τ → (0,∞) and h : N0 → (0,∞) with h(k) 6 c(k+ 1)−δ and δ > d
q0

+ 1
q′0
.

Then

Nq1,ρ(t)
(
S(t)f

)
(x, ω′) 6 CMq0

HLf(x, ω′) (t ∈ τ, x ∈ Ω, ω′ ∈ Ω′, f ∈ Lq0(Ω)⊗ Y ).

Proof : Apply [Ku08, Proposition 2.3] pointwise, i.e. for fixed ω′ ∈ Ω′.
The next lemma is related to [Ku08, Proposition 2.4] (our Y (`2) replaces `s there).

Lemma 4.5 Let Y be a UMD lattice which is pY -convex and qY -concave for some pY ∈ (1, 2]
and qY ∈ [2,∞). Assume that the convexifications Y pY and (Y ′)q′Y are also UMD (lattices).
Let q0 ∈ [1, pY ], q1 ∈ [qY ,∞] and q ∈ (q0, q1). Then the family {Nq0,r : r > 0} is R-bounded in
Lq(Ω;Y ), and the family {Nq1,r : r > 0} is lower R-bounded in Lq(Ω;Y ) (see Definition 2.2).

Proof : Note that Y (`2)pY is a UMD lattice according to Lemma 2.13. Now since q0 < q and
q0 6 pY , we obtain from Proposition 3.7 that∥∥∥∥(∑

k

|Nq0,rkfk|2
) 1

2
∥∥∥∥
Lq(Ω;Y )

6

∥∥∥∥(∑
k

|Mq0
HLfk|

2
) 1

2
∥∥∥∥
Lq(Ω;Y )

.

∥∥∥∥(∑
k

|fk|2
) 1

2
∥∥∥∥
Lq(Ω;Y )

.

In other words, the upper R-boundedness statement is shown.
We turn to the lower R-boundedness statement. Let D =

⋃
k∈ZDk be a ‘dyadic system’ and

Eq0,kf(x, ω′) =
∑
Q∈Dk

(
1Q(x)
µ(Q)

∫
Q

|f(y, ω′)|q0 dµ(y)
) 1
q0

be the Lq0 version of the conditional expectation from (3.12) associated with D. Then we claim
that ∥∥∥∥(∑

k

|Eq0,kfk|2
) 1

2
∥∥∥∥
Lq(Ω;Y )

.

∥∥∥∥(∑
k

|fk|2
) 1

2
∥∥∥∥
Lq(Ω;Y )
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for q0 < q and q0 6 pY . Indeed, this can easily be deduced from the fact that the maximal
operator associated with the Eq0,k, which is

Mq0
F (f)(x, ω′) = sup

Q3x
Q∈D

(
1

µ(Q)

∫
Q

|f(y, ω′)|q0 dy

) 1
q0

is bounded on Lq(Ω;Y ). This in turn can be shown as in the proof of Proposition 3.7 together
with the fact that MF is bounded on Lp(Ω;Z) for 1 < p <∞ and Z a UMD lattice according
to Lemma 3.4. According to Lemma 2.26, for all r > 0 there is some k(r) ∈ Z such that
x ∈ Q ∈ Dk(r) implies Q ⊆ B(x, r) and V (x, r) . µ(Q). Therefore,

Nq1,ri(fi)(x, ω′) =
(

1
V (x, ri)

∫
B(x,ri)

|fi(y, ω′)|q1 dµ(y)
) 1
q1

&

( ∑
Q∈Dk(ri)

1
µ(Q)

∫
Q

|fi(y, ω′)|q1 dµ(y)
) 1
q1

= Eq1,kifi(x, ω′)

with ki = k(ri). We deduce that∥∥∥∥(∑
i

|Nq1,ri(fi)|2
) 1

2
∥∥∥∥
Lq(Ω;Y )

&

∥∥∥∥(∑
i

|Eq1,ki(fi)|2
) 1

2
∥∥∥∥
Lq(Ω;Y )

,

so that it will suffice to show the lower R-boundedness of the family {Eq1,k : k ∈ Z} in Lq(Ω;Y ).
To show this, we will use the already established upper R-boundedness together with a duality
argument. For this duality argument, we make use of the following σ-finite auxiliary measure
space

M =
⊔
k∈Z

Ω, µ̃ =
⊕
k∈Z

∑
Q∈Dk

1
µ(Q)µ|Q

consisiting of a sequence of independent copies of Ω together with a suitable renormalised
measure µ̃ to fit the Eq1,k as we shall see in what follows. Namely, consider the operator

T :
{
Lq(Ω;Y (`2)) → Lq(Ω;Y (`2(Lq0(M))))
(fk) 7→ (f̃k)

with f̃k(x, ω′, j, y) = 1Qkx(y)δk=jfk(y, ω′), where Qkx will stand in what follows for the unique
dyadic cube Q ∈ Dk containing x and (j, y) with j ∈ Z and y ∈ Ω is the generic variable in M .
Then

‖(f̃k)k‖qLq(Ω;Y (`2(Lq0 (M)))) =
∫

Ω

∥∥∥∥(∑
k

‖f̃k(x, ω′, ·)‖2Lq0 (M)

) 1
2
∥∥∥∥q
Y

dµ(x)

=
∫

Ω

∥∥∥∥(∑
k

[∫
M

|f̃k(x, ω′, j, y)|q0dµ̃(j, y)
] 2
q0

) 1
2
∥∥∥∥q
Y

dµ(x)

=
∫

Ω

∥∥∥∥(∑
k

( 1
µ(Qkx)

∫
Qkx

|fk(y, ω′)|q0 dµ(y)
) 2
q0

) 1
2
∥∥∥∥q
Y

dµ(x)

=
∫

Ω

∥∥∥∥(∑
k

|Eq0,k(fk)(x, ω′)|2
) 1

2
∥∥∥∥q
Y

dµ(x).
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Now the fact that {Eq0,k : k ∈ Z} are upper R-bounded in Lq(Ω;Y ) rereads as T is bounded.
Hence also its adjoint

T ′ :
{
Lq
′(Ω;Y ′(`2(Lq′0(M)))) → Lq

′(Ω;Y ′(`2))
(gk)k 7→ (g̃k)k

is bounded. An elementary calculation gives that

T ′((gk)k)(y, ω′, j) = δj=k
∑
Q∈Dk

1Q(y)
µ(Q)

∫
Q

gk(x, ω′, k, y) dµ(x).

Since the assumptions for the upper R-boundedness statement are also satisfied wih the uplet
(q, Y, pY , q0) replaced by (q′, Y ′, q′Y , q′1), we obtain that

T ′ :
{
Lq(Ω;Y (`2(Lq1(M)))) → Lq(Ω;Y (`2))
(gk)k 7→ (g̃k)k

is bounded, with the above definition of g̃k provided q1 > qY and q1 > q. We will conclude the
proof by a suitable choice of (gk)k. Namely, let

gk(x, ω′, j, y) = 1Qkx(y)δk=jfk(y, ω′)

for a given (fk)k ∈ Lq(Ω;Y (`2)). Then we obtain on the one hand

‖(gk)k‖qLq(Ω;Y (`2(Lq1 (M)))) =
∫

Ω

∥∥∥∥(∑
k

( 1
µ(Qkx)

∫
Qkx

|fk(y, ω′)|q1 dµ(y)
) 2
q1

) 1
2
∥∥∥∥q
Y

dµ(x)

=
∥∥(∑

k

|Eq1,k(fk)(x, ω′)|2
) 1

2
∥∥
Lq(Ω;Y ),

and on the other hand

‖T ′((gk)k)‖qLq(Ω;Y (`2)) =
∫

Ω

∥∥∥∥(∑
k

( ∑
Q∈Dk

1
µ(Q)

∫
Q

1Q(x)gk(z, ω′, k, x)dz
)2) 1

2
∥∥∥∥q
Y

dµ(x)

=
∫

Ω

∥∥∥∥(∑
k

( 1
µ(Qkx)

∫
Qkx

1Qkz (x) dµ(z)fk(x, ω′)
)2) 1

2
∥∥∥∥q
Y

dµ(x)

=
∥∥(∑

k

|1 · fk(x, ω′)|2
) 1

2
∥∥
Lq(Ω;Y ).

Putting the estimate ‖T ′((gk)k)‖Lq(Ω;Y (`2)) . ‖(gk)k‖Lq(Ω;Y (`2(Lq1 (M)))) with the above calcu-
lations together readily gives the lower R-boundedness statement.

With the previous lemmas in mind, we are now in a position to prove Theorem 4.2.
Proof of Theorem 4.2 : Fix some p ∈ (p0, p

′
0).

Let
1
p0

>
1
q0
> max

(
1
p
,

1
pY

,
1
2

)
and 1

p′0
<

1
q1
< min

(
1
p
,

1
qY
,

1
2

)
,

and let moreover
α = d

(
1
q0
− 1
q1

)
> α(p, pY , qY ).
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Note that clearly, q0 and q1 can be chosen such that α is arbitrarily close to α(p, pY , qY ).
We want to apply Lemma 4.4 to τ = C+, ρ : C+ → (0,∞), z 7→

(
cos(arg z)

)−m−1
m |z| 1

m ,
S(z) = cos

(
arg(z)

)α exp(−zA). First note that the generalised Gaussian estimates

∥∥1B(x,rt)Tt1B(y,rt)
∥∥
p0→p′0

6 CV (x, rt)
−( 1

p0
− 1
p′0

)
exp
(
−c
(

dist(x, y)
rt

) m
m−1

)
imply by [BK05, Proposition 2.1 (i) (1) u = p0, v = p′0, α = 1

p0
− 1

p′0
, β = 0 =⇒ (i) (1’)

u = q0 > p0, v = q1 6 p′0, α = 1
q0
− 1

q1
, β = 0] that

∥∥1B(x,rt)Tt1B(y,rt)
∥∥
q0→q1

6 C ′V (x, rt)−( 1
q0
− 1
q1

) exp
(
−c′
(

dist(x, y)
rt

) m
m−1

)
.

This implies by [Bl07, Theorem 2.1, ω = m
m−1 ] that∥∥1B(x,ρ(z))

(
cos(arg z)

)α
Tz1B(x,ρ(z))

∥∥
q0→q1

6 C ′′V
(
x, ρ(z)

)−( 1
q0
− 1
q1

) exp
(
−c′′

(
dist(x, y)
ρ(z)

) m
m−1

)
for any z ∈ C+. Now refer again to [BK05, Proposition 2.1 (i) (1) =⇒ (3)] and deduce for
z ∈ C+, x ∈ Ω and k ∈ N0∥∥1B(x,ρ(z))

(
cos(arg z)

)α
Tz1A(x,ρ(z),k)

∥∥
q0→q1

6 C ′′′V (x, ρ(z))−( 1
q0
− 1
q1

) exp
(
−c′′′k

m
m−1

)
.

Note that h(k) = exp
(
−c′′′k

m
m−1

)
6 cδ(k+ 1)−δ for any δ > 0. Thus we can now apply Lemma

4.4 and deduce(
cos(arg z)

)α
Nq1,ρ(z)(Tzf)(x, ω′) 6 CMq0

HLf(x, ω′) (z ∈ C+, x ∈ Ω, ω′ ∈ Ω′, f ∈ Lq0(Ω)⊗Y )).

Then according to Lemma 4.5 (note that Y ′(`2)q′1 is a UMD lattice), we have for f1, . . . , fn ∈
Lq0(Ω)⊗ Y ⊆ Lq0(Ω;Y ) and z1, . . . , zn ∈ C+, with notation S(z) = cos

(
arg(z)

)α exp(−zA)∥∥∥∥∥
(∑

i

∣∣S(zi)fi
∣∣2) 1

2
∥∥∥∥∥
Lp(Ω;Y )

.

∥∥∥∥∥
(∑

i

∣∣Nq1,ρ(zi)(S(zi)fi)
∣∣2) 1

2
∥∥∥∥∥
Lp(Ω;Y )

.

∥∥∥∥∥
(∑

i

∣∣Mq0
HLfi

∣∣2) 1
2
∥∥∥∥∥
Lp(Ω;Y )

.

∥∥∥∥∥
(∑

i

|fi|2
) 1

2
∥∥∥∥∥
Lp(Ω;Y )

where we have applied Lemma 4.4 and Proposition 3.7 (note that Y (`2)q0 is a UMD lattice).

Now we gather several situations, in which the operator A has an H∞ calculus on Lp(Ω;Y ).
This will be important for the Hörmander calculus, i.e. it is one of the hypotheses in Theorem
4.10.

Theorem 4.6 Let (Ω,dist, µ) be a space of homogeneous type and E a Banach space. Let A
generate the self-adjoint semigroup (Tt)t on L2(Ω) satisfying Gaussian estimates (2.4). Let
p0 ∈ (1,∞). Assume that A has an H∞(Σω) calculus on Lp0(Ω;E) for some ω ∈ (0, π). Then
for any p ∈ (1,∞), A has an H∞(Σω) calculus on Lp(Ω;E).
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Proof : Suppose that we have shown that for any ξ ∈ H∞0 (Σω) and f ∈ L1(Ω;E) with bounded
support, we have

(4.2) µ
({
x ∈ Ω : ‖ξ(A)f(x)‖E > λ

})
6 C

1
λ
‖ξ‖∞,ω‖f‖L1(Ω;E).

Then ξ(A) is of weak type L1(Ω;E) → L1,∞(Ω;E) and by assumptions, is also of strong type
Lp0(Ω;E) → Lp0(Ω;E), so by the vector valued Marcinkiewicz interpolation theorem [BCP,
Lemma 1], ξ(A) will be bounded on Lp(Ω;E) for any 1 < p < p0. Now in the dual setting,
the hypotheses of the Theorem imply that A′ has a bounded H∞(Σω) calculus on Lp′0(Ω;E′).
Indeed, A′ will again be self-adjoint and the semigroup T ′t generated by A′ will satisfy Gaussian

estimates (note that V (y, t 1
m ) 6 2(n+1)dV (x, t 1

m ), and exp
(
− c

2

[
dist(y,x)
t

1
m

] m
m−1

)
2(n+1)d . 1 for

dist(x, y) ∈ [2nt 1
m , 2n+1t

1
m ]). Thus, applying (4.2) to A′, we obtain that ξ(A′) = ξ(A)′ is

bounded on Lp(Ω;E′) for any 1 < p < p′0. This shows that ξ(A) is bounded on Lq(Ω;E) for
p0 < q <∞, and the Theorem would follow.

It thus only remains to show (4.2), which we do now, hereby following closely [DuRo, Proof
of Theorem 3.1], or its variant for ω > π

2 from [DuRo, p. 104-105]. Note that the additional
assumption [DuRo, (6)] on the space Ω is not needed in this part. We only indicate where
Duong’s and Robinson’s arguments have to be modified slightly. We use the Calderón-Zygmund
decomposition of f at height λ > ‖f‖L1(E)

µ(Ω) from [CoW, Section 3.2] in its vector-valued form
from [MoLu, Section 2]. That is, there exist functions g, fi : Ω → E and balls Bi = B(xi, ri)
such that

(a1) f = g + h with h =
∑
i fi,

(a2) ‖g(x)‖E 6 cλ,

(a3) suppfi ⊂ Bi and each point of X is contained in at most M balls,

(a4) ‖fi‖L1(Ω;E) 6 cλµ(Bi),

(a5)
∑
i µ(Bi) 6 c 1

λ‖f‖L1(Ω;E).

Note that (a4) and (a5) imply that ‖h‖L1(Ω;E) 6 c‖f‖L1(Ω;E): Hence ‖g‖L1(Ω;E) 6 (1 +
c)‖f‖L1(Ω;E). Now decompose h into the sum of two functions

h1 =
∑
i

Ttifi, h2 =
∑
i

(Id− Tti)fi,

where ti = rmi , m > 2 being the parameter in the Gaussisan estimates. At first, we estimate

(4.3) µ
({
x ∈ Ω : ‖ξ(A)f(x)‖E > λ

})
6 µ

({
x ∈ Ω : ‖ξ(A)g(x)‖E >

λ

3

})
+

2∑
i=1

µ
({
x ∈ Ω : ‖ξ(A)hi(x)‖E >

λ

3

})
.

26



For the “good” part g, we have

µ
({
x ∈ Ω : ‖ξ(A)g(x)‖E > λ

})
6 λ−p0

∫
Ω
‖ξ(A)g(x)‖p0

E dx

. λ−p0

∫
Ω
‖g(x)‖p0

E dx

. λ−1
∫

Ω
‖g(x)‖E dx . λ−1‖f‖L1(Ω;E).

Here we have used (a2). Next consider the h1-term in (4.3). We have

µ
({
x ∈ Ω : ‖ξ(A)h1(x)‖E > λ

})
. λ−p0

∥∥∥∑
i

Ttifi

∥∥∥p0

Lp0 (E)
.

Now arguing as in [DuRo, Proof of Theorem 3.1], we obtain by the boundedness of the
scalar Hardy-Littlewood maximal operator MHL : Lp′0(Ω) → Lp

′
0(Ω) that ‖

∑
i Ttifi‖Lp0 (E) .

λ‖
∑
i 1Bi‖p0 . Then using (a3) we obtain

µ
({
x ∈ Ω : ‖ξ(A)h1(x)‖E > λ

})
. λ−1‖f‖L1(Ω;E).

For the h2-term in (4.3), one does not need the H∞(Σω) calculus on Lp0(E) any more, but the
Gaussian estimates come into play. Since the estimates of ξ(A)h2 =

∑
i ξi(A)fi used in [DuRo,

Proof of Theorem 3.1] are of the form |ξi(A)fi(x)| 6
∫

Ω |k(x, y)| |fi(y)| dy, with k(x, y) being
the integral kernel of ξi(A), and then estimating |k(x, y)| further, the same arguments apply
literally to our vector valued case, replacing absolute values around fi by E-norms. One finally
obtains, taking into account (a5), that

µ
({
x ∈ Ω : ‖ξ(A)h2(x)‖E > λ

})
. λ−1‖f‖L1(Ω;E).

This concludes the proof of (4.2), and thus of the theorem.
For generalised Gaussian estimates, we have the following result on H∞ calculus.

Theorem 4.7 Let (Ω,dist, µ) be a space of homogeneous type and A generate a self-adjoint
semigroup (Tt)t on L2(Ω) satisfying generalised Gaussian estimates (2.5) with parameters p0 ∈
[1, 2) and m ∈ [2,∞). Let Y = Ls(Ω′) with s ∈ (p0, p

′
0). Then A has a bounded H∞(Σω)

calculus on Lp(Ω;Ls(Ω′)) for any p ∈ (p0, p
′
0) and ω ∈ (0, π).

Proof : According to [BK05, Proposition 2.1 (i) (1) =⇒ (3) with α = 1
p0
− 1

p′0
, β = 0,

u = p0, v = p′0] and the dual estimate due to self-adjointness of the semigroup, the generalised
Gaussian estimates (2.5) imply the hypotheses of [KuUl, Theorem 2.3]. Then [KuUl, Theorem
2.3] implies that A has an Rs-bounded H∞(Σω) calculus on Lp(Ω) for s, p ∈ (p0, p

′
0) and

ω > 0, Rs boundedness being defined in that article. By [KuUl, Theorem 2.1], A has then a
bounded H∞(Σω) calculus on Lp(Ω; `s). Now let f =

∑
k fk ⊗ 1Ak ∈ Lp(Ω)⊗ Ls(Ω′) with 1Ak

indicator functions of pairwise disjoint measurable subsets Ak of Ω′ of finite positive measure,
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and ξ ∈ H∞(Σω). Note that clearly, those f are dense in Lp(Ω;Ls(Ω′)). We have

‖ξ(A)f‖Lp(Ω;Ls(Ω′)) =
∥∥∥∥∑
k

ξ(A)fk ⊗ 1Ak
∥∥∥∥
Lp(Ω;Ls(Ω′))

=
(∫

Ω

∥∥∥∥∑
k

ξ(A)fk(x)1Ak(ω′)
∥∥∥∥p
Ls(Ω′)

dx

) 1
p

=
(∫

Ω

(∑
k

∣∣∣ξ(A)fk(x)µ(Ak) 1
s

∣∣∣s) p
s

dx

) 1
p

.

(∫
Ω

∣∣∣∣∑
k

fk(x)µ(Ak) 1
s

∣∣∣∣
p
s

dx

) 1
p

=
∥∥∥∥∑
k

fk ⊗ 1Ak
∥∥∥∥
Lp(Ω;Ls(Ω′))

= ‖f‖Lp(Ω;Ls(Ω′)).

In other words, the case Y = Ls(Ω′) can be reduced to the case Y = `s, since Ls(Ω′) is
representable in `s.

The following sufficient conditions for the H∞ calculus on Lp(Ω;Y ) are essentially known
in the literature.

Proposition 4.8 Let (Ω, µ) be a σ-finite measure space.
1. Let (Tt)t be a semigroup acting on Lp(Ω) for some fixed p ∈ (1,∞), such that the Tt are

regular contractive, that is, there exist St positive and contractive operators on Lp(Ω) such
that |Ttf | 6 St|f | for all t > 0. Assume that p 6= 2 or that Tt are themselves positive.
Then the generator A of (Tt)t has an H∞(Σω) calculus on Lp(Ω;Y ) for any ω ∈ (π2 , π)
and any UMD space Y .

2. Let (Tt)t be a semigroup which is contractive on Lp(Ω) for all p ∈ [1,∞] (strong continuity
only for finite p). Then the generator A of (Tt)t has an H∞(Σω) calculus on Lp(Ω;Y )
for any p ∈ (1,∞), ω ∈ (π2 , π) and any UMD space Y .

Proof : 1. According to [Fen, Theorem 4.2.1 & p. 45], there exists a one parameter group
(Ut)t∈R of isometries acting on Lp(Ω̃) for some other measure space Ω̃ and positive contractions
J : Lp(Ω)→ Lp(Ω̃), P : Lp(Ω̃)→ Lp(Ω) such that Ttf = PUtJf for any t > 0 and f ∈ Lp(Ω).
Now we have for ξ ∈ H∞0 (Σω) that ξ(A) = Pξ(B)J with B the generator of (Ut)t. Since Y
is UMD, according to [HiPr, Theorem 5], ξ(B) admits a bounded extension to Lp(Ω̃;Y ) with
norm . ‖ξ‖∞,ω. Moreover, since P and J are positive, they admit bounded extensions to the
Y valued Lp spaces, too. Thus ξ(A) also admits a bounded extension to Lp(Ω;Y ) with norm
. ‖ξ‖∞,ω.

2. It is well-known that such a semigroup satisfies the assumptions of 1. if p 6= 2 [Tagg,
Theorem 2.2.1]. Thus the result then follows from 1. If p = 2, then we interpolate between
L2+ε(Ω;Y ) and L2−ε(Ω;Y ).

We record the following corollary.

Corollary 4.9 Let (Ω, dist, µ) be a space of homogeneous type and Y a UMD space. Suppose
that the self-adjoint semigroup (Tt)t on L2(Ω) satisfies the Gaussian estimates (2.4) and that
(Tt)t is moreover (lattice) positive, i.e. pt(x, y) > 0 for any t > 0 and x, y ∈ Ω, where pt(x, y)
is the integral kernel as in (2.4). Then for any 1 < p < ∞, the generator A has an H∞(Σω)
calculus on Lp(Ω;Y ) for any ω ∈ (π2 , π).
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Proof : Observe that the Gaussian bound (2.4) implies that supt>0 ‖Tt‖2→2 < ∞ (see also
Remark 2.24). Thus, the spectrum of A is contained in [0,∞), so that in fact, ‖Tt‖2→2 6 1.
Now apply first Proposition 4.8 1. for p = 2 and then extrapolate via Theorem 4.6 to the
general case 1 < p <∞.

Now we state the main theorem of this section. For the existence of the H∞ calculus
assumption needed below, we refer to Theorems 4.6, 4.7, Proposition 4.8 and Corollary 4.9.

Theorem 4.10 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be a
self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0. Let p0 ∈ [1, 2) and m ∈ [2,∞).
Assume that (Tt)t>0 satisfies generalised Gaussian estimates with parameters p0,m. Let Y be a
UMD lattice which is pY -convex and qY -concave for some pY ∈ (p0, 2] and qY ∈ [2, p′0). Assume
that the convexifications Y pY and (Y ′)q′Y are also UMD lattices. Finally, assume that A has a
bounded H∞(Σω) calculus on Lp(Ω;Y ) for some fixed p ∈ (p0, p

′
0) and ω ∈ (0, π).

Then A has a Hörmander Hβ2 calculus on Lp(Ω;Y ) with

β > α(p, pY , qY ) · d+ 1
2

and α from (4.1).

Proof : Note that according to Lemma 2.15, Lp(Ω;Y ) has Pisier’s property (α). Now combine
Theorem 4.2 with Theorem 2.7.

Theorem 2.7, used in the proof of Theorem 4.10 admits an enhancement, and this carries
over to Theorem 4.10. This is the content of the next theorem.

Theorem 4.11 Let A have a Hβ2 calculus as a consequence of any of theorems in this article.
Then in fact, the operators f(A) are not only bounded for f ∈ Hβ2 , but also R-bounded for a
whole family of functions f , under the condition that ‖f‖Hβ2 remains bounded. In other words,
there exists a constant C < ∞ such that for any x1, . . . , xn ∈ Lp(Ω;Y ) and f1, . . . , fn ∈ Hβ2 ,
we have a square function estimate∥∥∥∥∥

( n∑
i=1

∣∣fi(A)xi
∣∣2) 1

2
∥∥∥∥∥
Lp(Ω;Y )

6 C sup
i=1,...,n

‖fi‖Hβ2

∥∥∥∥∥
( n∑
i=1
|xi|2

) 1
2
∥∥∥∥∥
Lp(Ω;Y )

.

Proof : Theorem 2.7 in the form from [KrW3, Theorem 7.1] immediately gives Theorem 4.11,
once one notices that Lp(Ω;Y ) has property (α), according to Lemma 2.15.

Remark 4.12 1. Spectral multiplier theorems under generalised Gaussian estimates have
been obtained in the last 5 years by different methods, but only in the scalar case Y = C.
We note that in this case, pY = qY = 2 and our Hörmander functional calculus exponent
becomes

β > α(p, pY , qY ) · d+ 1
2 =

(
max

(
1
p
,

1
2

)
−min

(
1
p
,

1
2

))
d+ 1

2 =
∣∣∣1
p
− 1

2

∣∣∣d+ 1
2 .

Let us compare this result with those scalar valued Hörmander type spectral multiplier
theorems obtained in the literature, sometimes under stronger hypotheses. In the literature,
the Definition 2.3 of Hβq is extended for values q 6= 2 in an obvious manner. We denote
(GGEp0,m) for p0 ∈ [1, 2) and m > 2 our generalised Gaussian estimate hypothesis, and
refer to the sources below for the definition of other hypotheses. In all cases, the semigroup
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is moreover assumed to be self-adjoint, acting on L2(Ω) with Ω a space of homogeneous
type. Finally, in the last two sources, there is an autoimprovement of the calculus by
self-adjointness of Tt possible.
Resource Hypotheses Hβq calculus on Lp(Ω;C) with p0 < p < p′0
This article, Theorem 4.10 (GGEp0,m) β > | 1p −

1
2 |d+ 1

2 , q = 2
[Bl, Theorem 1.1] (GGEp0,m) β > d

2 + 1
2 , q = 2

[KuUhl, Theorem 5.4 a)] (GGEp0,m) β > | 1p −
1
2 |(d+ 1), 1

q < |
1
p −

1
2 |

[KuUhl, Theorem 5.4b)] (GGEp0,m) β > | 1p −
1
2 |d, q =∞

[COSY, Theorem 4.1] (FS) + (ST qp0,2) β > max(d( 1
p0
− 1

2 ), 1
q )

[SYY, Theorem 5.1] (DGm) + (ST qp0,2,m) β > max(d( 1
p0
− 1

2 ), 1
q )

2. In the case that Ω = Rd and (Tt)t satisfying classical Gaussian estimates (4.4), a com-
bination of [ALV] and [GoY] also yields UMD lattice valued spectral multipliers. Indeed,
in [ALV] it is shown that if m(A) satisfies weighted estimates Lp(Rd, w) → Lp(Rd, w)
for any weight w ∈ Ap/r0 in the classical Muckenhoupt class, and any r0 < p < ∞,
then it extends boundedly to Lp(Rd;Y ) → Lp(Rd;Y ) for r0 < p < ∞ (in fact, even
to Lp(Rd, w;Y ) → Lp(Rd, w;Y ) for such weights w), where r0 = pY is the convexity
exponent of Y . On the other hand, [GoY] establishes such scalar weighted estimates
m(A) : Lp(Rd, w) → Lp(Rd, w). Going into the parameter calculations in [GoY, ALV],
one obtains that A has a bounded Hβ∞ calculus on Lp(Rd;Y ) for β > d

pY
and pY < p <∞

and for β > d
q′
Y

and 1 < p < qY . This result and ours from Theorem 4.10 are incompa-
rable, since this Hβ∞ class and our Hβ2 class are not contained in each other, also due to
the fact that we take into account the concavity exponent qY in addition to the convexity
exponent pY . Moreover, we also obtain square function estimates in Theorem 4.11. On
the other hand, [GoY, ALV] obtain weighted UMD lattice valued estimates.

We spell out some particular cases of Theorem 4.10.

Corollary 4.13 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be
a self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0.

1. Let p0 ∈ [1, 2) and m ∈ [2,∞). Assume that (Tt)t>0 satisfies generalised Gaussian esti-
mates with parameters p0,m. Let Y = Ls(Ω′). Assume that p, s ∈ (p0, p

′
0). Then A has a

Hörmander Hβ2 calculus on Lp(Ω;Y ) with

β >

(
max

(
1
p
,

1
s
,

1
2

)
−min

(
1
p
,

1
s
,

1
2

))
· d+ 1

2 .

2. Assume that (Tt)t satisfies (classical) Gaussian estimates. Let Y be any UMD lattice.
Let p ∈ (1,∞). Assume that A has a bounded H∞(Σω) calculus on Lp(Ω;Y ) for some
ω ∈ (0, π). Then A has a Hörmander Hβ2 calculus on Lp(Ω;Y ) for

β > α(p, pY , qY ) · d+ 1
2 .

Proof : 1. Take into account Corollary 4.3 and Theorems 2.7 and 4.7.
2. Take into account Corollary 4.3 and Theorem 2.7.
If we plug in fδ,u(t) = (1 − t

u )δ+ into the Hörmander functional calculus, we obtain the
following result.
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Corollary 4.14 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be a
self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0. Let p0 ∈ [1, 2) and m ∈ [2,∞).
Assume that (Tt)t>0 satisfies generalised Gaussian estimates with parameters p0,m. Let Y be a
UMD lattice which is pY -convex and qY -concave for some pY ∈ (p0, 2] and qY ∈ [2, p′0). Assume
that the convexifications Y pY and (Y ′)q′Y are also UMD lattices. Assume moreover that A has
a bounded H∞(Σω) calculus on Lp(Ω;Y ) for some fixed p ∈ (p0, p

′
0). Then the Bochner-Riesz

means associated with A satisfy

sup
u>0

∥∥∥∥(1− 1
u
A

)δ
+

∥∥∥∥
Lp(Ω;Y )→Lp(Ω;Y )

<∞,

provided that δ > α(p, pY , qY ) · d. Moreover, for these δ, we have∥∥∥∥(∑
k

∣∣(1− 1
uk
A
)δ

+fk
∣∣2) 1

2
∥∥∥∥
Lp(Ω;Y )

6 C

∥∥∥∥(∑
k

|fk|2
) 1

2
∥∥∥∥
Lp(Ω;Y )

for any uk > 0 and fk ∈ Lp(Ω;Y ).

Proof : For the first part, it suffices to apply Theorem 4.10 and to note the Hörmander norm
estimate

sup
u>0
‖fδ,u‖Hβ2 <∞

provided that δ > β − 1
2 [COSY, p. 11 in arxiv version]. Then for the second part, apply

Theorem 4.11.
Another application of Theorem 4.10 is the following spectral decomposition of Paley-

Littlewood type. We refer e.g. to [KrW2] for applications of this decomposition to the de-
scription of complex and real interpolation spaces associated with an abstract operator A. To
this end, we let (φn)n∈Z be a dyadic partition of unity in the sense of Definition 2.6. Further let
ψn = φn for n > 1 and ψ0 =

∑0
n=−∞ φn, so that

∑
n∈Z φn(t) =

∑∞
n=0 ψn(t) = 1 for all t > 0.

Corollary 4.15 Let (Ω,dist, µ) be a space of homogeneous type with a dimension d. Let A be a
self-adjoint operator on L2(Ω) generating the semigroup (Tt)t>0. Let p0 ∈ [1, 2) and m ∈ [2,∞).
Assume that (Tt)t>0 satisfies generalised Gaussian estimates with parameters p0,m. Assume
moreover that A has a bounded H∞(Σω) calculus on Lp(Ω;Y ) for some fixed p ∈ (p0, p

′
0). Let

Y = Y (Ω′) be a UMD Banach lattice.
Then, for any f ∈ Lp(Ω;Y ), we have the norm description

‖f‖Lp(Ω;Y ) ∼=

∥∥∥∥∥
(∑
n∈Z

∣∣φn(A)f
∣∣2) 1

2
∥∥∥∥∥
Lp(Ω;Y )

∼=

∥∥∥∥∥
( ∞∑
n=0

∣∣ψn(A)f
∣∣2) 1

2
∥∥∥∥∥
Lp(Ω;Y )

.

Proof : Once a Hörmander calculus of A on Lp(Ω;Y ) is guaranteed by Theorem 4.10, the
corollary follows from [KrW2, Theorem 4.1] resp. (2.3), to decompose the norm in Rademacher
sums resp. square sums.

Remark 4.16 We note that if Y (Ω′) = [Z(Ω′), L2(Ω′)]θ is a complex interpolation space with
Z a further UMD lattice and θ ∈ (0, 1), then one can apply complex interpolation to improve
the derivation exponent in the Hörmander calculus of Theorem 4.10. Note however that one
passes from an exponent which is maybe not optimal to another one again not optimal. The
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interpolation procedure goes like this. Introduce in the Hörmander classes a second parameter
q ∈ [1,∞] and define Hβq by the norm

‖f‖Hβq = |f(0)|+ sup
R>0
‖φf(R·)‖Wβ

q (R)

in a similar manner to Definition 2.3. Then A has a Hβq calculus on L2(Ω;L2(Ω′)) provided
that Hβq ↪→ Cb([0,∞)) due to the self-adjoint spectral calculus, which is the case for β > 1

q . We
assume for simplicity that Tt satisfies classical Gaussian estimates. Then Theorem 4.10 gives a
Hβ2 calculus on Lp(Ω;Z) for p close to 1 or close to ∞ with a certain β. According to [KrPhD,
Proposition 4.83], one can interpolate the mappings

Hβ2 → B(Lp(Ω;Z)), f 7→ f(A)

and

Hε∞ → B(L2(Ω;L2(Ω′))), f 7→ f(A)

to obtain a calculus Hβθqθ → B(Lpθ (Ω; [Z,L2]θ)) = B(Lpθ (Ω;Y )). Going through the calculation,
one gets in case 1

pY
= 1 − θ

2 and 1
qY

= θ
2 that βθ > 2d| 1p −

1
2 | + |

1
p −

1
2 | for p ∈ (1, pY ) or

p ∈ (qY ,∞) and a certain qθ ∈ (2,∞). For p close to pY , the differentiation index βθ is close
to 1

2 − |
1
pY
− 1

2 | better than what gives Theorem 4.10.

Remark 4.17 We point out a different strategy to show a weaker Mihlin functional calculus
on Lp(Ω;Y ) in a slightly different setting. Namely, assume the conditions at the beginning of
[Kempp2, Section 4]. That is, (Ω,dist, µ) is a complete space of homogeneous type having in
addition the cone property, A is self-adoint on L2(Ω) satisfying the more general Davies-Gaffney
estimates, which correspond to generalised Gaussian estimates as in (2.5) with parameters p0 =
2, m = 2, and finally, Y is a UMD space (not necessarily a lattice).

Then [Kempp2, Theorem 12] yields a H∞(Σω) calculus for any angle ω > 0 on the vector-
valued Hardy space Hp(Ω;Y ), p ∈ (1,∞). If A = −∆ +V is a Schrödinger operator on Ω = Rd
with a positive potential V > 0 satisfying the following reverse Hölder condition for some s > d

2
and C <∞ (∫

B

V s(x) dx
) 1
s

6 C
∫
B

V (x) dx

for any ball B ⊆ Rd, [BCFR, (3)], then we have [Kempp2, Remark p. 18] that Hp(Ω;Y ) =
Lp(Ω;Y ). Now it is known that such a calculus Φω : H∞(Σω) → B(Lp(Ω;Y )) for any angle
is related to Mihlin calculus [CDMY, Theorem 4.10]. An inspection of the proof of [Kempp2,
Theorem 12] shows that ‖Φω‖ 6 Cω−d−1, where d ∈ N is a doubling dimension. This implies
by [CDMY, Theorem 4.10] that

‖ξ(A)‖Lp(Ω;Y )→Lp(Ω;Y ) . max
k=0,...,d+1

sup
t>0

tk|ξ(k)(t)| =: ‖ξ‖Md+1 .

Note that ‖ξ‖Hβ2 6 ‖ξ‖Hd+1
2
. ‖ξ‖Md+1 , with β = α(p, pY , qY ) · (d+1)+ ε < d+1 from Theorem

4.10, so that the latter Theorem yields a stronger result, when applicable.

4.1 A simpler alternate approach for the pure Laplacian, (classical)
Gaussian estimates and dispersive estimates

If one does not strive for the optimal parameters α and β in Theorems 4.2 and 4.10, then in the
case of classical Gaussian estimates, there is a simpler and more direct approach which does not

32



need the machinery of Blunck’s and Kunstmann’s work, but rather an extrapolation of Gaussian
estimates from real to complex time from [CaCoOu, Proposition 4.1]. One finds β > d+ 1, see
Corollary 4.23 1. Moreover, in the case of A being the pure Laplacian on Lp(Rd), this approach
yields a parameter β > d+1

2 for any UMD lattice and any 1 < p <∞ independent of convexity
and concavity of the UMD lattice Y . Also if one knows dispersive estimates for exp(itA) and
the volume of Ω is polynomially bounded, then the estimate in [CaCoOu, Proposition 4.1] can
be improved, and again the parameter becomes β > d+1

2 , see Corollary 4.23 2. This parameter,
universal in the class of UMD lattices, can then be strengthened, by self-adjoint calculus and a
complex interpolation argument for

Lp(Ω;Y ) = Lp(Ω; [Z,L2]θ) = [Lp1(Ω;Z), L2(Ω;L2)]θ
with p1 close to 1 or ∞. It will give the condition β > α̃(p, pY , qY ) · d+ 1

2 with

α̃
(
p, pY , qY

)
= max

(∣∣1
p
− 1

2
∣∣, ∣∣ 1
pY
− 1

2
∣∣, ∣∣ 1
qY
− 1

2
∣∣) 6 α(p, pY , qY ),

see Remark 4.24. We start with the case of A = −∆ on Lp(Rd). Then it is well known that
Tz = exp(z∆) has the Gaussian integral kernel

pz(x, y) = 1
√

4πzd
exp
(
−|x− y|

2

4z

)
for z ∈ C+.

Proposition 4.18 For θ ∈ (−π2 ,
π
2 ), let Mθ denote the maximal operator

Mθ(f)(x, ω′) = sup
t>0

∣∣Tteiθ (f(·, ω′))(x)
∣∣

for f ∈ Lp(Rd) ⊗ Y . If p ∈ (1,∞) and Y is a UMD lattice, then Mθ extends to a bounded
operator on Lp(Rd;Y ) with

‖Mθf‖Lp(Rd;Y ) 6 CY,p
(
cos(θ)

)− d2 ‖f‖Lp(Rd;Y ).

Proof : We estimate

Mθf(x, ω′) = sup
t>0

∣∣Tteiθ (f(·, ω′))(x)
∣∣

6 sup
t>0

∫
Rd

∣∣∣∣ 1
√

4πeiθt
d

exp
(
−|x− y|

2

4eiθt

)∣∣∣∣|f(y, ω′)| dy

6
1

(4π) d2
sup
t>0

∫
Rd

1
t
d
2

exp
(
−|x− y|

2

4t cos(θ)
)
|f(y, ω′)| dy

= 1
(4π) d2

sup
t>0

∫
Rd

1(
cos(θ)t

) d
2

exp
(
−|x− y|

2

4t

)
|f(y, ω′)| dy

= Cd
(
cos(θ)

)− d2M0f(x, ω′),

where we have performed the simple substitution t 7→ cos(θ)t in the second to last step. It is
well-known that M0f(x, ω′) 6 CdMHLf(x, ω′) pointwise. Thus, we deduce from Theorem 3.1

‖Mθf‖Lp(Rd;Y ) .
(
cos(θ)

)− d2 ‖M0f‖Lp(Rd;Y )

.
(
cos(θ)

)− d2 ‖MHLf‖Lp(Rd;Y )

.
(
cos(θ)

)− d2 ‖f‖Lp(Rd;Y ).
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Corollary 4.19 Let Y be any UMD lattice, d ∈ N and 1 < p < ∞. Then A = −∆ has a Hβ2
functional calculus on Lp(Rd;Y ) for any exponent β > d+1

2 .

Remark 4.20 The exponent β is better than what gives Theorem 4.10 for a bad UMD lattice,
i.e. with convexity pY close to 1 and concavity qY close to ∞, or also if Y has bad convexity
and p is close to ∞. We do not know if for self-adjoint semigroups with (generalised) Gaussian
estimates, the value of β from Corollary 4.19 holds for general UMD lattices. See Corollary
4.23 for a partial answer in case of dispersive estimates.

Proof of Corollary 4.19 : Applying Proposition 4.18 to Y (`2) which is a UMD lattice according
to Lemma 2.13, we deduce that for θ ∈

(
−π2 ,

π
2
)
, t1, t2, . . . , tn > 0 and f1, f2, . . . , fn ∈ Lp(Rd)⊗

Y ⊆ Lp(Rd;Y ) that∥∥∥∥∥
(∑

i

|Ttieiθfi|
2
) 1

2
∥∥∥∥∥
Lp(Rd;Y )

6

∥∥∥∥∥
(∑

i

(
Mθfi

)2) 1
2
∥∥∥∥∥
Lp(Rd;Y )

.
(
cos(θ)

)− d2 ∥∥∥∥∥
(∑

i

|fi|2
) 1

2
∥∥∥∥∥
Lp(Rd;Y )

,

so that {Tteiθ : t > 0} is R-bounded in Lp(Rd;Y ) with R-bound .
(
cos(θ)

)− d2 . Since Y is UMD
and (Tt)t is a positive contraction semigroup, A has an H∞(Σω) calculus on Lp(Rd;Y ) for any
ω > π

2 , according to [Duong]. Thus we can apply Theorem 2.7 and deduce the Hörmander
functional calculus stated in the Corollary.

With a little more technical effort, we can give a variant of the proof of Proposition 4.18 which
works for self-adjoint semigroups with Gaussian estimates, with worse exponent α. We recall
the following extrapolation result of Gaussian estimates from real to complex time [CaCoOu,
Proposition 4.1].

Lemma 4.21 Let (Ω, d, µ) be a space of homogeneous type. Let pt(x, y) be the integral kernel
of a self-adjoint semigroup on L2(Ω) with upper Gaussian estimate (2.4), that is

(4.4) |pt(x, y)| 6 C 1
V (x, t 1

m )
exp
(
−c
(

dist(x, y)
t

1
m

) m
m−1

)
(t > 0, x, y ∈ Ω)

with m > 2. Then pt(x, y) has an analytic extension for z = t ∈ C+ and an estimate

|pz(x, y)| 6

C(
V

(
x,
(

|z|
(cos θ)m−1

) 1
m

)
V

(
y,
(

|z|
(cos θ)m−1

) 1
m

)) 1
2

exp
(
−c
(

dist(x, y)
|z| 1

m

) m
m−1

cos θ
)

(cos θ)−d

where z ∈ C+, x, y ∈ Ω, θ = arg(z) and d is a doubling dimension of Ω.

Proposition 4.22 Let (Ω, d, µ) be a space of homogeneous type and A a self-adjoint positive
operator on L2(Ω) with semigroup Tt and kernel satisfying the upper Gaussian estimate (4.4).
Let Y = Y (Ω′) be a UMD lattice. Let for f ∈ Lp(Ω)⊗Y and θ ∈

(
−π2 ,

π
2
)
the maximal operator

Mθ(f)(x, ω′) = sup
t>0

∣∣Tteiθ (f(·, ω′))(x)
∣∣.
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Then the operator Mθ is bounded Lp(Ω;Y ) → Lp(Ω;Y ) for 1 < p < ∞ with norm bound
6 C(cos θ)−d, d being a doubling dimension of Ω.

Proof : Let θ ∈ (−π2 ,
π
2 ), 1 < p <∞ and f ∈ Lp(Ω)⊗ Y. We use Lemma 4.21. Write z = teiθ.

Then

Mθf(x, ω′) = sup
t>0

∣∣Tteiθ (f(·, ω′))(x)
∣∣

6 sup
t>0

∫
Ω
|pteiθ (x, y)||f(y, ω′)| dy

6 sup
t>0

∫
Ω

C(
V

(
x,
(

|z|
(cos θ)m−1

) 1
m

)
V

(
y,
(

|z|
(cos θ)m−1

) 1
m

)) 1
2

exp
(
−c
(

distm(x, y)
|z|

) 1
m−1

cos θ
)

(cos θ)−d|f(y, ω′)| dy,

and then

(4.5) Mθf(x, ω′) 6

sup
t>0

∫
Ω

C(
V
(
x, t

1
m

)
V
(
y, t

1
m

)) 1
2

exp
(
−c
(

distm(x, y)
t

) 1
m−1

)
(cos θ)−d|f(y, ω′)| dy.

Here we have simply performed the substitution t 7→ t(cos θ)m−1. We decompose the integral
over Ω in (4.5) into annular regionsAn = B(x, 2t 1

m ) if n = 0 andAn = B(x, 2n+1t
1
m )\B(x, 2nt 1

m )
if n > 1. Then (4.5) continues

6 C(cos θ)−d sup
t>0

∞∑
n=0

∫
An

1(
V
(
x, t

1
m

)
V
(
y, t

1
m

)) 1
2

exp
(
−c2n

m
m−1

)
|f(y, ω′)| dy

6 C(cos θ)−d sup
t>0

∞∑
n=0

exp
(
−c2n

m
m−1

)∫
B(x,2n+1t

1
m )

1(
V
(
x, t

1
m

)
V
(
y, t

1
m

)) 1
2
|f(y, ω′)| dy.(4.6)

Now we make use of Lemma 2.20 to introduce in (4.6) the Hardy-Littlewood maximal
operator. Namely, we have for y ∈ An

1(
V
(
x, t

1
m

)
V
(
y, t

1
m

)) 1
2

= 1
V
(
x, t

1
m

)
√√√√√V

(
x, t

1
m

)
V
(
y, t

1
m

) ,
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so that

1(
V
(
x, t

1
m

)
V
(
y, t

1
m

)) 1
2
6

1
V
(
x, t

1
m

)2(n+1)d

√√√√√ V
(
x, t

1
m

)
V
(
y, 2(n+1)t

1
m

)

6
1

V
(
x, t

1
m

)2(n+1)d

√√√√√V
(
x, 2(n+1)t

1
m

)
V
(
y, 2(n+1)t

1
m

)
6 C

1
V
(
x, t

1
m

)2(n+1)d.

Thus, (4.6) continues as

. (cos θ)−d sup
t>0

∞∑
n=0

exp
(
−c2n

m
m−1

)
2(n+1)d

∫
B(x,2n+1t

1
m )

1
V
(
x, t

1
m

) |f(y, ω′)| dy

. (cos θ)−d
∞∑
n=0

exp
(
−c2n

m
m−1

)
22(n+1)dMHLf(x, ω′)

. (cos θ)−dMHLf(x, ω′),

where we have used
1

V
(
x, t

1
m

) . 2(n+1)d 1
V
(
x, 2n+1t

1
m

) .
All these estimates were pointwise in ω′ ∈ Ω′. Since Y = Y (Ω′) is a lattice, we thus have

‖Mθf‖Lp(Ω;Y ) 6 C(cos θ)−d
∥∥MHLf

∥∥
Lp(Ω;Y ).

Now the Proposition follows invoking Theorem 3.1.
As in the pure Laplacian case, there is the following Corollary on Hörmander functional

calculus. Note however that this time, we have to assume a priori that A has an H∞ calculus
on Lp(Ω;Y ). For the existence of the H∞ calculus, we refer to Theorems 4.6 and 4.7, and
Proposition 4.8. Moreover, part 1. is entirely covered by Theorem 4.10.

Corollary 4.23 Let (Ω,dist, µ) be a space of homogeneous type of dimension d, let Y be any
UMD lattice and let 1 < p < ∞. Assume that A generates the self-adjoint semigroup (Tt)t on
L2(Ω) and that A has a bounded H∞(Σω) calculus on Lp(Ω;Y ) for some ω ∈ (0, π).

1. Assume that (Tt)t has Gaussian estimates (2.4). Then the H∞(Σω) calculus improves to
a Hörmander Hβ2 functional calculus on Lp(Ω;Y ) for any exponent β > d+ 1

2 .

2. Assume that (Tt)t satisfies Davies-Gaffney estimates, that is, generalised Gaussian esti-
mates (2.5) with p0 = 2, m = 2. Assume moreover that (Tt)t has an integral kernel pt
satisfying the on-diagonal estimate

pt(x, x) 6 Ct− d2

for some C > 0 and all x ∈ Ω and t > 0, and that there exists C <∞ such that

‖Tt‖L∞(Ω)→L∞(Ω) 6 C
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for all t > 0. Assume finally that the volume satisfies a polynomial growth

V (x, r) 6 C|r|d

for some fixed C > 0 and any x ∈ Ω and r > 0.
All the assumptions in 2. up to now are satisfied e.g. if Ω is of polynomial volume growth
of dimension d, and Tt satisfies Gaussian estimates (2.4) with m = 2. If the semigroup
satisfies the dispersive estimate

‖ exp(itA)‖L1(Ω)→L∞(Ω) 6 C|t|−
d
2

for some C > 0 and all t ∈ R\{0}, then the H∞(Σω) calculus improves to a Hörmander
Hβ2 functional calculus on Lp(Ω;Y ) for any exponent β > d

2 + 1
2 .

Proof : 1. The proof goes along the same lines as Corollary 4.19, using Proposition 4.22 in
place of Proposition 4.18, and the a priori existence of the H∞ calculus.

2. Observe that rescaling the time t ct in the semigroup if necessary, we have a semigroup
satisfying [CouSi, (3.1), (3.2)], where we use [CouSi, Lemma 3.2]. According to [CouSi, p. 521-
522], the dispersive assumption and the on-diagonal kernel estimate imply

|pz(x, y)| 6 C|z|− d2 exp
(
−<
[

dist2(x, y)
4z

])
6 C ′

1√
V (x, |z|)

exp
(
−<
[

dist2(x, y)
4z

])
.

Now we can argue, first as in the proof of Proposition 4.18 and second as in the proof of Lemma
4.22 to see that ‖Mθ‖Lp(Ω;Y )→Lp(Ω;Y ) 6 C

(
cos(θ)

)− d2 ‖MHL‖Lp(Ω;Y )→Lp(Ω;Y ). Then use the
H∞ calculus assumption to deduce as in Corollary 4.19 that A has a Hβ2 calculus on Lp(Ω;Y )
for β > d+1

2 .

Remark 4.24 Let the assumptions of Corollary 4.23 2. hold. There holds a similar Remark
to 4.16. Namely, assume that Y (Ω′) = [Z(Ω′), L2(Ω′)]θ with Z a further UMD lattice and
θ ∈ (0, 1). Interpolating between the calculus mappings

H
d+1

2 +ε
2 → B(Lp1(Ω;Z)), f 7→ f(A)

and

H
1
2 +ε
2 → B(L2(Ω;L2(Ω′))), f 7→ f(A)

with p1 close to 1 resp. ∞, one gets for 1
p > 1 − θ

2 (= 1
pY

typically) resp. 1
p 6

θ
2 (= 1

qY

typically) that A admits a Hβ2 calculus on Lp(Ω;Y ) with β > d| 1p −
1
2 | + 1

2 . Again as in
Remark 4.16, one can slightly improve the index β by considering the classes Hβq and taking
Hε∞ → B(L2(Ω;L2(Ω′))) in place of H

1
2 +ε
2 → B(L2(Ω;L2(Ω′))) above. Taking into account

all possible values for p, pY , qY , we get the following: If Y is a UMD lattice with convexity
resp. concavity exponents pY ∈ (1, 2] resp. qY ∈ [2,∞) such that we can write moreover
Y (Ω′) = [Z(Ω′), L2(Ω′)]θ with Z(Ω′) a UMD lattice and θ = 2 min

(
1 − 1

pY
, 1
qY

)
, then A has a

Hβ2 calculus on Lp(Ω;Y ) for β > α̃ · d+ 1
2 with

α̃ = α̃(p, pY , qY ) = max
(∣∣∣1
p
− 1

2

∣∣∣, ∣∣∣ 1
pY
− 1

2

∣∣∣, ∣∣∣ 1
qY
− 1

2

∣∣∣) 6 α(p, pY , qY ).
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5 Examples
The next lemma gives a simple procedure to create the UMD lattices that are needed in our
Main Theorem 4.10 out of given ones.

Lemma 5.1 Let 1 < p <∞.

1. Suppose that Y1, Y2 are p-convex UMD lattices. Then also Y1(Y2) is a p-convex UMD
lattice. In particular, Lq(Ω;Y1) is a p-convex UMD lattice for any q > p.

2. Suppose that Y1, Y2 are p-concave UMD lattices. Then also Y1(Y2) is a p-concave UMD
lattice. In particular, Lq(Ω;Y1) is a p-concave UMD lattice for any q 6 p.

3. If 1 < q < p and Y is a q-convex Banach lattice, then [Lp(Ω;Y )]q = L
p
q (Ω;Y q). In

particular, if Y q is UMD, then also [Lp(Ω;Y )]q is UMD.

Proof : 1. We have∥∥∥∥∥
(∑

i

|fi|p
) 1
p

∥∥∥∥∥
Y1(Y2)

=

∥∥∥∥∥
∥∥∥∥∥ω′ 7→

(∑
i

|fi(ω′)|p
) 1
p

∥∥∥∥∥
Y2

∥∥∥∥∥
Y1

6 C

∥∥∥∥∥ω′ 7→
(∑

i

‖fi(ω′)‖pY2

) 1
p

∥∥∥∥∥
Y1

6 CC ′
(∑

i

‖fi‖pY1(Y2)

) 1
p

.

2. We use the part 1. and the fact from Lemma 2.13 that Y ′1 and Y ′2 are p′-convex.
3. We have

‖f‖[Lp(Ω;Y )]q =
∥∥∥ |f | 1q ∥∥∥q

Lp(Ω;Y )

=
(∫

Ω

∥∥ |f(x)|
1
q

∥∥p
Y
dx

) q
p

=
(∫

Ω
‖f(x)‖

p
q

Y q dx

) q
p

= ‖f‖
L
p
q (Ω;Y q)

.

5.1 Gaussian estimates
In this subsection, we show that for many examples of differential operators in different contexts,
Gaussian estimates and H∞ calculus on Lp(Ω;Y ) are available, and thus Theorem 4.10 on the
Hörmander calculus on Lp(Ω;Y ) applies for 1 < p < ∞ and Y a UMD lattice. We recall that
the derivation exponent α = α(p, pY , qY ) ∈ (0, 1) is given in (4.1) and pY resp. qY define the
convexity and concavity exponents in (1,∞) of the lattice Y to which Y pY and (Y ′)q′Y are still
UMD lattices. For example, if Y = Ls(Ω′) for some s ∈ (1,∞), then any pY ∈ (1, s) and any
qY ∈ (s,∞) are admissible.
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Manifolds Let Ω = M be a complete Riemannian manifold with non-negative Ricci curva-
ture. Then the heat semigroup (associated with the Laplace-Beltrami operator) is a symmetric
contraction semigroup with Gaussian estimates (2.4) of order m = 2. See [LY], [GriTel, p. 3/70
(1.3)], [Sal]. Hence on these manifolds, according to Corollary 4.13 and Proposition 4.8, the
heat semigroup has a Hörmander Hβ2 calculus on Lp(Ω;Y ) for 1 < p <∞, for any UMD lattice
Y and β > α(p, pY , qY ) · d+ 1

2 .

Schrödinger and differential operators We show now that our main results apply for
several Schrödinger operators.

Start with the case Ω = M is a connected and complete Riemannian manifold with non-
negative Ricci curvature. Consider a potential V : Ω → R such that V > 0 and V ∈ L1

loc(Ω).
Then A = −∆+V , defined by the quadratic form technique, generates a self-adjoint semigroup
(Tt)t on L2(Ω), and moreover, as a consequence of the Trotter-Kato product formula, |Ttf(x)| 6
St|f |(x), where St = exp(t∆) is the heat semigroup [DuOS, Section 7.4]. According to the
preceding paragraph on manifolds, St is L1 and L∞ contractive, so according to Proposition
4.8, A has an H∞ calculus on Lp(Ω;Y ) for 1 < p < ∞ and Y any UMD lattice. Moreover,
(Tt)t has Gaussian estimates (2.4) of order m = 2 [DuOS, (7.8)], so that according to Corollary
4.13, A has a Hβ2 calculus on Lp(Ω;Y ) with β > α(p, pY , qY ) · d+ 1

2 .
Now consider the case that Ω ⊂ Rd is an open subset of homogeneous type. Take the

following self-adjoint differential operator defined on L2(Ω) [Ouh06, (1)]:

A = −
d∑

k,j=1

∂

∂xj

(
akj

∂

∂xk

)
where akj = ajk ∈ L∞(Ω,R), 1 6 k, j 6 d and akj satisfy the standard ellipticity condition
ηI 6 (akj)kj 6 µI for some constants 0 < η < µ < ∞. We assume Dirichlet boundary
conditions. Then according to [Ouh06, Theorem 1], the semigroup (Tt)t generated by A is
positive and according to [Ouh06, (4)], satisfies Gaussian estimates 2.4 with m = 2 (note that
V (x,

√
t) 6 Ct

d
2 there). Thus according to Corollary 4.9, A has an H∞ calculus on Lp(Ω;Y )

for Y any UMD lattice, and according to Corollary 4.13, A has a Hβ2 calculus on Lp(Ω;Y ) for
β > α(p, pY , qY ) · d+ 1

2 .
Now consider the case that Ω = Rd and a potential V : Ω → R such that V = V + − V −,

V +, V − > 0 and V +, V − belong to the Kato class (see [Sim]). Then according to [Ouh06,
Corollary 3], A = −∆ + V , the self-adjoint Schrödinger operator with potential V , generates
a positive semigroup (Tt)t (even with a certain lower Gaussian estimate), and according to
[Ouh06, Theorem 1], the shifted semigroup generated by A−s(A)+ ε for an ε > 0 has Gaussian
estimates (2.4). Here, s(A) = inf σ(A) is the spectral bound of A in L2(Rd). Thus, according to
Corollaries 4.9 and 4.13, A−s(A)+ ε has a Hβ2 calculus on Lp(Ω;Y ) for β > α(p, pY , qY ) ·d+ 1

2 .
Now consider for λ > 0 the Bessel operator

A = ∆λ = −x−λ d
dx
x2λ d

dx
x−λ = − d2

dx2 + λ(λ− 1)x−2

on Ω = (0,∞) [BCRM, p. 343]. Then according to [Ouh95], the semigroup (Tt)t generated by A
satisfies Gaussian estimates (2.4) provided that the potential λ(λ−1)x−2 is positive, i.e. λ > 1.
According to [BCRM, Theorem 1.6], A has an H∞ calculus on Lp(Ω;Y ) for 1 < p <∞ and any
UMD space Y that is a complex interpolation space between a Hilbert space and another UMD
space. According to Lemma 2.11, any UMD lattice is of this form. Thus, for the particular
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case Y being a UMD lattice and λ > 1, we can strengthen [BCRM, Theorem 1.6] and deduce
for ∆λ a Hβ2 calculus on Lp(Ω;Y ) for β > α(p, pY , qY ) · d+ 1

2 .
There are other Schrödinger and differential operators, where Gaussian estimates are avail-

able and the semigroup is positive, hence Corollaries 4.9 and 4.13 apply. We refer to [Ouh06],
[Ouh, Section 6.4, in particular Theorems 6.10, 6.11] for upper Gaussian estimates, and for
lower Gaussian estimates [Ouh06, Section 7.8].

Lie groups of polynomial volume growth Consider Ω = G a Lie group having polynomial
volume growth. Then Ω is a space of homogeneous type. Consider moreover A = −

∑N
k=1X

2
k ,

where {X1, . . . , XN} is a family of left invariant vector fields having the Hörmander property.
For example, G = R2n+1 is the Heisenberg group, and A = −

∑n
k=1X

2
k + Y 2

k is the standard
sub-Laplacian. Then according to [Sal, Theorem 4.2, Example 2], [Gri], the semigroup (Tt)t
satisfies two-sided Gaussian estimates (2.4) with m = 2. Therefore, according to Corollories 4.9
and 4.13, A has a Hβ2 calculus on Lp(Ω;Y ) for β > α(p, pY , qY ) · d+ 1

2 .

Fractals There are several fractals Ω ⊆ Rn on which there exists a heat semigroup satisfying
upper and lower Gaussian estimates. Namely, one first turns Ω into a metric measure space by
choosing a metric, e.g. the intrinsic metric inherited from Rn and a Hausdorff measure. Then,
the heat generator A is defined using the form method, often by means of a Brownian motion
Dirichlet form [GriTel, preprint version p. 3-4]. The heat kernel pt(x, y) satisfies [GriTel, (1.4)]

pt(x, y) ∼=
C

tα/β
exp
(
−c
(
dβ(x, y)

t

) 1
β−1
)

for certain α > 0 and β > 1 (β > 2 according to [GHL, Abstract])), and the implied constant c
may be different between upper and lower estimate. The parameter β is called walk dimension.
In case of volume comparability V (x, t) ∼= tα, e.g. if A is the Laplace operator on the Sierpinski
Gasket [DuOS, Section 7.11], we can apply our Corollaries 4.9 and 4.13 to deduce that A has a
Hβ2 calculus on Lp(Ω;Y ) for 1 < p <∞ and Y a UMD lattice, with β > α(p, pY , qY ) · d+ 1

2 .
For a discussion of many further examples where Gaussian estimates as in (2.4) are satisfied,

we refer to [DuOS, Section 7]. Hence in all these cases, Theorem 4.7 and Corollary 4.13 are
applicable and we obtain for the operators A a bounded Hβ2 calculus on Lp(Ω;Ls(Ω′)) with
1 < p, s <∞ and β >

(
max( 1

p ,
1
s ,

1
2 )−min( 1

p ,
1
s ,

1
2 )
)
· d+ 1

2 .

5.2 Dispersive estimates
In this subsection, we indicate in which situations of the preceding subsection there is a disper-
sive estimate

(5.1) ‖ exp(itA)‖L1(Ω)→L∞(Ω) 6 C|t|−
d
2 (t ∈ R)

available, so that Corollary 4.23 2. is applicable, and we can deduce a Hβ2 calculus on Lp(Ω;Y )
for β > d

2 + 1
2 . This is a smaller differentiation order, hence a better result than what we had

obtained in the preceding subsection, in case that α(p, pY , qY ) > 1
2 , e.g. if p is close to ∞ and

Y is an Ls(Ω′) space with s close to 1.

Schrödinger operators Throughout the paragraph, we assume Ω = Rd and A = −∆ + V a
Schrödinger operator with positive locally integrable potential.
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First, consider the case d = 1. Then if
∫
R V (x)(1 + |x|) dx < ∞, if there is no resonance

at zero energy and if there are no bound states (which implies that the spectral projection
Pac(A) onto the absolutely continuous spectral subspace is the identity), then according to
[GoS, Theorem 1], A satisfies (5.1). Consequently, A has a Hβ2 calculus on Lp(R;Y ) for any
β > 1

2 + 1
2 = 1.

Second, consider the case d = 3. Then if V (x) 6 C(1 + |x|)−b for some b > 3 and all
x ∈ R3, if 0 is neither an eigenvalue of A nor a resonance, and if there are no bound states, then
according to [GoS, Theorem 2], (5.1) holds. Consequently, A has a Hβ2 calculus on Lp(R3;Y )
for any β > 3

2 + 1
2 = 2.

Next, consider d ∈ N an arbitrary odd value. Then if V ∈ C
d−3

2 (Rd) for d ∈ {5, 7}, if
V (x) 6 c(1 + |x|)−b for some b > 3d+5

2 and for 1 6 j 6 d−3
2 , |∇jV (x)| 6 c(1 + |x|)−a for some

a > 3 for d = 5 and for some a > 8 for d = 7, if 0 is not an eigenvalue of A and if there are no
bound states, then according to [ErGr, Theorem 1.1], (5.1) holds. Consequently, A has a Hβ2
calculus on Lp(Rd;Y ) for any β > d

2 + 1
2 .

Now, if V is of the form V (x1, . . . , xd) = W (x1) + W (x2) + . . . + W (xd) with W : R →
R+ such that

∫
RW (x)(1 + |x|)2 dx < ∞, then according to [Pier, Corollary 1.6], (5.1) holds.

Consequently, A has a Hβ2 calculus on Lp(Rd;Y ) for any β > d
2 + 1

2 .

Stratified Lie groups We refer to the recent work [BFG] for a study when (5.1) or a stronger
estimate holds in the case that Ω = G is a 2-step stratified Lie group with further properties
and A = −∆ is the Laplace-Beltrami operator.

5.3 Generalised Gaussian estimates
In the recent past, several operators with generalised Gaussian estimates (2.5) for some p0 > 1
have been studied. In these cases we will obtain according to Theorems 4.7 and 4.10 that A
has a Hβ2 calculus on Lp(Ω;Ls(Ω′)) for p0 < p, s < p′0 and

(5.2) β >

(
max

(
1
p
,

1
s
,

1
2

)
−min

(
1
p
,

1
s
,

1
2

))
· d+ 1

2 .

Elliptic operators in divergence form Suppose that Ω = Rd and A is given by

Af =
∑

|γ|,|δ|=m

(−1)|δ|∂δ(aγδ∂γf),

where aγδ ∈ L∞(Ω;R). We suppose that the form a associated with A, given by

a(f, g) =
∫ ∑
|γ|,|δ|=m

aγδ(x)∂γf(x)∂δg(x) dx

gives rise to a self-adjoint operator and satisfies the ellipticity condition

a(f, f) > η
∥∥(−∆)m2 f

∥∥2
2 (f ∈Wm,2(Rd))

for some η > 0. Then according to [KuUl, Section 3 a) (iii)], (2.5) holds with m replaced by
2m and p0 = p′1, where p1 = 2d

d−2m for d > 2m, and p1 =∞ if d < 2m. Consequently, A has a
Hβ2 calculus on Lp(Rd;Ls(Ω′)) with p0 < p, s < p′0 and β given by (5.2).
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Schrödinger operators with singular potentials Suppose again that Ω = Rd, with d > 3,
and that A = −∆ + V is a Schrödinger operator. We suppose that V = V + − V − with
V +, V − : Rd → R+ and that V + is locally integrable and V − belongs to the pseudo-Kato
class [KPS]. A typical example is V (x) = − c

|x|2 for a certain range of c > 0 [KPS, KuUl].
Then A is self-adjoint, and according to [KuUl, Section 3 (c) (ii)], (2.5) holds for some p0 > 1.
Consequently, A has a Hβ2 calculus on Lp(Rd;Ls(Ω′)) for any p0 < p, s < p′0 and β as in (5.2).

We refer to [Bl, Section 2],[KuUl, Section 3] and the references therein for detailed explana-
tions of the two preceding paragraphs and more examples.

6 Concluding remarks
In Theorems 4.7 and 4.6, Proposition 4.8 and Corollary 4.9, we gave some sufficient conditions,
when A has an H∞ calculus on Lp(Ω;Y ). Nevertheless, it would be interesting to know whether
generalised Gaussian estimates and self-adjointness of the semigroup Tt imply already them-
selves that A has an H∞ calculus (and thus a Hβ2 calculus) on Lp(Ω;Y ) provided that Y is a
p0-convex and p′0-concave UMD lattice. Already the case of classical Gaussian estimates and
self-adjointness is open here (then the convexity and concavity assumption on Y is void).

Another question is whether Theorems 1.2, 1.3 and 1.4 hold for Y being an intermediate
UMD space, that is, Y = [L2(Ω′), Z]θ for some further UMD space Z and θ ∈ (0, 1), or even
for Y being any UMD space. Then, we suspect that the convexity and concavity notions,
which only make sense for lattices, have to be replaced by Rademacher type and cotype. For
an H∞(Σω) functional calculus result on Lp(Ω;Y ) with Y an intermediate UMD space and
an estimate for the angle ω < π

2 , we refer to [BCRM, Theorem 1.6] with a particular Bessel
operator A, and [Xu15, Theorem 4] for regular contractive and analytic semigroups.

A further question is whether a version of Theorem 4.6 holds for generalised instead of
classical Gaussian estimates.

We finally remark that the question about optimal exponents β, q in Hβq calculus with

‖f‖Hβq = |f(0)|+ sup
R>0
‖φf(R·)‖Wβ

q (R)

similar to Definition 2.3 is even open in the scalar case Lp(Ω) within the class of all self-adjoint
semigroups with Gaussian estimates. Moreover, for | 1p −

1
2 | <

1
d+1 and q = 2, the best β seems

to be unknown even in the pure Laplacian case on Ω = Rd see [KrW3, Subsection 8.1].
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